Source file src/strings/strings.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package strings implements simple functions to manipulate UTF-8 encoded strings.
     6  //
     7  // For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
     8  package strings
     9  
    10  import (
    11  	"internal/bytealg"
    12  	"internal/stringslite"
    13  	"math/bits"
    14  	"unicode"
    15  	"unicode/utf8"
    16  )
    17  
    18  const maxInt = int(^uint(0) >> 1)
    19  
    20  // explode splits s into a slice of UTF-8 strings,
    21  // one string per Unicode character up to a maximum of n (n < 0 means no limit).
    22  // Invalid UTF-8 bytes are sliced individually.
    23  func explode(s string, n int) []string {
    24  	l := utf8.RuneCountInString(s)
    25  	if n < 0 || n > l {
    26  		n = l
    27  	}
    28  	a := make([]string, n)
    29  	for i := 0; i < n-1; i++ {
    30  		_, size := utf8.DecodeRuneInString(s)
    31  		a[i] = s[:size]
    32  		s = s[size:]
    33  	}
    34  	if n > 0 {
    35  		a[n-1] = s
    36  	}
    37  	return a
    38  }
    39  
    40  // Count counts the number of non-overlapping instances of substr in s.
    41  // If substr is an empty string, Count returns 1 + the number of Unicode code points in s.
    42  func Count(s, substr string) int {
    43  	// special case
    44  	if len(substr) == 0 {
    45  		return utf8.RuneCountInString(s) + 1
    46  	}
    47  	if len(substr) == 1 {
    48  		return bytealg.CountString(s, substr[0])
    49  	}
    50  	n := 0
    51  	for {
    52  		i := Index(s, substr)
    53  		if i == -1 {
    54  			return n
    55  		}
    56  		n++
    57  		s = s[i+len(substr):]
    58  	}
    59  }
    60  
    61  // Contains reports whether substr is within s.
    62  func Contains(s, substr string) bool {
    63  	return Index(s, substr) >= 0
    64  }
    65  
    66  // ContainsAny reports whether any Unicode code points in chars are within s.
    67  func ContainsAny(s, chars string) bool {
    68  	return IndexAny(s, chars) >= 0
    69  }
    70  
    71  // ContainsRune reports whether the Unicode code point r is within s.
    72  func ContainsRune(s string, r rune) bool {
    73  	return IndexRune(s, r) >= 0
    74  }
    75  
    76  // ContainsFunc reports whether any Unicode code points r within s satisfy f(r).
    77  func ContainsFunc(s string, f func(rune) bool) bool {
    78  	return IndexFunc(s, f) >= 0
    79  }
    80  
    81  // LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
    82  func LastIndex(s, substr string) int {
    83  	n := len(substr)
    84  	switch {
    85  	case n == 0:
    86  		return len(s)
    87  	case n == 1:
    88  		return bytealg.LastIndexByteString(s, substr[0])
    89  	case n == len(s):
    90  		if substr == s {
    91  			return 0
    92  		}
    93  		return -1
    94  	case n > len(s):
    95  		return -1
    96  	}
    97  	// Rabin-Karp search from the end of the string
    98  	hashss, pow := bytealg.HashStrRev(substr)
    99  	last := len(s) - n
   100  	var h uint32
   101  	for i := len(s) - 1; i >= last; i-- {
   102  		h = h*bytealg.PrimeRK + uint32(s[i])
   103  	}
   104  	if h == hashss && s[last:] == substr {
   105  		return last
   106  	}
   107  	for i := last - 1; i >= 0; i-- {
   108  		h *= bytealg.PrimeRK
   109  		h += uint32(s[i])
   110  		h -= pow * uint32(s[i+n])
   111  		if h == hashss && s[i:i+n] == substr {
   112  			return i
   113  		}
   114  	}
   115  	return -1
   116  }
   117  
   118  // IndexByte returns the index of the first instance of c in s, or -1 if c is not present in s.
   119  func IndexByte(s string, c byte) int {
   120  	return stringslite.IndexByte(s, c)
   121  }
   122  
   123  // IndexRune returns the index of the first instance of the Unicode code point
   124  // r, or -1 if rune is not present in s.
   125  // If r is [utf8.RuneError], it returns the first instance of any
   126  // invalid UTF-8 byte sequence.
   127  func IndexRune(s string, r rune) int {
   128  	const haveFastIndex = bytealg.MaxBruteForce > 0
   129  	switch {
   130  	case 0 <= r && r < utf8.RuneSelf:
   131  		return IndexByte(s, byte(r))
   132  	case r == utf8.RuneError:
   133  		for i, r := range s {
   134  			if r == utf8.RuneError {
   135  				return i
   136  			}
   137  		}
   138  		return -1
   139  	case !utf8.ValidRune(r):
   140  		return -1
   141  	default:
   142  		// Search for rune r using the last byte of its UTF-8 encoded form.
   143  		// The distribution of the last byte is more uniform compared to the
   144  		// first byte which has a 78% chance of being [240, 243, 244].
   145  		rs := string(r)
   146  		last := len(rs) - 1
   147  		i := last
   148  		fails := 0
   149  		for i < len(s) {
   150  			if s[i] != rs[last] {
   151  				o := IndexByte(s[i+1:], rs[last])
   152  				if o < 0 {
   153  					return -1
   154  				}
   155  				i += o + 1
   156  			}
   157  			// Step backwards comparing bytes.
   158  			for j := 1; j < len(rs); j++ {
   159  				if s[i-j] != rs[last-j] {
   160  					goto next
   161  				}
   162  			}
   163  			return i - last
   164  		next:
   165  			fails++
   166  			i++
   167  			if (haveFastIndex && fails > bytealg.Cutover(i)) && i < len(s) ||
   168  				(!haveFastIndex && fails >= 4+i>>4 && i < len(s)) {
   169  				goto fallback
   170  			}
   171  		}
   172  		return -1
   173  
   174  	fallback:
   175  		// see comment in ../bytes/bytes.go
   176  		if haveFastIndex {
   177  			if j := bytealg.IndexString(s[i-last:], string(r)); j >= 0 {
   178  				return i + j - last
   179  			}
   180  		} else {
   181  			c0 := rs[last]
   182  			c1 := rs[last-1]
   183  		loop:
   184  			for ; i < len(s); i++ {
   185  				if s[i] == c0 && s[i-1] == c1 {
   186  					for k := 2; k < len(rs); k++ {
   187  						if s[i-k] != rs[last-k] {
   188  							continue loop
   189  						}
   190  					}
   191  					return i - last
   192  				}
   193  			}
   194  		}
   195  		return -1
   196  	}
   197  }
   198  
   199  // IndexAny returns the index of the first instance of any Unicode code point
   200  // from chars in s, or -1 if no Unicode code point from chars is present in s.
   201  func IndexAny(s, chars string) int {
   202  	if chars == "" {
   203  		// Avoid scanning all of s.
   204  		return -1
   205  	}
   206  	if len(chars) == 1 {
   207  		// Avoid scanning all of s.
   208  		r := rune(chars[0])
   209  		if r >= utf8.RuneSelf {
   210  			r = utf8.RuneError
   211  		}
   212  		return IndexRune(s, r)
   213  	}
   214  	if len(s) > 8 {
   215  		if as, isASCII := makeASCIISet(chars); isASCII {
   216  			for i := 0; i < len(s); i++ {
   217  				if as.contains(s[i]) {
   218  					return i
   219  				}
   220  			}
   221  			return -1
   222  		}
   223  	}
   224  	for i, c := range s {
   225  		if IndexRune(chars, c) >= 0 {
   226  			return i
   227  		}
   228  	}
   229  	return -1
   230  }
   231  
   232  // LastIndexAny returns the index of the last instance of any Unicode code
   233  // point from chars in s, or -1 if no Unicode code point from chars is
   234  // present in s.
   235  func LastIndexAny(s, chars string) int {
   236  	if chars == "" {
   237  		// Avoid scanning all of s.
   238  		return -1
   239  	}
   240  	if len(s) == 1 {
   241  		rc := rune(s[0])
   242  		if rc >= utf8.RuneSelf {
   243  			rc = utf8.RuneError
   244  		}
   245  		if IndexRune(chars, rc) >= 0 {
   246  			return 0
   247  		}
   248  		return -1
   249  	}
   250  	if len(s) > 8 {
   251  		if as, isASCII := makeASCIISet(chars); isASCII {
   252  			for i := len(s) - 1; i >= 0; i-- {
   253  				if as.contains(s[i]) {
   254  					return i
   255  				}
   256  			}
   257  			return -1
   258  		}
   259  	}
   260  	if len(chars) == 1 {
   261  		rc := rune(chars[0])
   262  		if rc >= utf8.RuneSelf {
   263  			rc = utf8.RuneError
   264  		}
   265  		for i := len(s); i > 0; {
   266  			r, size := utf8.DecodeLastRuneInString(s[:i])
   267  			i -= size
   268  			if rc == r {
   269  				return i
   270  			}
   271  		}
   272  		return -1
   273  	}
   274  	for i := len(s); i > 0; {
   275  		r, size := utf8.DecodeLastRuneInString(s[:i])
   276  		i -= size
   277  		if IndexRune(chars, r) >= 0 {
   278  			return i
   279  		}
   280  	}
   281  	return -1
   282  }
   283  
   284  // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
   285  func LastIndexByte(s string, c byte) int {
   286  	return bytealg.LastIndexByteString(s, c)
   287  }
   288  
   289  // Generic split: splits after each instance of sep,
   290  // including sepSave bytes of sep in the subarrays.
   291  func genSplit(s, sep string, sepSave, n int) []string {
   292  	if n == 0 {
   293  		return nil
   294  	}
   295  	if sep == "" {
   296  		return explode(s, n)
   297  	}
   298  	if n < 0 {
   299  		n = Count(s, sep) + 1
   300  	}
   301  
   302  	if n > len(s)+1 {
   303  		n = len(s) + 1
   304  	}
   305  	a := make([]string, n)
   306  	n--
   307  	i := 0
   308  	for i < n {
   309  		m := Index(s, sep)
   310  		if m < 0 {
   311  			break
   312  		}
   313  		a[i] = s[:m+sepSave]
   314  		s = s[m+len(sep):]
   315  		i++
   316  	}
   317  	a[i] = s
   318  	return a[:i+1]
   319  }
   320  
   321  // SplitN slices s into substrings separated by sep and returns a slice of
   322  // the substrings between those separators.
   323  //
   324  // The count determines the number of substrings to return:
   325  //   - n > 0: at most n substrings; the last substring will be the unsplit remainder;
   326  //   - n == 0: the result is nil (zero substrings);
   327  //   - n < 0: all substrings.
   328  //
   329  // Edge cases for s and sep (for example, empty strings) are handled
   330  // as described in the documentation for [Split].
   331  //
   332  // To split around the first instance of a separator, see [Cut].
   333  func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
   334  
   335  // SplitAfterN slices s into substrings after each instance of sep and
   336  // returns a slice of those substrings.
   337  //
   338  // The count determines the number of substrings to return:
   339  //   - n > 0: at most n substrings; the last substring will be the unsplit remainder;
   340  //   - n == 0: the result is nil (zero substrings);
   341  //   - n < 0: all substrings.
   342  //
   343  // Edge cases for s and sep (for example, empty strings) are handled
   344  // as described in the documentation for [SplitAfter].
   345  func SplitAfterN(s, sep string, n int) []string {
   346  	return genSplit(s, sep, len(sep), n)
   347  }
   348  
   349  // Split slices s into all substrings separated by sep and returns a slice of
   350  // the substrings between those separators.
   351  //
   352  // If s does not contain sep and sep is not empty, Split returns a
   353  // slice of length 1 whose only element is s.
   354  //
   355  // If sep is empty, Split splits after each UTF-8 sequence. If both s
   356  // and sep are empty, Split returns an empty slice.
   357  //
   358  // It is equivalent to [SplitN] with a count of -1.
   359  //
   360  // To split around the first instance of a separator, see [Cut].
   361  func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
   362  
   363  // SplitAfter slices s into all substrings after each instance of sep and
   364  // returns a slice of those substrings.
   365  //
   366  // If s does not contain sep and sep is not empty, SplitAfter returns
   367  // a slice of length 1 whose only element is s.
   368  //
   369  // If sep is empty, SplitAfter splits after each UTF-8 sequence. If
   370  // both s and sep are empty, SplitAfter returns an empty slice.
   371  //
   372  // It is equivalent to [SplitAfterN] with a count of -1.
   373  func SplitAfter(s, sep string) []string {
   374  	return genSplit(s, sep, len(sep), -1)
   375  }
   376  
   377  var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
   378  
   379  // Fields splits the string s around each instance of one or more consecutive white space
   380  // characters, as defined by [unicode.IsSpace], returning a slice of substrings of s or an
   381  // empty slice if s contains only white space. Every element of the returned slice is
   382  // non-empty. Unlike [Split], leading and trailing runs runs of white space characters
   383  // are discarded.
   384  func Fields(s string) []string {
   385  	// First count the fields.
   386  	// This is an exact count if s is ASCII, otherwise it is an approximation.
   387  	n := 0
   388  	wasSpace := 1
   389  	// setBits is used to track which bits are set in the bytes of s.
   390  	setBits := uint8(0)
   391  	for i := 0; i < len(s); i++ {
   392  		r := s[i]
   393  		setBits |= r
   394  		isSpace := int(asciiSpace[r])
   395  		n += wasSpace & ^isSpace
   396  		wasSpace = isSpace
   397  	}
   398  
   399  	if setBits >= utf8.RuneSelf {
   400  		// Some runes in the input string are not ASCII.
   401  		return FieldsFunc(s, unicode.IsSpace)
   402  	}
   403  	// ASCII fast path
   404  	a := make([]string, n)
   405  	na := 0
   406  	fieldStart := 0
   407  	i := 0
   408  	// Skip spaces in the front of the input.
   409  	for i < len(s) && asciiSpace[s[i]] != 0 {
   410  		i++
   411  	}
   412  	fieldStart = i
   413  	for i < len(s) {
   414  		if asciiSpace[s[i]] == 0 {
   415  			i++
   416  			continue
   417  		}
   418  		a[na] = s[fieldStart:i]
   419  		na++
   420  		i++
   421  		// Skip spaces in between fields.
   422  		for i < len(s) && asciiSpace[s[i]] != 0 {
   423  			i++
   424  		}
   425  		fieldStart = i
   426  	}
   427  	if fieldStart < len(s) { // Last field might end at EOF.
   428  		a[na] = s[fieldStart:]
   429  	}
   430  	return a
   431  }
   432  
   433  // FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
   434  // and returns an array of slices of s. If all code points in s satisfy f(c) or the
   435  // string is empty, an empty slice is returned. Every element of the returned slice is
   436  // non-empty. Unlike [SplitFunc], leading and trailing runs of code points satisfying f(c)
   437  // are discarded.
   438  //
   439  // FieldsFunc makes no guarantees about the order in which it calls f(c)
   440  // and assumes that f always returns the same value for a given c.
   441  func FieldsFunc(s string, f func(rune) bool) []string {
   442  	// A span is used to record a slice of s of the form s[start:end].
   443  	// The start index is inclusive and the end index is exclusive.
   444  	type span struct {
   445  		start int
   446  		end   int
   447  	}
   448  	spans := make([]span, 0, 32)
   449  
   450  	// Find the field start and end indices.
   451  	// Doing this in a separate pass (rather than slicing the string s
   452  	// and collecting the result substrings right away) is significantly
   453  	// more efficient, possibly due to cache effects.
   454  	start := -1 // valid span start if >= 0
   455  	for end, rune := range s {
   456  		if f(rune) {
   457  			if start >= 0 {
   458  				spans = append(spans, span{start, end})
   459  				// Set start to a negative value.
   460  				// Note: using -1 here consistently and reproducibly
   461  				// slows down this code by a several percent on amd64.
   462  				start = ^start
   463  			}
   464  		} else {
   465  			if start < 0 {
   466  				start = end
   467  			}
   468  		}
   469  	}
   470  
   471  	// Last field might end at EOF.
   472  	if start >= 0 {
   473  		spans = append(spans, span{start, len(s)})
   474  	}
   475  
   476  	// Create strings from recorded field indices.
   477  	a := make([]string, len(spans))
   478  	for i, span := range spans {
   479  		a[i] = s[span.start:span.end]
   480  	}
   481  
   482  	return a
   483  }
   484  
   485  // Join concatenates the elements of its first argument to create a single string. The separator
   486  // string sep is placed between elements in the resulting string.
   487  func Join(elems []string, sep string) string {
   488  	switch len(elems) {
   489  	case 0:
   490  		return ""
   491  	case 1:
   492  		return elems[0]
   493  	}
   494  
   495  	var n int
   496  	if len(sep) > 0 {
   497  		if len(sep) >= maxInt/(len(elems)-1) {
   498  			panic("strings: Join output length overflow")
   499  		}
   500  		n += len(sep) * (len(elems) - 1)
   501  	}
   502  	for _, elem := range elems {
   503  		if len(elem) > maxInt-n {
   504  			panic("strings: Join output length overflow")
   505  		}
   506  		n += len(elem)
   507  	}
   508  
   509  	var b Builder
   510  	b.Grow(n)
   511  	b.WriteString(elems[0])
   512  	for _, s := range elems[1:] {
   513  		b.WriteString(sep)
   514  		b.WriteString(s)
   515  	}
   516  	return b.String()
   517  }
   518  
   519  // HasPrefix reports whether the string s begins with prefix.
   520  func HasPrefix(s, prefix string) bool {
   521  	return stringslite.HasPrefix(s, prefix)
   522  }
   523  
   524  // HasSuffix reports whether the string s ends with suffix.
   525  func HasSuffix(s, suffix string) bool {
   526  	return stringslite.HasSuffix(s, suffix)
   527  }
   528  
   529  // Map returns a copy of the string s with all its characters modified
   530  // according to the mapping function. If mapping returns a negative value, the character is
   531  // dropped from the string with no replacement.
   532  func Map(mapping func(rune) rune, s string) string {
   533  	// In the worst case, the string can grow when mapped, making
   534  	// things unpleasant. But it's so rare we barge in assuming it's
   535  	// fine. It could also shrink but that falls out naturally.
   536  
   537  	// The output buffer b is initialized on demand, the first
   538  	// time a character differs.
   539  	var b Builder
   540  
   541  	for i, c := range s {
   542  		r := mapping(c)
   543  		if r == c && c != utf8.RuneError {
   544  			continue
   545  		}
   546  
   547  		var width int
   548  		if c == utf8.RuneError {
   549  			c, width = utf8.DecodeRuneInString(s[i:])
   550  			if width != 1 && r == c {
   551  				continue
   552  			}
   553  		} else {
   554  			width = utf8.RuneLen(c)
   555  		}
   556  
   557  		b.Grow(len(s) + utf8.UTFMax)
   558  		b.WriteString(s[:i])
   559  		if r >= 0 {
   560  			b.WriteRune(r)
   561  		}
   562  
   563  		s = s[i+width:]
   564  		break
   565  	}
   566  
   567  	// Fast path for unchanged input
   568  	if b.Cap() == 0 { // didn't call b.Grow above
   569  		return s
   570  	}
   571  
   572  	for _, c := range s {
   573  		r := mapping(c)
   574  
   575  		if r >= 0 {
   576  			// common case
   577  			// Due to inlining, it is more performant to determine if WriteByte should be
   578  			// invoked rather than always call WriteRune
   579  			if r < utf8.RuneSelf {
   580  				b.WriteByte(byte(r))
   581  			} else {
   582  				// r is not an ASCII rune.
   583  				b.WriteRune(r)
   584  			}
   585  		}
   586  	}
   587  
   588  	return b.String()
   589  }
   590  
   591  // According to static analysis, spaces, dashes, zeros, equals, and tabs
   592  // are the most commonly repeated string literal,
   593  // often used for display on fixed-width terminal windows.
   594  // Pre-declare constants for these for O(1) repetition in the common-case.
   595  const (
   596  	repeatedSpaces = "" +
   597  		"                                                                " +
   598  		"                                                                "
   599  	repeatedDashes = "" +
   600  		"----------------------------------------------------------------" +
   601  		"----------------------------------------------------------------"
   602  	repeatedZeroes = "" +
   603  		"0000000000000000000000000000000000000000000000000000000000000000"
   604  	repeatedEquals = "" +
   605  		"================================================================" +
   606  		"================================================================"
   607  	repeatedTabs = "" +
   608  		"\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t" +
   609  		"\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
   610  )
   611  
   612  // Repeat returns a new string consisting of count copies of the string s.
   613  //
   614  // It panics if count is negative or if the result of (len(s) * count)
   615  // overflows.
   616  func Repeat(s string, count int) string {
   617  	switch count {
   618  	case 0:
   619  		return ""
   620  	case 1:
   621  		return s
   622  	}
   623  
   624  	// Since we cannot return an error on overflow,
   625  	// we should panic if the repeat will generate an overflow.
   626  	// See golang.org/issue/16237.
   627  	if count < 0 {
   628  		panic("strings: negative Repeat count")
   629  	}
   630  	hi, lo := bits.Mul(uint(len(s)), uint(count))
   631  	if hi > 0 || lo > uint(maxInt) {
   632  		panic("strings: Repeat output length overflow")
   633  	}
   634  	n := int(lo) // lo = len(s) * count
   635  
   636  	if len(s) == 0 {
   637  		return ""
   638  	}
   639  
   640  	// Optimize for commonly repeated strings of relatively short length.
   641  	switch s[0] {
   642  	case ' ', '-', '0', '=', '\t':
   643  		switch {
   644  		case n <= len(repeatedSpaces) && HasPrefix(repeatedSpaces, s):
   645  			return repeatedSpaces[:n]
   646  		case n <= len(repeatedDashes) && HasPrefix(repeatedDashes, s):
   647  			return repeatedDashes[:n]
   648  		case n <= len(repeatedZeroes) && HasPrefix(repeatedZeroes, s):
   649  			return repeatedZeroes[:n]
   650  		case n <= len(repeatedEquals) && HasPrefix(repeatedEquals, s):
   651  			return repeatedEquals[:n]
   652  		case n <= len(repeatedTabs) && HasPrefix(repeatedTabs, s):
   653  			return repeatedTabs[:n]
   654  		}
   655  	}
   656  
   657  	// Past a certain chunk size it is counterproductive to use
   658  	// larger chunks as the source of the write, as when the source
   659  	// is too large we are basically just thrashing the CPU D-cache.
   660  	// So if the result length is larger than an empirically-found
   661  	// limit (8KB), we stop growing the source string once the limit
   662  	// is reached and keep reusing the same source string - that
   663  	// should therefore be always resident in the L1 cache - until we
   664  	// have completed the construction of the result.
   665  	// This yields significant speedups (up to +100%) in cases where
   666  	// the result length is large (roughly, over L2 cache size).
   667  	const chunkLimit = 8 * 1024
   668  	chunkMax := n
   669  	if n > chunkLimit {
   670  		chunkMax = chunkLimit / len(s) * len(s)
   671  		if chunkMax == 0 {
   672  			chunkMax = len(s)
   673  		}
   674  	}
   675  
   676  	var b Builder
   677  	b.Grow(n)
   678  	b.WriteString(s)
   679  	for b.Len() < n {
   680  		chunk := min(n-b.Len(), b.Len(), chunkMax)
   681  		b.WriteString(b.String()[:chunk])
   682  	}
   683  	return b.String()
   684  }
   685  
   686  // ToUpper returns s with all Unicode letters mapped to their upper case.
   687  func ToUpper(s string) string {
   688  	isASCII, hasLower := true, false
   689  	for i := 0; i < len(s); i++ {
   690  		c := s[i]
   691  		if c >= utf8.RuneSelf {
   692  			isASCII = false
   693  			break
   694  		}
   695  		hasLower = hasLower || ('a' <= c && c <= 'z')
   696  	}
   697  
   698  	if isASCII { // optimize for ASCII-only strings.
   699  		if !hasLower {
   700  			return s
   701  		}
   702  		var (
   703  			b   Builder
   704  			pos int
   705  		)
   706  		b.Grow(len(s))
   707  		for i := 0; i < len(s); i++ {
   708  			c := s[i]
   709  			if 'a' <= c && c <= 'z' {
   710  				c -= 'a' - 'A'
   711  				if pos < i {
   712  					b.WriteString(s[pos:i])
   713  				}
   714  				b.WriteByte(c)
   715  				pos = i + 1
   716  			}
   717  		}
   718  		if pos < len(s) {
   719  			b.WriteString(s[pos:])
   720  		}
   721  		return b.String()
   722  	}
   723  	return Map(unicode.ToUpper, s)
   724  }
   725  
   726  // ToLower returns s with all Unicode letters mapped to their lower case.
   727  func ToLower(s string) string {
   728  	isASCII, hasUpper := true, false
   729  	for i := 0; i < len(s); i++ {
   730  		c := s[i]
   731  		if c >= utf8.RuneSelf {
   732  			isASCII = false
   733  			break
   734  		}
   735  		hasUpper = hasUpper || ('A' <= c && c <= 'Z')
   736  	}
   737  
   738  	if isASCII { // optimize for ASCII-only strings.
   739  		if !hasUpper {
   740  			return s
   741  		}
   742  		var (
   743  			b   Builder
   744  			pos int
   745  		)
   746  		b.Grow(len(s))
   747  		for i := 0; i < len(s); i++ {
   748  			c := s[i]
   749  			if 'A' <= c && c <= 'Z' {
   750  				c += 'a' - 'A'
   751  				if pos < i {
   752  					b.WriteString(s[pos:i])
   753  				}
   754  				b.WriteByte(c)
   755  				pos = i + 1
   756  			}
   757  		}
   758  		if pos < len(s) {
   759  			b.WriteString(s[pos:])
   760  		}
   761  		return b.String()
   762  	}
   763  	return Map(unicode.ToLower, s)
   764  }
   765  
   766  // ToTitle returns a copy of the string s with all Unicode letters mapped to
   767  // their Unicode title case.
   768  func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
   769  
   770  // ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
   771  // upper case using the case mapping specified by c.
   772  func ToUpperSpecial(c unicode.SpecialCase, s string) string {
   773  	return Map(c.ToUpper, s)
   774  }
   775  
   776  // ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
   777  // lower case using the case mapping specified by c.
   778  func ToLowerSpecial(c unicode.SpecialCase, s string) string {
   779  	return Map(c.ToLower, s)
   780  }
   781  
   782  // ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
   783  // Unicode title case, giving priority to the special casing rules.
   784  func ToTitleSpecial(c unicode.SpecialCase, s string) string {
   785  	return Map(c.ToTitle, s)
   786  }
   787  
   788  // ToValidUTF8 returns a copy of the string s with each run of invalid UTF-8 byte sequences
   789  // replaced by the replacement string, which may be empty.
   790  func ToValidUTF8(s, replacement string) string {
   791  	var b Builder
   792  
   793  	for i, c := range s {
   794  		if c != utf8.RuneError {
   795  			continue
   796  		}
   797  
   798  		_, wid := utf8.DecodeRuneInString(s[i:])
   799  		if wid == 1 {
   800  			b.Grow(len(s) + len(replacement))
   801  			b.WriteString(s[:i])
   802  			s = s[i:]
   803  			break
   804  		}
   805  	}
   806  
   807  	// Fast path for unchanged input
   808  	if b.Cap() == 0 { // didn't call b.Grow above
   809  		return s
   810  	}
   811  
   812  	invalid := false // previous byte was from an invalid UTF-8 sequence
   813  	for i := 0; i < len(s); {
   814  		c := s[i]
   815  		if c < utf8.RuneSelf {
   816  			i++
   817  			invalid = false
   818  			b.WriteByte(c)
   819  			continue
   820  		}
   821  		_, wid := utf8.DecodeRuneInString(s[i:])
   822  		if wid == 1 {
   823  			i++
   824  			if !invalid {
   825  				invalid = true
   826  				b.WriteString(replacement)
   827  			}
   828  			continue
   829  		}
   830  		invalid = false
   831  		b.WriteString(s[i : i+wid])
   832  		i += wid
   833  	}
   834  
   835  	return b.String()
   836  }
   837  
   838  // isSeparator reports whether the rune could mark a word boundary.
   839  // TODO: update when package unicode captures more of the properties.
   840  func isSeparator(r rune) bool {
   841  	// ASCII alphanumerics and underscore are not separators
   842  	if r <= 0x7F {
   843  		switch {
   844  		case '0' <= r && r <= '9':
   845  			return false
   846  		case 'a' <= r && r <= 'z':
   847  			return false
   848  		case 'A' <= r && r <= 'Z':
   849  			return false
   850  		case r == '_':
   851  			return false
   852  		}
   853  		return true
   854  	}
   855  	// Letters and digits are not separators
   856  	if unicode.IsLetter(r) || unicode.IsDigit(r) {
   857  		return false
   858  	}
   859  	// Otherwise, all we can do for now is treat spaces as separators.
   860  	return unicode.IsSpace(r)
   861  }
   862  
   863  // Title returns a copy of the string s with all Unicode letters that begin words
   864  // mapped to their Unicode title case.
   865  //
   866  // Deprecated: The rule Title uses for word boundaries does not handle Unicode
   867  // punctuation properly. Use golang.org/x/text/cases instead.
   868  func Title(s string) string {
   869  	// Use a closure here to remember state.
   870  	// Hackish but effective. Depends on Map scanning in order and calling
   871  	// the closure once per rune.
   872  	prev := ' '
   873  	return Map(
   874  		func(r rune) rune {
   875  			if isSeparator(prev) {
   876  				prev = r
   877  				return unicode.ToTitle(r)
   878  			}
   879  			prev = r
   880  			return r
   881  		},
   882  		s)
   883  }
   884  
   885  // TrimLeftFunc returns a slice of the string s with all leading
   886  // Unicode code points c satisfying f(c) removed.
   887  func TrimLeftFunc(s string, f func(rune) bool) string {
   888  	i := indexFunc(s, f, false)
   889  	if i == -1 {
   890  		return ""
   891  	}
   892  	return s[i:]
   893  }
   894  
   895  // TrimRightFunc returns a slice of the string s with all trailing
   896  // Unicode code points c satisfying f(c) removed.
   897  func TrimRightFunc(s string, f func(rune) bool) string {
   898  	i := lastIndexFunc(s, f, false)
   899  	if i >= 0 && s[i] >= utf8.RuneSelf {
   900  		_, wid := utf8.DecodeRuneInString(s[i:])
   901  		i += wid
   902  	} else {
   903  		i++
   904  	}
   905  	return s[0:i]
   906  }
   907  
   908  // TrimFunc returns a slice of the string s with all leading
   909  // and trailing Unicode code points c satisfying f(c) removed.
   910  func TrimFunc(s string, f func(rune) bool) string {
   911  	return TrimRightFunc(TrimLeftFunc(s, f), f)
   912  }
   913  
   914  // IndexFunc returns the index into s of the first Unicode
   915  // code point satisfying f(c), or -1 if none do.
   916  func IndexFunc(s string, f func(rune) bool) int {
   917  	return indexFunc(s, f, true)
   918  }
   919  
   920  // LastIndexFunc returns the index into s of the last
   921  // Unicode code point satisfying f(c), or -1 if none do.
   922  func LastIndexFunc(s string, f func(rune) bool) int {
   923  	return lastIndexFunc(s, f, true)
   924  }
   925  
   926  // indexFunc is the same as IndexFunc except that if
   927  // truth==false, the sense of the predicate function is
   928  // inverted.
   929  func indexFunc(s string, f func(rune) bool, truth bool) int {
   930  	for i, r := range s {
   931  		if f(r) == truth {
   932  			return i
   933  		}
   934  	}
   935  	return -1
   936  }
   937  
   938  // lastIndexFunc is the same as LastIndexFunc except that if
   939  // truth==false, the sense of the predicate function is
   940  // inverted.
   941  func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
   942  	for i := len(s); i > 0; {
   943  		r, size := utf8.DecodeLastRuneInString(s[0:i])
   944  		i -= size
   945  		if f(r) == truth {
   946  			return i
   947  		}
   948  	}
   949  	return -1
   950  }
   951  
   952  // asciiSet is a 32-byte value, where each bit represents the presence of a
   953  // given ASCII character in the set. The 128-bits of the lower 16 bytes,
   954  // starting with the least-significant bit of the lowest word to the
   955  // most-significant bit of the highest word, map to the full range of all
   956  // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
   957  // ensuring that any non-ASCII character will be reported as not in the set.
   958  // This allocates a total of 32 bytes even though the upper half
   959  // is unused to avoid bounds checks in asciiSet.contains.
   960  type asciiSet [8]uint32
   961  
   962  // makeASCIISet creates a set of ASCII characters and reports whether all
   963  // characters in chars are ASCII.
   964  func makeASCIISet(chars string) (as asciiSet, ok bool) {
   965  	for i := 0; i < len(chars); i++ {
   966  		c := chars[i]
   967  		if c >= utf8.RuneSelf {
   968  			return as, false
   969  		}
   970  		as[c/32] |= 1 << (c % 32)
   971  	}
   972  	return as, true
   973  }
   974  
   975  // contains reports whether c is inside the set.
   976  func (as *asciiSet) contains(c byte) bool {
   977  	return (as[c/32] & (1 << (c % 32))) != 0
   978  }
   979  
   980  // Trim returns a slice of the string s with all leading and
   981  // trailing Unicode code points contained in cutset removed.
   982  func Trim(s, cutset string) string {
   983  	if s == "" || cutset == "" {
   984  		return s
   985  	}
   986  	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
   987  		return trimLeftByte(trimRightByte(s, cutset[0]), cutset[0])
   988  	}
   989  	if as, ok := makeASCIISet(cutset); ok {
   990  		return trimLeftASCII(trimRightASCII(s, &as), &as)
   991  	}
   992  	return trimLeftUnicode(trimRightUnicode(s, cutset), cutset)
   993  }
   994  
   995  // TrimLeft returns a slice of the string s with all leading
   996  // Unicode code points contained in cutset removed.
   997  //
   998  // To remove a prefix, use [TrimPrefix] instead.
   999  func TrimLeft(s, cutset string) string {
  1000  	if s == "" || cutset == "" {
  1001  		return s
  1002  	}
  1003  	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
  1004  		return trimLeftByte(s, cutset[0])
  1005  	}
  1006  	if as, ok := makeASCIISet(cutset); ok {
  1007  		return trimLeftASCII(s, &as)
  1008  	}
  1009  	return trimLeftUnicode(s, cutset)
  1010  }
  1011  
  1012  func trimLeftByte(s string, c byte) string {
  1013  	for len(s) > 0 && s[0] == c {
  1014  		s = s[1:]
  1015  	}
  1016  	return s
  1017  }
  1018  
  1019  func trimLeftASCII(s string, as *asciiSet) string {
  1020  	for len(s) > 0 {
  1021  		if !as.contains(s[0]) {
  1022  			break
  1023  		}
  1024  		s = s[1:]
  1025  	}
  1026  	return s
  1027  }
  1028  
  1029  func trimLeftUnicode(s, cutset string) string {
  1030  	for len(s) > 0 {
  1031  		r, n := rune(s[0]), 1
  1032  		if r >= utf8.RuneSelf {
  1033  			r, n = utf8.DecodeRuneInString(s)
  1034  		}
  1035  		if !ContainsRune(cutset, r) {
  1036  			break
  1037  		}
  1038  		s = s[n:]
  1039  	}
  1040  	return s
  1041  }
  1042  
  1043  // TrimRight returns a slice of the string s, with all trailing
  1044  // Unicode code points contained in cutset removed.
  1045  //
  1046  // To remove a suffix, use [TrimSuffix] instead.
  1047  func TrimRight(s, cutset string) string {
  1048  	if s == "" || cutset == "" {
  1049  		return s
  1050  	}
  1051  	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
  1052  		return trimRightByte(s, cutset[0])
  1053  	}
  1054  	if as, ok := makeASCIISet(cutset); ok {
  1055  		return trimRightASCII(s, &as)
  1056  	}
  1057  	return trimRightUnicode(s, cutset)
  1058  }
  1059  
  1060  func trimRightByte(s string, c byte) string {
  1061  	for len(s) > 0 && s[len(s)-1] == c {
  1062  		s = s[:len(s)-1]
  1063  	}
  1064  	return s
  1065  }
  1066  
  1067  func trimRightASCII(s string, as *asciiSet) string {
  1068  	for len(s) > 0 {
  1069  		if !as.contains(s[len(s)-1]) {
  1070  			break
  1071  		}
  1072  		s = s[:len(s)-1]
  1073  	}
  1074  	return s
  1075  }
  1076  
  1077  func trimRightUnicode(s, cutset string) string {
  1078  	for len(s) > 0 {
  1079  		r, n := rune(s[len(s)-1]), 1
  1080  		if r >= utf8.RuneSelf {
  1081  			r, n = utf8.DecodeLastRuneInString(s)
  1082  		}
  1083  		if !ContainsRune(cutset, r) {
  1084  			break
  1085  		}
  1086  		s = s[:len(s)-n]
  1087  	}
  1088  	return s
  1089  }
  1090  
  1091  // TrimSpace returns a slice of the string s, with all leading
  1092  // and trailing white space removed, as defined by Unicode.
  1093  func TrimSpace(s string) string {
  1094  	// Fast path for ASCII: look for the first ASCII non-space byte
  1095  	start := 0
  1096  	for ; start < len(s); start++ {
  1097  		c := s[start]
  1098  		if c >= utf8.RuneSelf {
  1099  			// If we run into a non-ASCII byte, fall back to the
  1100  			// slower unicode-aware method on the remaining bytes
  1101  			return TrimFunc(s[start:], unicode.IsSpace)
  1102  		}
  1103  		if asciiSpace[c] == 0 {
  1104  			break
  1105  		}
  1106  	}
  1107  
  1108  	// Now look for the first ASCII non-space byte from the end
  1109  	stop := len(s)
  1110  	for ; stop > start; stop-- {
  1111  		c := s[stop-1]
  1112  		if c >= utf8.RuneSelf {
  1113  			// start has been already trimmed above, should trim end only
  1114  			return TrimRightFunc(s[start:stop], unicode.IsSpace)
  1115  		}
  1116  		if asciiSpace[c] == 0 {
  1117  			break
  1118  		}
  1119  	}
  1120  
  1121  	// At this point s[start:stop] starts and ends with an ASCII
  1122  	// non-space bytes, so we're done. Non-ASCII cases have already
  1123  	// been handled above.
  1124  	return s[start:stop]
  1125  }
  1126  
  1127  // TrimPrefix returns s without the provided leading prefix string.
  1128  // If s doesn't start with prefix, s is returned unchanged.
  1129  func TrimPrefix(s, prefix string) string {
  1130  	return stringslite.TrimPrefix(s, prefix)
  1131  }
  1132  
  1133  // TrimSuffix returns s without the provided trailing suffix string.
  1134  // If s doesn't end with suffix, s is returned unchanged.
  1135  func TrimSuffix(s, suffix string) string {
  1136  	return stringslite.TrimSuffix(s, suffix)
  1137  }
  1138  
  1139  // Replace returns a copy of the string s with the first n
  1140  // non-overlapping instances of old replaced by new.
  1141  // If old is empty, it matches at the beginning of the string
  1142  // and after each UTF-8 sequence, yielding up to k+1 replacements
  1143  // for a k-rune string.
  1144  // If n < 0, there is no limit on the number of replacements.
  1145  func Replace(s, old, new string, n int) string {
  1146  	if old == new || n == 0 {
  1147  		return s // avoid allocation
  1148  	}
  1149  
  1150  	// Compute number of replacements.
  1151  	if m := Count(s, old); m == 0 {
  1152  		return s // avoid allocation
  1153  	} else if n < 0 || m < n {
  1154  		n = m
  1155  	}
  1156  
  1157  	// Apply replacements to buffer.
  1158  	var b Builder
  1159  	b.Grow(len(s) + n*(len(new)-len(old)))
  1160  	start := 0
  1161  	if len(old) > 0 {
  1162  		for range n {
  1163  			j := start + Index(s[start:], old)
  1164  			b.WriteString(s[start:j])
  1165  			b.WriteString(new)
  1166  			start = j + len(old)
  1167  		}
  1168  	} else { // len(old) == 0
  1169  		b.WriteString(new)
  1170  		for range n - 1 {
  1171  			_, wid := utf8.DecodeRuneInString(s[start:])
  1172  			j := start + wid
  1173  			b.WriteString(s[start:j])
  1174  			b.WriteString(new)
  1175  			start = j
  1176  		}
  1177  	}
  1178  	b.WriteString(s[start:])
  1179  	return b.String()
  1180  }
  1181  
  1182  // ReplaceAll returns a copy of the string s with all
  1183  // non-overlapping instances of old replaced by new.
  1184  // If old is empty, it matches at the beginning of the string
  1185  // and after each UTF-8 sequence, yielding up to k+1 replacements
  1186  // for a k-rune string.
  1187  func ReplaceAll(s, old, new string) string {
  1188  	return Replace(s, old, new, -1)
  1189  }
  1190  
  1191  // EqualFold reports whether s and t, interpreted as UTF-8 strings,
  1192  // are equal under simple Unicode case-folding, which is a more general
  1193  // form of case-insensitivity.
  1194  func EqualFold(s, t string) bool {
  1195  	// ASCII fast path
  1196  	i := 0
  1197  	for ; i < len(s) && i < len(t); i++ {
  1198  		sr := s[i]
  1199  		tr := t[i]
  1200  		if sr|tr >= utf8.RuneSelf {
  1201  			goto hasUnicode
  1202  		}
  1203  
  1204  		// Easy case.
  1205  		if tr == sr {
  1206  			continue
  1207  		}
  1208  
  1209  		// Make sr < tr to simplify what follows.
  1210  		if tr < sr {
  1211  			tr, sr = sr, tr
  1212  		}
  1213  		// ASCII only, sr/tr must be upper/lower case
  1214  		if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
  1215  			continue
  1216  		}
  1217  		return false
  1218  	}
  1219  	// Check if we've exhausted both strings.
  1220  	return len(s) == len(t)
  1221  
  1222  hasUnicode:
  1223  	s = s[i:]
  1224  	t = t[i:]
  1225  	for _, sr := range s {
  1226  		// If t is exhausted the strings are not equal.
  1227  		if len(t) == 0 {
  1228  			return false
  1229  		}
  1230  
  1231  		// Extract first rune from second string.
  1232  		var tr rune
  1233  		if t[0] < utf8.RuneSelf {
  1234  			tr, t = rune(t[0]), t[1:]
  1235  		} else {
  1236  			r, size := utf8.DecodeRuneInString(t)
  1237  			tr, t = r, t[size:]
  1238  		}
  1239  
  1240  		// If they match, keep going; if not, return false.
  1241  
  1242  		// Easy case.
  1243  		if tr == sr {
  1244  			continue
  1245  		}
  1246  
  1247  		// Make sr < tr to simplify what follows.
  1248  		if tr < sr {
  1249  			tr, sr = sr, tr
  1250  		}
  1251  		// Fast check for ASCII.
  1252  		if tr < utf8.RuneSelf {
  1253  			// ASCII only, sr/tr must be upper/lower case
  1254  			if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
  1255  				continue
  1256  			}
  1257  			return false
  1258  		}
  1259  
  1260  		// General case. SimpleFold(x) returns the next equivalent rune > x
  1261  		// or wraps around to smaller values.
  1262  		r := unicode.SimpleFold(sr)
  1263  		for r != sr && r < tr {
  1264  			r = unicode.SimpleFold(r)
  1265  		}
  1266  		if r == tr {
  1267  			continue
  1268  		}
  1269  		return false
  1270  	}
  1271  
  1272  	// First string is empty, so check if the second one is also empty.
  1273  	return len(t) == 0
  1274  }
  1275  
  1276  // Index returns the index of the first instance of substr in s, or -1 if substr is not present in s.
  1277  func Index(s, substr string) int {
  1278  	return stringslite.Index(s, substr)
  1279  }
  1280  
  1281  // Cut slices s around the first instance of sep,
  1282  // returning the text before and after sep.
  1283  // The found result reports whether sep appears in s.
  1284  // If sep does not appear in s, cut returns s, "", false.
  1285  func Cut(s, sep string) (before, after string, found bool) {
  1286  	return stringslite.Cut(s, sep)
  1287  }
  1288  
  1289  // CutPrefix returns s without the provided leading prefix string
  1290  // and reports whether it found the prefix.
  1291  // If s doesn't start with prefix, CutPrefix returns s, false.
  1292  // If prefix is the empty string, CutPrefix returns s, true.
  1293  func CutPrefix(s, prefix string) (after string, found bool) {
  1294  	return stringslite.CutPrefix(s, prefix)
  1295  }
  1296  
  1297  // CutSuffix returns s without the provided ending suffix string
  1298  // and reports whether it found the suffix.
  1299  // If s doesn't end with suffix, CutSuffix returns s, false.
  1300  // If suffix is the empty string, CutSuffix returns s, true.
  1301  func CutSuffix(s, suffix string) (before string, found bool) {
  1302  	return stringslite.CutSuffix(s, suffix)
  1303  }
  1304  

View as plain text