Source file src/runtime/time.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Time-related runtime and pieces of package time.
     6  
     7  package runtime
     8  
     9  import (
    10  	"internal/abi"
    11  	"internal/runtime/atomic"
    12  	"internal/runtime/sys"
    13  	"unsafe"
    14  )
    15  
    16  //go:linkname time_runtimeNow time.runtimeNow
    17  func time_runtimeNow() (sec int64, nsec int32, mono int64) {
    18  	if sg := getg().syncGroup; sg != nil {
    19  		sec = sg.now / (1000 * 1000 * 1000)
    20  		nsec = int32(sg.now % (1000 * 1000 * 1000))
    21  		// Don't return a monotonic time inside a synctest bubble.
    22  		// If we return a monotonic time based on the fake clock,
    23  		// arithmetic on times created inside/outside bubbles is confusing.
    24  		// If we return a monotonic time based on the real monotonic clock,
    25  		// arithmetic on times created in the same bubble is confusing.
    26  		// Simplest is to omit the monotonic time within a bubble.
    27  		return sec, nsec, 0
    28  	}
    29  	return time_now()
    30  }
    31  
    32  //go:linkname time_runtimeNano time.runtimeNano
    33  func time_runtimeNano() int64 {
    34  	gp := getg()
    35  	if gp.syncGroup != nil {
    36  		return gp.syncGroup.now
    37  	}
    38  	return nanotime()
    39  }
    40  
    41  //go:linkname time_runtimeIsBubbled time.runtimeIsBubbled
    42  func time_runtimeIsBubbled() bool {
    43  	return getg().syncGroup != nil
    44  }
    45  
    46  // A timer is a potentially repeating trigger for calling t.f(t.arg, t.seq).
    47  // Timers are allocated by client code, often as part of other data structures.
    48  // Each P has a heap of pointers to timers that it manages.
    49  //
    50  // A timer is expected to be used by only one client goroutine at a time,
    51  // but there will be concurrent access by the P managing that timer.
    52  // Timer accesses are protected by the lock t.mu, with a snapshot of
    53  // t's state bits published in t.astate to enable certain fast paths to make
    54  // decisions about a timer without acquiring the lock.
    55  type timer struct {
    56  	// mu protects reads and writes to all fields, with exceptions noted below.
    57  	mu mutex
    58  
    59  	astate atomic.Uint8 // atomic copy of state bits at last unlock
    60  	state  uint8        // state bits
    61  	isChan bool         // timer has a channel; immutable; can be read without lock
    62  	isFake bool         // timer is using fake time; immutable; can be read without lock
    63  
    64  	blocked uint32 // number of goroutines blocked on timer's channel
    65  
    66  	// Timer wakes up at when, and then at when+period, ... (period > 0 only)
    67  	// each time calling f(arg, seq, delay) in the timer goroutine, so f must be
    68  	// a well-behaved function and not block.
    69  	//
    70  	// The arg and seq are client-specified opaque arguments passed back to f.
    71  	// When used from netpoll, arg and seq have meanings defined by netpoll
    72  	// and are completely opaque to this code; in that context, seq is a sequence
    73  	// number to recognize and squelch stale function invocations.
    74  	// When used from package time, arg is a channel (for After, NewTicker)
    75  	// or the function to call (for AfterFunc) and seq is unused (0).
    76  	//
    77  	// Package time does not know about seq, but if this is a channel timer (t.isChan == true),
    78  	// this file uses t.seq as a sequence number to recognize and squelch
    79  	// sends that correspond to an earlier (stale) timer configuration,
    80  	// similar to its use in netpoll. In this usage (that is, when t.isChan == true),
    81  	// writes to seq are protected by both t.mu and t.sendLock,
    82  	// so reads are allowed when holding either of the two mutexes.
    83  	//
    84  	// The delay argument is nanotime() - t.when, meaning the delay in ns between
    85  	// when the timer should have gone off and now. Normally that amount is
    86  	// small enough not to matter, but for channel timers that are fed lazily,
    87  	// the delay can be arbitrarily long; package time subtracts it out to make
    88  	// it look like the send happened earlier than it actually did.
    89  	// (No one looked at the channel since then, or the send would have
    90  	// not happened so late, so no one can tell the difference.)
    91  	when   int64
    92  	period int64
    93  	f      func(arg any, seq uintptr, delay int64)
    94  	arg    any
    95  	seq    uintptr
    96  
    97  	// If non-nil, the timers containing t.
    98  	ts *timers
    99  
   100  	// sendLock protects sends on the timer's channel.
   101  	// Not used for async (pre-Go 1.23) behavior when debug.asynctimerchan.Load() != 0.
   102  	sendLock mutex
   103  
   104  	// isSending is used to handle races between running a
   105  	// channel timer and stopping or resetting the timer.
   106  	// It is used only for channel timers (t.isChan == true).
   107  	// It is not used for tickers.
   108  	// The value is incremented when about to send a value on the channel,
   109  	// and decremented after sending the value.
   110  	// The stop/reset code uses this to detect whether it
   111  	// stopped the channel send.
   112  	//
   113  	// isSending is incremented only when t.mu is held.
   114  	// isSending is decremented only when t.sendLock is held.
   115  	// isSending is read only when both t.mu and t.sendLock are held.
   116  	isSending atomic.Int32
   117  }
   118  
   119  // init initializes a newly allocated timer t.
   120  // Any code that allocates a timer must call t.init before using it.
   121  // The arg and f can be set during init, or they can be nil in init
   122  // and set by a future call to t.modify.
   123  func (t *timer) init(f func(arg any, seq uintptr, delay int64), arg any) {
   124  	lockInit(&t.mu, lockRankTimer)
   125  	t.f = f
   126  	t.arg = arg
   127  }
   128  
   129  // A timers is a per-P set of timers.
   130  type timers struct {
   131  	// mu protects timers; timers are per-P, but the scheduler can
   132  	// access the timers of another P, so we have to lock.
   133  	mu mutex
   134  
   135  	// heap is the set of timers, ordered by heap[i].when.
   136  	// Must hold lock to access.
   137  	heap []timerWhen
   138  
   139  	// len is an atomic copy of len(heap).
   140  	len atomic.Uint32
   141  
   142  	// zombies is the number of timers in the heap
   143  	// that are marked for removal.
   144  	zombies atomic.Int32
   145  
   146  	// raceCtx is the race context used while executing timer functions.
   147  	raceCtx uintptr
   148  
   149  	// minWhenHeap is the minimum heap[i].when value (= heap[0].when).
   150  	// The wakeTime method uses minWhenHeap and minWhenModified
   151  	// to determine the next wake time.
   152  	// If minWhenHeap = 0, it means there are no timers in the heap.
   153  	minWhenHeap atomic.Int64
   154  
   155  	// minWhenModified is a lower bound on the minimum
   156  	// heap[i].when over timers with the timerModified bit set.
   157  	// If minWhenModified = 0, it means there are no timerModified timers in the heap.
   158  	minWhenModified atomic.Int64
   159  
   160  	syncGroup *synctestGroup
   161  }
   162  
   163  type timerWhen struct {
   164  	timer *timer
   165  	when  int64
   166  }
   167  
   168  func (ts *timers) lock() {
   169  	lock(&ts.mu)
   170  }
   171  
   172  func (ts *timers) unlock() {
   173  	// Update atomic copy of len(ts.heap).
   174  	// We only update at unlock so that the len is always
   175  	// the most recent unlocked length, not an ephemeral length.
   176  	// This matters if we lock ts, delete the only timer from the heap,
   177  	// add it back, and unlock. We want ts.len.Load to return 1 the
   178  	// entire time, never 0. This is important for pidleput deciding
   179  	// whether ts is empty.
   180  	ts.len.Store(uint32(len(ts.heap)))
   181  
   182  	unlock(&ts.mu)
   183  }
   184  
   185  // Timer state field.
   186  const (
   187  	// timerHeaped is set when the timer is stored in some P's heap.
   188  	timerHeaped uint8 = 1 << iota
   189  
   190  	// timerModified is set when t.when has been modified
   191  	// but the heap's heap[i].when entry still needs to be updated.
   192  	// That change waits until the heap in which
   193  	// the timer appears can be locked and rearranged.
   194  	// timerModified is only set when timerHeaped is also set.
   195  	timerModified
   196  
   197  	// timerZombie is set when the timer has been stopped
   198  	// but is still present in some P's heap.
   199  	// Only set when timerHeaped is also set.
   200  	// It is possible for timerModified and timerZombie to both
   201  	// be set, meaning that the timer was modified and then stopped.
   202  	// A timer sending to a channel may be placed in timerZombie
   203  	// to take it out of the heap even though the timer is not stopped,
   204  	// as long as nothing is reading from the channel.
   205  	timerZombie
   206  )
   207  
   208  // timerDebug enables printing a textual debug trace of all timer operations to stderr.
   209  const timerDebug = false
   210  
   211  func (t *timer) trace(op string) {
   212  	if timerDebug {
   213  		t.trace1(op)
   214  	}
   215  }
   216  
   217  func (t *timer) trace1(op string) {
   218  	if !timerDebug {
   219  		return
   220  	}
   221  	bits := [4]string{"h", "m", "z", "c"}
   222  	for i := range 3 {
   223  		if t.state&(1<<i) == 0 {
   224  			bits[i] = "-"
   225  		}
   226  	}
   227  	if !t.isChan {
   228  		bits[3] = "-"
   229  	}
   230  	print("T ", t, " ", bits[0], bits[1], bits[2], bits[3], " b=", t.blocked, " ", op, "\n")
   231  }
   232  
   233  func (ts *timers) trace(op string) {
   234  	if timerDebug {
   235  		println("TS", ts, op)
   236  	}
   237  }
   238  
   239  // lock locks the timer, allowing reading or writing any of the timer fields.
   240  func (t *timer) lock() {
   241  	lock(&t.mu)
   242  	t.trace("lock")
   243  }
   244  
   245  // unlock updates t.astate and unlocks the timer.
   246  func (t *timer) unlock() {
   247  	t.trace("unlock")
   248  	// Let heap fast paths know whether heap[i].when is accurate.
   249  	// Also let maybeRunChan know whether channel is in heap.
   250  	t.astate.Store(t.state)
   251  	unlock(&t.mu)
   252  }
   253  
   254  // hchan returns the channel in t.arg.
   255  // t must be a timer with a channel.
   256  func (t *timer) hchan() *hchan {
   257  	if !t.isChan {
   258  		badTimer()
   259  	}
   260  	// Note: t.arg is a chan time.Time,
   261  	// and runtime cannot refer to that type,
   262  	// so we cannot use a type assertion.
   263  	return (*hchan)(efaceOf(&t.arg).data)
   264  }
   265  
   266  // updateHeap updates t as directed by t.state, updating t.state
   267  // and returning a bool indicating whether the state (and ts.heap[0].when) changed.
   268  // The caller must hold t's lock, or the world can be stopped instead.
   269  // The timer set t.ts must be non-nil and locked, t must be t.ts.heap[0], and updateHeap
   270  // takes care of moving t within the timers heap to preserve the heap invariants.
   271  // If ts == nil, then t must not be in a heap (or is in a heap that is
   272  // temporarily not maintaining its invariant, such as during timers.adjust).
   273  func (t *timer) updateHeap() (updated bool) {
   274  	assertWorldStoppedOrLockHeld(&t.mu)
   275  	t.trace("updateHeap")
   276  	ts := t.ts
   277  	if ts == nil || t != ts.heap[0].timer {
   278  		badTimer()
   279  	}
   280  	assertLockHeld(&ts.mu)
   281  	if t.state&timerZombie != 0 {
   282  		// Take timer out of heap.
   283  		t.state &^= timerHeaped | timerZombie | timerModified
   284  		ts.zombies.Add(-1)
   285  		ts.deleteMin()
   286  		return true
   287  	}
   288  
   289  	if t.state&timerModified != 0 {
   290  		// Update ts.heap[0].when and move within heap.
   291  		t.state &^= timerModified
   292  		ts.heap[0].when = t.when
   293  		ts.siftDown(0)
   294  		ts.updateMinWhenHeap()
   295  		return true
   296  	}
   297  
   298  	return false
   299  }
   300  
   301  // maxWhen is the maximum value for timer's when field.
   302  const maxWhen = 1<<63 - 1
   303  
   304  // verifyTimers can be set to true to add debugging checks that the
   305  // timer heaps are valid.
   306  const verifyTimers = false
   307  
   308  // Package time APIs.
   309  // Godoc uses the comments in package time, not these.
   310  
   311  // time.now is implemented in assembly.
   312  
   313  // timeSleep puts the current goroutine to sleep for at least ns nanoseconds.
   314  //
   315  //go:linkname timeSleep time.Sleep
   316  func timeSleep(ns int64) {
   317  	if ns <= 0 {
   318  		return
   319  	}
   320  
   321  	gp := getg()
   322  	t := gp.timer
   323  	if t == nil {
   324  		t = new(timer)
   325  		t.init(goroutineReady, gp)
   326  		if gp.syncGroup != nil {
   327  			t.isFake = true
   328  		}
   329  		gp.timer = t
   330  	}
   331  	var now int64
   332  	if sg := gp.syncGroup; sg != nil {
   333  		now = sg.now
   334  	} else {
   335  		now = nanotime()
   336  	}
   337  	when := now + ns
   338  	if when < 0 { // check for overflow.
   339  		when = maxWhen
   340  	}
   341  	gp.sleepWhen = when
   342  	if t.isFake {
   343  		// Call timer.reset in this goroutine, since it's the one in a syncGroup.
   344  		// We don't need to worry about the timer function running before the goroutine
   345  		// is parked, because time won't advance until we park.
   346  		resetForSleep(gp, nil)
   347  		gopark(nil, nil, waitReasonSleep, traceBlockSleep, 1)
   348  	} else {
   349  		gopark(resetForSleep, nil, waitReasonSleep, traceBlockSleep, 1)
   350  	}
   351  }
   352  
   353  // resetForSleep is called after the goroutine is parked for timeSleep.
   354  // We can't call timer.reset in timeSleep itself because if this is a short
   355  // sleep and there are many goroutines then the P can wind up running the
   356  // timer function, goroutineReady, before the goroutine has been parked.
   357  func resetForSleep(gp *g, _ unsafe.Pointer) bool {
   358  	gp.timer.reset(gp.sleepWhen, 0)
   359  	return true
   360  }
   361  
   362  // A timeTimer is a runtime-allocated time.Timer or time.Ticker
   363  // with the additional runtime state following it.
   364  // The runtime state is inaccessible to package time.
   365  type timeTimer struct {
   366  	c    unsafe.Pointer // <-chan time.Time
   367  	init bool
   368  	timer
   369  }
   370  
   371  // newTimer allocates and returns a new time.Timer or time.Ticker (same layout)
   372  // with the given parameters.
   373  //
   374  //go:linkname newTimer time.newTimer
   375  func newTimer(when, period int64, f func(arg any, seq uintptr, delay int64), arg any, c *hchan) *timeTimer {
   376  	t := new(timeTimer)
   377  	t.timer.init(nil, nil)
   378  	t.trace("new")
   379  	if raceenabled {
   380  		racerelease(unsafe.Pointer(&t.timer))
   381  	}
   382  	if c != nil {
   383  		lockInit(&t.sendLock, lockRankTimerSend)
   384  		t.isChan = true
   385  		c.timer = &t.timer
   386  		if c.dataqsiz == 0 {
   387  			throw("invalid timer channel: no capacity")
   388  		}
   389  	}
   390  	if gr := getg().syncGroup; gr != nil {
   391  		t.isFake = true
   392  	}
   393  	t.modify(when, period, f, arg, 0)
   394  	t.init = true
   395  	return t
   396  }
   397  
   398  // stopTimer stops a timer.
   399  // It reports whether t was stopped before being run.
   400  //
   401  //go:linkname stopTimer time.stopTimer
   402  func stopTimer(t *timeTimer) bool {
   403  	if t.isFake && getg().syncGroup == nil {
   404  		panic("stop of synctest timer from outside bubble")
   405  	}
   406  	return t.stop()
   407  }
   408  
   409  // resetTimer resets an inactive timer, adding it to the timer heap.
   410  //
   411  // Reports whether the timer was modified before it was run.
   412  //
   413  //go:linkname resetTimer time.resetTimer
   414  func resetTimer(t *timeTimer, when, period int64) bool {
   415  	if raceenabled {
   416  		racerelease(unsafe.Pointer(&t.timer))
   417  	}
   418  	if t.isFake && getg().syncGroup == nil {
   419  		panic("reset of synctest timer from outside bubble")
   420  	}
   421  	return t.reset(when, period)
   422  }
   423  
   424  // Go runtime.
   425  
   426  // Ready the goroutine arg.
   427  func goroutineReady(arg any, _ uintptr, _ int64) {
   428  	goready(arg.(*g), 0)
   429  }
   430  
   431  // addHeap adds t to the timers heap.
   432  // The caller must hold ts.lock or the world must be stopped.
   433  // The caller must also have checked that t belongs in the heap.
   434  // Callers that are not sure can call t.maybeAdd instead,
   435  // but note that maybeAdd has different locking requirements.
   436  func (ts *timers) addHeap(t *timer) {
   437  	assertWorldStoppedOrLockHeld(&ts.mu)
   438  	// Timers rely on the network poller, so make sure the poller
   439  	// has started.
   440  	if netpollInited.Load() == 0 {
   441  		netpollGenericInit()
   442  	}
   443  
   444  	if t.ts != nil {
   445  		throw("ts set in timer")
   446  	}
   447  	t.ts = ts
   448  	ts.heap = append(ts.heap, timerWhen{t, t.when})
   449  	ts.siftUp(len(ts.heap) - 1)
   450  	if t == ts.heap[0].timer {
   451  		ts.updateMinWhenHeap()
   452  	}
   453  }
   454  
   455  // maybeRunAsync checks whether t needs to be triggered and runs it if so.
   456  // The caller is responsible for locking the timer and for checking that we
   457  // are running timers in async mode. If the timer needs to be run,
   458  // maybeRunAsync will unlock and re-lock it.
   459  // The timer is always locked on return.
   460  func (t *timer) maybeRunAsync() {
   461  	assertLockHeld(&t.mu)
   462  	if t.state&timerHeaped == 0 && t.isChan && t.when > 0 {
   463  		// If timer should have triggered already (but nothing looked at it yet),
   464  		// trigger now, so that a receive after the stop sees the "old" value
   465  		// that should be there.
   466  		// (It is possible to have t.blocked > 0 if there is a racing receive
   467  		// in blockTimerChan, but timerHeaped not being set means
   468  		// it hasn't run t.maybeAdd yet; in that case, running the
   469  		// timer ourselves now is fine.)
   470  		if now := nanotime(); t.when <= now {
   471  			systemstack(func() {
   472  				t.unlockAndRun(now) // resets t.when
   473  			})
   474  			t.lock()
   475  		}
   476  	}
   477  }
   478  
   479  // stop stops the timer t. It may be on some other P, so we can't
   480  // actually remove it from the timers heap. We can only mark it as stopped.
   481  // It will be removed in due course by the P whose heap it is on.
   482  // Reports whether the timer was stopped before it was run.
   483  func (t *timer) stop() bool {
   484  	async := debug.asynctimerchan.Load() != 0
   485  	if !async && t.isChan {
   486  		lock(&t.sendLock)
   487  	}
   488  
   489  	t.lock()
   490  	t.trace("stop")
   491  	if async {
   492  		t.maybeRunAsync()
   493  	}
   494  	if t.state&timerHeaped != 0 {
   495  		t.state |= timerModified
   496  		if t.state&timerZombie == 0 {
   497  			t.state |= timerZombie
   498  			t.ts.zombies.Add(1)
   499  		}
   500  	}
   501  	pending := t.when > 0
   502  	t.when = 0
   503  
   504  	if !async && t.isChan {
   505  		// Stop any future sends with stale values.
   506  		// See timer.unlockAndRun.
   507  		t.seq++
   508  
   509  		// If there is currently a send in progress,
   510  		// incrementing seq is going to prevent that
   511  		// send from actually happening. That means
   512  		// that we should return true: the timer was
   513  		// stopped, even though t.when may be zero.
   514  		if t.period == 0 && t.isSending.Load() > 0 {
   515  			pending = true
   516  		}
   517  	}
   518  	t.unlock()
   519  	if !async && t.isChan {
   520  		unlock(&t.sendLock)
   521  		if timerchandrain(t.hchan()) {
   522  			pending = true
   523  		}
   524  	}
   525  
   526  	return pending
   527  }
   528  
   529  // deleteMin removes timer 0 from ts.
   530  // ts must be locked.
   531  func (ts *timers) deleteMin() {
   532  	assertLockHeld(&ts.mu)
   533  	t := ts.heap[0].timer
   534  	if t.ts != ts {
   535  		throw("wrong timers")
   536  	}
   537  	t.ts = nil
   538  	last := len(ts.heap) - 1
   539  	if last > 0 {
   540  		ts.heap[0] = ts.heap[last]
   541  	}
   542  	ts.heap[last] = timerWhen{}
   543  	ts.heap = ts.heap[:last]
   544  	if last > 0 {
   545  		ts.siftDown(0)
   546  	}
   547  	ts.updateMinWhenHeap()
   548  	if last == 0 {
   549  		// If there are no timers, then clearly there are no timerModified timers.
   550  		ts.minWhenModified.Store(0)
   551  	}
   552  }
   553  
   554  // modify modifies an existing timer.
   555  // This is called by the netpoll code or time.Ticker.Reset or time.Timer.Reset.
   556  // Reports whether the timer was modified before it was run.
   557  // If f == nil, then t.f, t.arg, and t.seq are not modified.
   558  func (t *timer) modify(when, period int64, f func(arg any, seq uintptr, delay int64), arg any, seq uintptr) bool {
   559  	if when <= 0 {
   560  		throw("timer when must be positive")
   561  	}
   562  	if period < 0 {
   563  		throw("timer period must be non-negative")
   564  	}
   565  	async := debug.asynctimerchan.Load() != 0
   566  
   567  	if !async && t.isChan {
   568  		lock(&t.sendLock)
   569  	}
   570  
   571  	t.lock()
   572  	if async {
   573  		t.maybeRunAsync()
   574  	}
   575  	t.trace("modify")
   576  	oldPeriod := t.period
   577  	t.period = period
   578  	if f != nil {
   579  		t.f = f
   580  		t.arg = arg
   581  		t.seq = seq
   582  	}
   583  
   584  	wake := false
   585  	pending := t.when > 0
   586  	t.when = when
   587  	if t.state&timerHeaped != 0 {
   588  		t.state |= timerModified
   589  		if t.state&timerZombie != 0 {
   590  			// In the heap but marked for removal (by a Stop).
   591  			// Unmark it, since it has been Reset and will be running again.
   592  			t.ts.zombies.Add(-1)
   593  			t.state &^= timerZombie
   594  		}
   595  		// The corresponding heap[i].when is updated later.
   596  		// See comment in type timer above and in timers.adjust below.
   597  		if min := t.ts.minWhenModified.Load(); min == 0 || when < min {
   598  			wake = true
   599  			// Force timerModified bit out to t.astate before updating t.minWhenModified,
   600  			// to synchronize with t.ts.adjust. See comment in adjust.
   601  			t.astate.Store(t.state)
   602  			t.ts.updateMinWhenModified(when)
   603  		}
   604  	}
   605  
   606  	add := t.needsAdd()
   607  
   608  	if !async && t.isChan {
   609  		// Stop any future sends with stale values.
   610  		// See timer.unlockAndRun.
   611  		t.seq++
   612  
   613  		// If there is currently a send in progress,
   614  		// incrementing seq is going to prevent that
   615  		// send from actually happening. That means
   616  		// that we should return true: the timer was
   617  		// stopped, even though t.when may be zero.
   618  		if oldPeriod == 0 && t.isSending.Load() > 0 {
   619  			pending = true
   620  		}
   621  	}
   622  	t.unlock()
   623  	if !async && t.isChan {
   624  		if timerchandrain(t.hchan()) {
   625  			pending = true
   626  		}
   627  		unlock(&t.sendLock)
   628  	}
   629  
   630  	if add {
   631  		t.maybeAdd()
   632  	}
   633  	if wake {
   634  		wakeNetPoller(when)
   635  	}
   636  
   637  	return pending
   638  }
   639  
   640  // needsAdd reports whether t needs to be added to a timers heap.
   641  // t must be locked.
   642  func (t *timer) needsAdd() bool {
   643  	assertLockHeld(&t.mu)
   644  	need := t.state&timerHeaped == 0 && t.when > 0 && (!t.isChan || t.isFake || t.blocked > 0)
   645  	if need {
   646  		t.trace("needsAdd+")
   647  	} else {
   648  		t.trace("needsAdd-")
   649  	}
   650  	return need
   651  }
   652  
   653  // maybeAdd adds t to the local timers heap if it needs to be in a heap.
   654  // The caller must not hold t's lock nor any timers heap lock.
   655  // The caller probably just unlocked t, but that lock must be dropped
   656  // in order to acquire a ts.lock, to avoid lock inversions.
   657  // (timers.adjust holds ts.lock while acquiring each t's lock,
   658  // so we cannot hold any t's lock while acquiring ts.lock).
   659  //
   660  // Strictly speaking it *might* be okay to hold t.lock and
   661  // acquire ts.lock at the same time, because we know that
   662  // t is not in any ts.heap, so nothing holding a ts.lock would
   663  // be acquiring the t.lock at the same time, meaning there
   664  // isn't a possible deadlock. But it is easier and safer not to be
   665  // too clever and respect the static ordering.
   666  // (If we don't, we have to change the static lock checking of t and ts.)
   667  //
   668  // Concurrent calls to time.Timer.Reset or blockTimerChan
   669  // may result in concurrent calls to t.maybeAdd,
   670  // so we cannot assume that t is not in a heap on entry to t.maybeAdd.
   671  func (t *timer) maybeAdd() {
   672  	// Note: Not holding any locks on entry to t.maybeAdd,
   673  	// so the current g can be rescheduled to a different M and P
   674  	// at any time, including between the ts := assignment and the
   675  	// call to ts.lock. If a reschedule happened then, we would be
   676  	// adding t to some other P's timers, perhaps even a P that the scheduler
   677  	// has marked as idle with no timers, in which case the timer could
   678  	// go unnoticed until long after t.when.
   679  	// Calling acquirem instead of using getg().m makes sure that
   680  	// we end up locking and inserting into the current P's timers.
   681  	mp := acquirem()
   682  	var ts *timers
   683  	if t.isFake {
   684  		sg := getg().syncGroup
   685  		if sg == nil {
   686  			throw("invalid timer: fake time but no syncgroup")
   687  		}
   688  		ts = &sg.timers
   689  	} else {
   690  		ts = &mp.p.ptr().timers
   691  	}
   692  	ts.lock()
   693  	ts.cleanHead()
   694  	t.lock()
   695  	t.trace("maybeAdd")
   696  	when := int64(0)
   697  	wake := false
   698  	if t.needsAdd() {
   699  		t.state |= timerHeaped
   700  		when = t.when
   701  		wakeTime := ts.wakeTime()
   702  		wake = wakeTime == 0 || when < wakeTime
   703  		ts.addHeap(t)
   704  	}
   705  	t.unlock()
   706  	ts.unlock()
   707  	releasem(mp)
   708  	if wake {
   709  		wakeNetPoller(when)
   710  	}
   711  }
   712  
   713  // reset resets the time when a timer should fire.
   714  // If used for an inactive timer, the timer will become active.
   715  // Reports whether the timer was active and was stopped.
   716  func (t *timer) reset(when, period int64) bool {
   717  	return t.modify(when, period, nil, nil, 0)
   718  }
   719  
   720  // cleanHead cleans up the head of the timer queue. This speeds up
   721  // programs that create and delete timers; leaving them in the heap
   722  // slows down heap operations.
   723  // The caller must have locked ts.
   724  func (ts *timers) cleanHead() {
   725  	ts.trace("cleanHead")
   726  	assertLockHeld(&ts.mu)
   727  	gp := getg()
   728  	for {
   729  		if len(ts.heap) == 0 {
   730  			return
   731  		}
   732  
   733  		// This loop can theoretically run for a while, and because
   734  		// it is holding timersLock it cannot be preempted.
   735  		// If someone is trying to preempt us, just return.
   736  		// We can clean the timers later.
   737  		if gp.preemptStop {
   738  			return
   739  		}
   740  
   741  		// Delete zombies from tail of heap. It requires no heap adjustments at all,
   742  		// and doing so increases the chances that when we swap out a zombie
   743  		// in heap[0] for the tail of the heap, we'll get a non-zombie timer,
   744  		// shortening this loop.
   745  		n := len(ts.heap)
   746  		if t := ts.heap[n-1].timer; t.astate.Load()&timerZombie != 0 {
   747  			t.lock()
   748  			if t.state&timerZombie != 0 {
   749  				t.state &^= timerHeaped | timerZombie | timerModified
   750  				t.ts = nil
   751  				ts.zombies.Add(-1)
   752  				ts.heap[n-1] = timerWhen{}
   753  				ts.heap = ts.heap[:n-1]
   754  			}
   755  			t.unlock()
   756  			continue
   757  		}
   758  
   759  		t := ts.heap[0].timer
   760  		if t.ts != ts {
   761  			throw("bad ts")
   762  		}
   763  
   764  		if t.astate.Load()&(timerModified|timerZombie) == 0 {
   765  			// Fast path: head of timers does not need adjustment.
   766  			return
   767  		}
   768  
   769  		t.lock()
   770  		updated := t.updateHeap()
   771  		t.unlock()
   772  		if !updated {
   773  			// Head of timers does not need adjustment.
   774  			return
   775  		}
   776  	}
   777  }
   778  
   779  // take moves any timers from src into ts
   780  // and then clears the timer state from src,
   781  // because src is being destroyed.
   782  // The caller must not have locked either timers.
   783  // For now this is only called when the world is stopped.
   784  func (ts *timers) take(src *timers) {
   785  	ts.trace("take")
   786  	assertWorldStopped()
   787  	if len(src.heap) > 0 {
   788  		// The world is stopped, so we ignore the locking of ts and src here.
   789  		// That would introduce a sched < timers lock ordering,
   790  		// which we'd rather avoid in the static ranking.
   791  		for _, tw := range src.heap {
   792  			t := tw.timer
   793  			t.ts = nil
   794  			if t.state&timerZombie != 0 {
   795  				t.state &^= timerHeaped | timerZombie | timerModified
   796  			} else {
   797  				t.state &^= timerModified
   798  				ts.addHeap(t)
   799  			}
   800  		}
   801  		src.heap = nil
   802  		src.zombies.Store(0)
   803  		src.minWhenHeap.Store(0)
   804  		src.minWhenModified.Store(0)
   805  		src.len.Store(0)
   806  		ts.len.Store(uint32(len(ts.heap)))
   807  	}
   808  }
   809  
   810  // adjust looks through the timers in ts.heap for
   811  // any timers that have been modified to run earlier, and puts them in
   812  // the correct place in the heap. While looking for those timers,
   813  // it also moves timers that have been modified to run later,
   814  // and removes deleted timers. The caller must have locked ts.
   815  func (ts *timers) adjust(now int64, force bool) {
   816  	ts.trace("adjust")
   817  	assertLockHeld(&ts.mu)
   818  	// If we haven't yet reached the time of the earliest modified
   819  	// timer, don't do anything. This speeds up programs that adjust
   820  	// a lot of timers back and forth if the timers rarely expire.
   821  	// We'll postpone looking through all the adjusted timers until
   822  	// one would actually expire.
   823  	if !force {
   824  		first := ts.minWhenModified.Load()
   825  		if first == 0 || first > now {
   826  			if verifyTimers {
   827  				ts.verify()
   828  			}
   829  			return
   830  		}
   831  	}
   832  
   833  	// minWhenModified is a lower bound on the earliest t.when
   834  	// among the timerModified timers. We want to make it more precise:
   835  	// we are going to scan the heap and clean out all the timerModified bits,
   836  	// at which point minWhenModified can be set to 0 (indicating none at all).
   837  	//
   838  	// Other P's can be calling ts.wakeTime concurrently, and we'd like to
   839  	// keep ts.wakeTime returning an accurate value throughout this entire process.
   840  	//
   841  	// Setting minWhenModified = 0 *before* the scan could make wakeTime
   842  	// return an incorrect value: if minWhenModified < minWhenHeap, then clearing
   843  	// it to 0 will make wakeTime return minWhenHeap (too late) until the scan finishes.
   844  	// To avoid that, we want to set minWhenModified to 0 *after* the scan.
   845  	//
   846  	// Setting minWhenModified = 0 *after* the scan could result in missing
   847  	// concurrent timer modifications in other goroutines; those will lock
   848  	// the specific timer, set the timerModified bit, and set t.when.
   849  	// To avoid that, we want to set minWhenModified to 0 *before* the scan.
   850  	//
   851  	// The way out of this dilemma is to preserve wakeTime a different way.
   852  	// wakeTime is min(minWhenHeap, minWhenModified), and minWhenHeap
   853  	// is protected by ts.lock, which we hold, so we can modify it however we like
   854  	// in service of keeping wakeTime accurate.
   855  	//
   856  	// So we can:
   857  	//
   858  	//	1. Set minWhenHeap = min(minWhenHeap, minWhenModified)
   859  	//	2. Set minWhenModified = 0
   860  	//	   (Other goroutines may modify timers and update minWhenModified now.)
   861  	//	3. Scan timers
   862  	//	4. Set minWhenHeap = heap[0].when
   863  	//
   864  	// That order preserves a correct value of wakeTime throughout the entire
   865  	// operation:
   866  	// Step 1 “locks in” an accurate wakeTime even with minWhenModified cleared.
   867  	// Step 2 makes sure concurrent t.when updates are not lost during the scan.
   868  	// Step 3 processes all modified timer values, justifying minWhenModified = 0.
   869  	// Step 4 corrects minWhenHeap to a precise value.
   870  	//
   871  	// The wakeTime method implementation reads minWhenModified *before* minWhenHeap,
   872  	// so that if the minWhenModified is observed to be 0, that means the minWhenHeap that
   873  	// follows will include the information that was zeroed out of it.
   874  	//
   875  	// Originally Step 3 locked every timer, which made sure any timer update that was
   876  	// already in progress during Steps 1+2 completed and was observed by Step 3.
   877  	// All that locking was too expensive, so now we do an atomic load of t.astate to
   878  	// decide whether we need to do a full lock. To make sure that we still observe any
   879  	// timer update already in progress during Steps 1+2, t.modify sets timerModified
   880  	// in t.astate *before* calling t.updateMinWhenModified. That ensures that the
   881  	// overwrite in Step 2 cannot lose an update: if it does overwrite an update, Step 3
   882  	// will see the timerModified and do a full lock.
   883  	ts.minWhenHeap.Store(ts.wakeTime())
   884  	ts.minWhenModified.Store(0)
   885  
   886  	changed := false
   887  	for i := 0; i < len(ts.heap); i++ {
   888  		tw := &ts.heap[i]
   889  		t := tw.timer
   890  		if t.ts != ts {
   891  			throw("bad ts")
   892  		}
   893  
   894  		if t.astate.Load()&(timerModified|timerZombie) == 0 {
   895  			// Does not need adjustment.
   896  			continue
   897  		}
   898  
   899  		t.lock()
   900  		switch {
   901  		case t.state&timerHeaped == 0:
   902  			badTimer()
   903  
   904  		case t.state&timerZombie != 0:
   905  			ts.zombies.Add(-1)
   906  			t.state &^= timerHeaped | timerZombie | timerModified
   907  			n := len(ts.heap)
   908  			ts.heap[i] = ts.heap[n-1]
   909  			ts.heap[n-1] = timerWhen{}
   910  			ts.heap = ts.heap[:n-1]
   911  			t.ts = nil
   912  			i--
   913  			changed = true
   914  
   915  		case t.state&timerModified != 0:
   916  			tw.when = t.when
   917  			t.state &^= timerModified
   918  			changed = true
   919  		}
   920  		t.unlock()
   921  	}
   922  
   923  	if changed {
   924  		ts.initHeap()
   925  	}
   926  	ts.updateMinWhenHeap()
   927  
   928  	if verifyTimers {
   929  		ts.verify()
   930  	}
   931  }
   932  
   933  // wakeTime looks at ts's timers and returns the time when we
   934  // should wake up the netpoller. It returns 0 if there are no timers.
   935  // This function is invoked when dropping a P, so it must run without
   936  // any write barriers.
   937  //
   938  //go:nowritebarrierrec
   939  func (ts *timers) wakeTime() int64 {
   940  	// Note that the order of these two loads matters:
   941  	// adjust updates minWhen to make it safe to clear minNextWhen.
   942  	// We read minWhen after reading minNextWhen so that
   943  	// if we see a cleared minNextWhen, we are guaranteed to see
   944  	// the updated minWhen.
   945  	nextWhen := ts.minWhenModified.Load()
   946  	when := ts.minWhenHeap.Load()
   947  	if when == 0 || (nextWhen != 0 && nextWhen < when) {
   948  		when = nextWhen
   949  	}
   950  	return when
   951  }
   952  
   953  // check runs any timers in ts that are ready.
   954  // If now is not 0 it is the current time.
   955  // It returns the passed time or the current time if now was passed as 0.
   956  // and the time when the next timer should run or 0 if there is no next timer,
   957  // and reports whether it ran any timers.
   958  // If the time when the next timer should run is not 0,
   959  // it is always larger than the returned time.
   960  // We pass now in and out to avoid extra calls of nanotime.
   961  //
   962  //go:yeswritebarrierrec
   963  func (ts *timers) check(now int64) (rnow, pollUntil int64, ran bool) {
   964  	ts.trace("check")
   965  	// If it's not yet time for the first timer, or the first adjusted
   966  	// timer, then there is nothing to do.
   967  	next := ts.wakeTime()
   968  	if next == 0 {
   969  		// No timers to run or adjust.
   970  		return now, 0, false
   971  	}
   972  
   973  	if now == 0 {
   974  		now = nanotime()
   975  	}
   976  
   977  	// If this is the local P, and there are a lot of deleted timers,
   978  	// clear them out. We only do this for the local P to reduce
   979  	// lock contention on timersLock.
   980  	zombies := ts.zombies.Load()
   981  	if zombies < 0 {
   982  		badTimer()
   983  	}
   984  	force := ts == &getg().m.p.ptr().timers && int(zombies) > int(ts.len.Load())/4
   985  
   986  	if now < next && !force {
   987  		// Next timer is not ready to run, and we don't need to clear deleted timers.
   988  		return now, next, false
   989  	}
   990  
   991  	ts.lock()
   992  	if len(ts.heap) > 0 {
   993  		ts.adjust(now, false)
   994  		for len(ts.heap) > 0 {
   995  			// Note that runtimer may temporarily unlock ts.
   996  			if tw := ts.run(now); tw != 0 {
   997  				if tw > 0 {
   998  					pollUntil = tw
   999  				}
  1000  				break
  1001  			}
  1002  			ran = true
  1003  		}
  1004  
  1005  		// Note: Delaying the forced adjustment until after the ts.run
  1006  		// (as opposed to calling ts.adjust(now, force) above)
  1007  		// is significantly faster under contention, such as in
  1008  		// package time's BenchmarkTimerAdjust10000,
  1009  		// though we do not fully understand why.
  1010  		force = ts == &getg().m.p.ptr().timers && int(ts.zombies.Load()) > int(ts.len.Load())/4
  1011  		if force {
  1012  			ts.adjust(now, true)
  1013  		}
  1014  	}
  1015  	ts.unlock()
  1016  
  1017  	return now, pollUntil, ran
  1018  }
  1019  
  1020  // run examines the first timer in ts. If it is ready based on now,
  1021  // it runs the timer and removes or updates it.
  1022  // Returns 0 if it ran a timer, -1 if there are no more timers, or the time
  1023  // when the first timer should run.
  1024  // The caller must have locked ts.
  1025  // If a timer is run, this will temporarily unlock ts.
  1026  //
  1027  //go:systemstack
  1028  func (ts *timers) run(now int64) int64 {
  1029  	ts.trace("run")
  1030  	assertLockHeld(&ts.mu)
  1031  Redo:
  1032  	if len(ts.heap) == 0 {
  1033  		return -1
  1034  	}
  1035  	tw := ts.heap[0]
  1036  	t := tw.timer
  1037  	if t.ts != ts {
  1038  		throw("bad ts")
  1039  	}
  1040  
  1041  	if t.astate.Load()&(timerModified|timerZombie) == 0 && tw.when > now {
  1042  		// Fast path: not ready to run.
  1043  		return tw.when
  1044  	}
  1045  
  1046  	t.lock()
  1047  	if t.updateHeap() {
  1048  		t.unlock()
  1049  		goto Redo
  1050  	}
  1051  
  1052  	if t.state&timerHeaped == 0 || t.state&timerModified != 0 {
  1053  		badTimer()
  1054  	}
  1055  
  1056  	if t.when > now {
  1057  		// Not ready to run.
  1058  		t.unlock()
  1059  		return t.when
  1060  	}
  1061  
  1062  	t.unlockAndRun(now)
  1063  	assertLockHeld(&ts.mu) // t is unlocked now, but not ts
  1064  	return 0
  1065  }
  1066  
  1067  // unlockAndRun unlocks and runs the timer t (which must be locked).
  1068  // If t is in a timer set (t.ts != nil), the caller must also have locked the timer set,
  1069  // and this call will temporarily unlock the timer set while running the timer function.
  1070  // unlockAndRun returns with t unlocked and t.ts (re-)locked.
  1071  //
  1072  //go:systemstack
  1073  func (t *timer) unlockAndRun(now int64) {
  1074  	t.trace("unlockAndRun")
  1075  	assertLockHeld(&t.mu)
  1076  	if t.ts != nil {
  1077  		assertLockHeld(&t.ts.mu)
  1078  	}
  1079  	if raceenabled {
  1080  		// Note that we are running on a system stack,
  1081  		// so there is no chance of getg().m being reassigned
  1082  		// out from under us while this function executes.
  1083  		gp := getg()
  1084  		var tsLocal *timers
  1085  		if t.ts == nil || t.ts.syncGroup == nil {
  1086  			tsLocal = &gp.m.p.ptr().timers
  1087  		} else {
  1088  			tsLocal = &t.ts.syncGroup.timers
  1089  		}
  1090  		if tsLocal.raceCtx == 0 {
  1091  			tsLocal.raceCtx = racegostart(abi.FuncPCABIInternal((*timers).run) + sys.PCQuantum)
  1092  		}
  1093  		raceacquirectx(tsLocal.raceCtx, unsafe.Pointer(t))
  1094  	}
  1095  
  1096  	if t.state&(timerModified|timerZombie) != 0 {
  1097  		badTimer()
  1098  	}
  1099  
  1100  	f := t.f
  1101  	arg := t.arg
  1102  	seq := t.seq
  1103  	var next int64
  1104  	delay := now - t.when
  1105  	if t.period > 0 {
  1106  		// Leave in heap but adjust next time to fire.
  1107  		next = t.when + t.period*(1+delay/t.period)
  1108  		if next < 0 { // check for overflow.
  1109  			next = maxWhen
  1110  		}
  1111  	} else {
  1112  		next = 0
  1113  	}
  1114  	ts := t.ts
  1115  	t.when = next
  1116  	if t.state&timerHeaped != 0 {
  1117  		t.state |= timerModified
  1118  		if next == 0 {
  1119  			t.state |= timerZombie
  1120  			t.ts.zombies.Add(1)
  1121  		}
  1122  		t.updateHeap()
  1123  	}
  1124  
  1125  	async := debug.asynctimerchan.Load() != 0
  1126  	if !async && t.isChan && t.period == 0 {
  1127  		// Tell Stop/Reset that we are sending a value.
  1128  		if t.isSending.Add(1) < 0 {
  1129  			throw("too many concurrent timer firings")
  1130  		}
  1131  	}
  1132  
  1133  	t.unlock()
  1134  
  1135  	if raceenabled {
  1136  		// Temporarily use the current P's racectx for g0.
  1137  		gp := getg()
  1138  		if gp.racectx != 0 {
  1139  			throw("unexpected racectx")
  1140  		}
  1141  		if ts == nil || ts.syncGroup == nil {
  1142  			gp.racectx = gp.m.p.ptr().timers.raceCtx
  1143  		} else {
  1144  			gp.racectx = ts.syncGroup.timers.raceCtx
  1145  		}
  1146  	}
  1147  
  1148  	if ts != nil {
  1149  		ts.unlock()
  1150  	}
  1151  
  1152  	if ts != nil && ts.syncGroup != nil {
  1153  		// Temporarily use the timer's synctest group for the G running this timer.
  1154  		gp := getg()
  1155  		if gp.syncGroup != nil {
  1156  			throw("unexpected syncgroup set")
  1157  		}
  1158  		gp.syncGroup = ts.syncGroup
  1159  		ts.syncGroup.changegstatus(gp, _Gdead, _Grunning)
  1160  	}
  1161  
  1162  	if !async && t.isChan {
  1163  		// For a timer channel, we want to make sure that no stale sends
  1164  		// happen after a t.stop or t.modify, but we cannot hold t.mu
  1165  		// during the actual send (which f does) due to lock ordering.
  1166  		// It can happen that we are holding t's lock above, we decide
  1167  		// it's time to send a time value (by calling f), grab the parameters,
  1168  		// unlock above, and then a t.stop or t.modify changes the timer
  1169  		// and returns. At that point, the send needs not to happen after all.
  1170  		// The way we arrange for it not to happen is that t.stop and t.modify
  1171  		// both increment t.seq while holding both t.mu and t.sendLock.
  1172  		// We copied the seq value above while holding t.mu.
  1173  		// Now we can acquire t.sendLock (which will be held across the send)
  1174  		// and double-check that t.seq is still the seq value we saw above.
  1175  		// If not, the timer has been updated and we should skip the send.
  1176  		// We skip the send by reassigning f to a no-op function.
  1177  		//
  1178  		// The isSending field tells t.stop or t.modify that we have
  1179  		// started to send the value. That lets them correctly return
  1180  		// true meaning that no value was sent.
  1181  		lock(&t.sendLock)
  1182  
  1183  		if t.period == 0 {
  1184  			// We are committed to possibly sending a value
  1185  			// based on seq, so no need to keep telling
  1186  			// stop/modify that we are sending.
  1187  			if t.isSending.Add(-1) < 0 {
  1188  				throw("mismatched isSending updates")
  1189  			}
  1190  		}
  1191  
  1192  		if t.seq != seq {
  1193  			f = func(any, uintptr, int64) {}
  1194  		}
  1195  	}
  1196  
  1197  	f(arg, seq, delay)
  1198  
  1199  	if !async && t.isChan {
  1200  		unlock(&t.sendLock)
  1201  	}
  1202  
  1203  	if ts != nil && ts.syncGroup != nil {
  1204  		gp := getg()
  1205  		ts.syncGroup.changegstatus(gp, _Grunning, _Gdead)
  1206  		if raceenabled {
  1207  			// Establish a happens-before between this timer event and
  1208  			// the next synctest.Wait call.
  1209  			racereleasemergeg(gp, ts.syncGroup.raceaddr())
  1210  		}
  1211  		gp.syncGroup = nil
  1212  	}
  1213  
  1214  	if ts != nil {
  1215  		ts.lock()
  1216  	}
  1217  
  1218  	if raceenabled {
  1219  		gp := getg()
  1220  		gp.racectx = 0
  1221  	}
  1222  }
  1223  
  1224  // verifyTimerHeap verifies that the timers is in a valid state.
  1225  // This is only for debugging, and is only called if verifyTimers is true.
  1226  // The caller must have locked ts.
  1227  func (ts *timers) verify() {
  1228  	assertLockHeld(&ts.mu)
  1229  	for i, tw := range ts.heap {
  1230  		if i == 0 {
  1231  			// First timer has no parent.
  1232  			continue
  1233  		}
  1234  
  1235  		// The heap is timerHeapN-ary. See siftupTimer and siftdownTimer.
  1236  		p := int(uint(i-1) / timerHeapN)
  1237  		if tw.when < ts.heap[p].when {
  1238  			print("bad timer heap at ", i, ": ", p, ": ", ts.heap[p].when, ", ", i, ": ", tw.when, "\n")
  1239  			throw("bad timer heap")
  1240  		}
  1241  	}
  1242  	if n := int(ts.len.Load()); len(ts.heap) != n {
  1243  		println("timer heap len", len(ts.heap), "!= atomic len", n)
  1244  		throw("bad timer heap len")
  1245  	}
  1246  }
  1247  
  1248  // updateMinWhenHeap sets ts.minWhenHeap to ts.heap[0].when.
  1249  // The caller must have locked ts or the world must be stopped.
  1250  func (ts *timers) updateMinWhenHeap() {
  1251  	assertWorldStoppedOrLockHeld(&ts.mu)
  1252  	if len(ts.heap) == 0 {
  1253  		ts.minWhenHeap.Store(0)
  1254  	} else {
  1255  		ts.minWhenHeap.Store(ts.heap[0].when)
  1256  	}
  1257  }
  1258  
  1259  // updateMinWhenModified updates ts.minWhenModified to be <= when.
  1260  // ts need not be (and usually is not) locked.
  1261  func (ts *timers) updateMinWhenModified(when int64) {
  1262  	for {
  1263  		old := ts.minWhenModified.Load()
  1264  		if old != 0 && old < when {
  1265  			return
  1266  		}
  1267  		if ts.minWhenModified.CompareAndSwap(old, when) {
  1268  			return
  1269  		}
  1270  	}
  1271  }
  1272  
  1273  // timeSleepUntil returns the time when the next timer should fire. Returns
  1274  // maxWhen if there are no timers.
  1275  // This is only called by sysmon and checkdead.
  1276  func timeSleepUntil() int64 {
  1277  	next := int64(maxWhen)
  1278  
  1279  	// Prevent allp slice changes. This is like retake.
  1280  	lock(&allpLock)
  1281  	for _, pp := range allp {
  1282  		if pp == nil {
  1283  			// This can happen if procresize has grown
  1284  			// allp but not yet created new Ps.
  1285  			continue
  1286  		}
  1287  
  1288  		if w := pp.timers.wakeTime(); w != 0 {
  1289  			next = min(next, w)
  1290  		}
  1291  	}
  1292  	unlock(&allpLock)
  1293  
  1294  	return next
  1295  }
  1296  
  1297  const timerHeapN = 4
  1298  
  1299  // Heap maintenance algorithms.
  1300  // These algorithms check for slice index errors manually.
  1301  // Slice index error can happen if the program is using racy
  1302  // access to timers. We don't want to panic here, because
  1303  // it will cause the program to crash with a mysterious
  1304  // "panic holding locks" message. Instead, we panic while not
  1305  // holding a lock.
  1306  
  1307  // siftUp puts the timer at position i in the right place
  1308  // in the heap by moving it up toward the top of the heap.
  1309  func (ts *timers) siftUp(i int) {
  1310  	heap := ts.heap
  1311  	if i >= len(heap) {
  1312  		badTimer()
  1313  	}
  1314  	tw := heap[i]
  1315  	when := tw.when
  1316  	if when <= 0 {
  1317  		badTimer()
  1318  	}
  1319  	for i > 0 {
  1320  		p := int(uint(i-1) / timerHeapN) // parent
  1321  		if when >= heap[p].when {
  1322  			break
  1323  		}
  1324  		heap[i] = heap[p]
  1325  		i = p
  1326  	}
  1327  	if heap[i].timer != tw.timer {
  1328  		heap[i] = tw
  1329  	}
  1330  }
  1331  
  1332  // siftDown puts the timer at position i in the right place
  1333  // in the heap by moving it down toward the bottom of the heap.
  1334  func (ts *timers) siftDown(i int) {
  1335  	heap := ts.heap
  1336  	n := len(heap)
  1337  	if i >= n {
  1338  		badTimer()
  1339  	}
  1340  	if i*timerHeapN+1 >= n {
  1341  		return
  1342  	}
  1343  	tw := heap[i]
  1344  	when := tw.when
  1345  	if when <= 0 {
  1346  		badTimer()
  1347  	}
  1348  	for {
  1349  		leftChild := i*timerHeapN + 1
  1350  		if leftChild >= n {
  1351  			break
  1352  		}
  1353  		w := when
  1354  		c := -1
  1355  		for j, tw := range heap[leftChild:min(leftChild+timerHeapN, n)] {
  1356  			if tw.when < w {
  1357  				w = tw.when
  1358  				c = leftChild + j
  1359  			}
  1360  		}
  1361  		if c < 0 {
  1362  			break
  1363  		}
  1364  		heap[i] = heap[c]
  1365  		i = c
  1366  	}
  1367  	if heap[i].timer != tw.timer {
  1368  		heap[i] = tw
  1369  	}
  1370  }
  1371  
  1372  // initHeap reestablishes the heap order in the slice ts.heap.
  1373  // It takes O(n) time for n=len(ts.heap), not the O(n log n) of n repeated add operations.
  1374  func (ts *timers) initHeap() {
  1375  	// Last possible element that needs sifting down is parent of last element;
  1376  	// last element is len(t)-1; parent of last element is (len(t)-1-1)/timerHeapN.
  1377  	if len(ts.heap) <= 1 {
  1378  		return
  1379  	}
  1380  	for i := int(uint(len(ts.heap)-1-1) / timerHeapN); i >= 0; i-- {
  1381  		ts.siftDown(i)
  1382  	}
  1383  }
  1384  
  1385  // badTimer is called if the timer data structures have been corrupted,
  1386  // presumably due to racy use by the program. We panic here rather than
  1387  // panicking due to invalid slice access while holding locks.
  1388  // See issue #25686.
  1389  func badTimer() {
  1390  	throw("timer data corruption")
  1391  }
  1392  
  1393  // Timer channels.
  1394  
  1395  // maybeRunChan checks whether the timer needs to run
  1396  // to send a value to its associated channel. If so, it does.
  1397  // The timer must not be locked.
  1398  func (t *timer) maybeRunChan() {
  1399  	if t.isFake {
  1400  		t.lock()
  1401  		var timerGroup *synctestGroup
  1402  		if t.ts != nil {
  1403  			timerGroup = t.ts.syncGroup
  1404  		}
  1405  		t.unlock()
  1406  		sg := getg().syncGroup
  1407  		if sg == nil {
  1408  			panic(plainError("synctest timer accessed from outside bubble"))
  1409  		}
  1410  		if timerGroup != nil && sg != timerGroup {
  1411  			panic(plainError("timer moved between synctest bubbles"))
  1412  		}
  1413  		// No need to do anything here.
  1414  		// synctest.Run will run the timer when it advances its fake clock.
  1415  		return
  1416  	}
  1417  	if t.astate.Load()&timerHeaped != 0 {
  1418  		// If the timer is in the heap, the ordinary timer code
  1419  		// is in charge of sending when appropriate.
  1420  		return
  1421  	}
  1422  
  1423  	t.lock()
  1424  	now := nanotime()
  1425  	if t.state&timerHeaped != 0 || t.when == 0 || t.when > now {
  1426  		t.trace("maybeRunChan-")
  1427  		// Timer in the heap, or not running at all, or not triggered.
  1428  		t.unlock()
  1429  		return
  1430  	}
  1431  	t.trace("maybeRunChan+")
  1432  	systemstack(func() {
  1433  		t.unlockAndRun(now)
  1434  	})
  1435  }
  1436  
  1437  // blockTimerChan is called when a channel op has decided to block on c.
  1438  // The caller holds the channel lock for c and possibly other channels.
  1439  // blockTimerChan makes sure that c is in a timer heap,
  1440  // adding it if needed.
  1441  func blockTimerChan(c *hchan) {
  1442  	t := c.timer
  1443  	if t.isFake {
  1444  		return
  1445  	}
  1446  	t.lock()
  1447  	t.trace("blockTimerChan")
  1448  	if !t.isChan {
  1449  		badTimer()
  1450  	}
  1451  
  1452  	t.blocked++
  1453  
  1454  	// If this is the first enqueue after a recent dequeue,
  1455  	// the timer may still be in the heap but marked as a zombie.
  1456  	// Unmark it in this case, if the timer is still pending.
  1457  	if t.state&timerHeaped != 0 && t.state&timerZombie != 0 && t.when > 0 {
  1458  		t.state &^= timerZombie
  1459  		t.ts.zombies.Add(-1)
  1460  	}
  1461  
  1462  	// t.maybeAdd must be called with t unlocked,
  1463  	// because it needs to lock t.ts before t.
  1464  	// Then it will do nothing if t.needsAdd(state) is false.
  1465  	// Check that now before the unlock,
  1466  	// avoiding the extra lock-lock-unlock-unlock
  1467  	// inside maybeAdd when t does not need to be added.
  1468  	add := t.needsAdd()
  1469  	t.unlock()
  1470  	if add {
  1471  		t.maybeAdd()
  1472  	}
  1473  }
  1474  
  1475  // unblockTimerChan is called when a channel op that was blocked on c
  1476  // is no longer blocked. Every call to blockTimerChan must be paired with
  1477  // a call to unblockTimerChan.
  1478  // The caller holds the channel lock for c and possibly other channels.
  1479  // unblockTimerChan removes c from the timer heap when nothing is
  1480  // blocked on it anymore.
  1481  func unblockTimerChan(c *hchan) {
  1482  	t := c.timer
  1483  	if t.isFake {
  1484  		return
  1485  	}
  1486  	t.lock()
  1487  	t.trace("unblockTimerChan")
  1488  	if !t.isChan || t.blocked == 0 {
  1489  		badTimer()
  1490  	}
  1491  	t.blocked--
  1492  	if t.blocked == 0 && t.state&timerHeaped != 0 && t.state&timerZombie == 0 {
  1493  		// Last goroutine that was blocked on this timer.
  1494  		// Mark for removal from heap but do not clear t.when,
  1495  		// so that we know what time it is still meant to trigger.
  1496  		t.state |= timerZombie
  1497  		t.ts.zombies.Add(1)
  1498  	}
  1499  	t.unlock()
  1500  }
  1501  

View as plain text