// Copyright 2025 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build race #include "go_asm.h" #include "funcdata.h" #include "textflag.h" #include "cgo/abi_loong64.h" // The following thunks allow calling the gcc-compiled race runtime directly // from Go code without going all the way through cgo. // First, it's much faster (up to 50% speedup for real Go programs). // Second, it eliminates race-related special cases from cgocall and scheduler. // Third, in long-term it will allow to remove cyclic runtime/race dependency on cmd/go. // A brief recap of the loong64 calling convention. // Arguments are passed in R4...R11, the rest is on stack. // Callee-saved registers are: R23...R30. // Temporary registers are: R12...R20 // SP must be 16-byte aligned. // When calling racecalladdr, R20 is the call target address. // The race ctx, ThreadState *thr below, is passed in R4 and loaded in racecalladdr. // Load g from TLS. (See tls_loong64.s) #define load_g \ MOVV runtime·tls_g(SB), g #define RARG0 R4 #define RARG1 R5 #define RARG2 R6 #define RARG3 R7 #define RCALL R20 // func runtime·raceread(addr uintptr) // Called from instrumented code. // Defined as ABIInternal so as to avoid introducing a wrapper, // which would make caller's PC ineffective. TEXT runtime·raceread(SB), NOSPLIT, $0-8 MOVV R4, RARG1 MOVV R1, RARG2 // void __tsan_read(ThreadState *thr, void *addr, void *pc); MOVV $__tsan_read(SB), RCALL JMP racecalladdr<>(SB) // func runtime·RaceRead(addr uintptr) TEXT runtime·RaceRead(SB), NOSPLIT, $0-8 // This needs to be a tail call, because raceread reads caller pc. JMP runtime·raceread(SB) // func runtime·racereadpc(void *addr, void *callpc, void *pc) TEXT runtime·racereadpc(SB), NOSPLIT, $0-24 MOVV addr+0(FP), RARG1 MOVV callpc+8(FP), RARG2 MOVV pc+16(FP), RARG3 // void __tsan_read_pc(ThreadState *thr, void *addr, void *callpc, void *pc); MOVV $__tsan_read_pc(SB), RCALL JMP racecalladdr<>(SB) // func runtime·racewrite(addr uintptr) // Called from instrumented code. // Defined as ABIInternal so as to avoid introducing a wrapper, // which would make caller's PC ineffective. TEXT runtime·racewrite(SB), NOSPLIT, $0-8 MOVV R4, RARG1 MOVV R1, RARG2 // void __tsan_write(ThreadState *thr, void *addr, void *pc); MOVV $__tsan_write(SB), RCALL JMP racecalladdr<>(SB) // func runtime·RaceWrite(addr uintptr) TEXT runtime·RaceWrite(SB), NOSPLIT, $0-8 // This needs to be a tail call, because racewrite reads caller pc. JMP runtime·racewrite(SB) // func runtime·racewritepc(void *addr, void *callpc, void *pc) TEXT runtime·racewritepc(SB), NOSPLIT, $0-24 MOVV addr+0(FP), RARG1 MOVV callpc+8(FP), RARG2 MOVV pc+16(FP), RARG3 // void __tsan_write_pc(ThreadState *thr, void *addr, void *callpc, void *pc); MOVV $__tsan_write_pc(SB), RCALL JMP racecalladdr<>(SB) // func runtime·racereadrange(addr, size uintptr) // Called from instrumented code. // Defined as ABIInternal so as to avoid introducing a wrapper, // which would make caller's PC ineffective. TEXT runtime·racereadrange(SB), NOSPLIT, $0-16 MOVV R5, RARG2 MOVV R4, RARG1 MOVV R1, RARG3 // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVV $__tsan_read_range(SB), RCALL JMP racecalladdr<>(SB) // func runtime·RaceReadRange(addr, size uintptr) TEXT runtime·RaceReadRange(SB), NOSPLIT, $0-16 // This needs to be a tail call, because racereadrange reads caller pc. JMP runtime·racereadrange(SB) // func runtime·racereadrangepc1(void *addr, uintptr sz, void *pc) TEXT runtime·racereadrangepc1(SB), NOSPLIT, $0-24 MOVV addr+0(FP), RARG1 MOVV size+8(FP), RARG2 MOVV pc+16(FP), RARG3 ADDV $4, RARG3 // pc is function start, tsan wants return address. // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVV $__tsan_read_range(SB), RCALL JMP racecalladdr<>(SB) // func runtime·racewriterange(addr, size uintptr) // Called from instrumented code. // Defined as ABIInternal so as to avoid introducing a wrapper, // which would make caller's PC ineffective. TEXT runtime·racewriterange(SB), NOSPLIT, $0-16 MOVV R5, RARG2 MOVV R4, RARG1 MOVV R1, RARG3 // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVV $__tsan_write_range(SB), RCALL JMP racecalladdr<>(SB) // func runtime·RaceWriteRange(addr, size uintptr) TEXT runtime·RaceWriteRange(SB), NOSPLIT, $0-16 // This needs to be a tail call, because racewriterange reads caller pc. JMP runtime·racewriterange(SB) // func runtime·racewriterangepc1(void *addr, uintptr sz, void *pc) TEXT runtime·racewriterangepc1(SB), NOSPLIT, $0-24 MOVV addr+0(FP), RARG1 MOVV size+8(FP), RARG2 MOVV pc+16(FP), RARG3 ADDV $4, RARG3 // pc is function start, tsan wants return address. // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVV $__tsan_write_range(SB), RCALL JMP racecalladdr<>(SB) // Call a __tsan function from Go code. // // RCALL = tsan function address // RARG0 = *ThreadState a.k.a. g_racectx from g // RARG1 = addr passed to __tsan function // // If addr (RARG1) is out of range, do nothing. Otherwise, setup goroutine // context and invoke racecall. Other arguments already set. TEXT racecalladdr<>(SB), NOSPLIT, $0-0 // Check that addr is within [arenastart, arenaend) or within [racedatastart, racedataend). MOVV runtime·racearenastart(SB), R12 BLT RARG1, R12, data MOVV runtime·racearenaend(SB), R12 BLT RARG1, R12, call data: MOVV runtime·racedatastart(SB), R12 BLT RARG1, R12, ret MOVV runtime·racedataend(SB), R12 BGE RARG1, R12, ret call: load_g MOVV g_racectx(g), RARG0 JMP racecall<>(SB) ret: RET // func runtime·racefuncenter(pc uintptr) // Called from instrumented code. TEXT runtime·racefuncenter(SB), NOSPLIT, $0-8 MOVV R4, RCALL JMP racefuncenter<>(SB) // Common code for racefuncenter // RCALL = caller's return address TEXT racefuncenter<>(SB), NOSPLIT, $0-0 load_g MOVV g_racectx(g), RARG0 // goroutine racectx MOVV RCALL, RARG1 // void __tsan_func_enter(ThreadState *thr, void *pc); MOVV $__tsan_func_enter(SB), RCALL JAL racecall<>(SB) RET // func runtime·racefuncexit() // Called from instrumented code. TEXT runtime·racefuncexit(SB), NOSPLIT, $0-0 load_g MOVV g_racectx(g), RARG0 // race context // void __tsan_func_exit(ThreadState *thr); MOVV $__tsan_func_exit(SB), RCALL JMP racecall<>(SB) // Atomic operations for sync/atomic package. // R7 = addr of arguments passed to this function, it can // be fetched at 24(R3) in racecallatomic after two times JAL // RARG0, RARG1, RARG2 set in racecallatomic // Load TEXT sync∕atomic·LoadInt32(SB), NOSPLIT, $0-12 GO_ARGS MOVV $__tsan_go_atomic32_load(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·LoadInt64(SB), NOSPLIT, $0-16 GO_ARGS MOVV $__tsan_go_atomic64_load(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·LoadUint32(SB), NOSPLIT, $0-12 GO_ARGS JMP sync∕atomic·LoadInt32(SB) TEXT sync∕atomic·LoadUint64(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·LoadInt64(SB) TEXT sync∕atomic·LoadUintptr(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·LoadInt64(SB) TEXT sync∕atomic·LoadPointer(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·LoadInt64(SB) // Store TEXT sync∕atomic·StoreInt32(SB), NOSPLIT, $0-12 GO_ARGS MOVV $__tsan_go_atomic32_store(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·StoreInt64(SB), NOSPLIT, $0-16 GO_ARGS MOVV $__tsan_go_atomic64_store(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·StoreUint32(SB), NOSPLIT, $0-12 GO_ARGS JMP sync∕atomic·StoreInt32(SB) TEXT sync∕atomic·StoreUint64(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·StoreInt64(SB) TEXT sync∕atomic·StoreUintptr(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·StoreInt64(SB) // Swap TEXT sync∕atomic·SwapInt32(SB), NOSPLIT, $0-20 GO_ARGS MOVV $__tsan_go_atomic32_exchange(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·SwapInt64(SB), NOSPLIT, $0-24 GO_ARGS MOVV $__tsan_go_atomic64_exchange(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·SwapUint32(SB), NOSPLIT, $0-20 GO_ARGS JMP sync∕atomic·SwapInt32(SB) TEXT sync∕atomic·SwapUint64(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·SwapInt64(SB) TEXT sync∕atomic·SwapUintptr(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·SwapInt64(SB) // Add TEXT sync∕atomic·AddInt32(SB), NOSPLIT, $0-20 GO_ARGS MOVV $__tsan_go_atomic32_fetch_add(SB), RCALL JAL racecallatomic<>(SB) MOVW add+8(FP), RARG0 // convert fetch_add to add_fetch MOVW ret+16(FP), RARG1 ADD RARG0, RARG1, RARG0 MOVW RARG0, ret+16(FP) RET TEXT sync∕atomic·AddInt64(SB), NOSPLIT, $0-24 GO_ARGS MOVV $__tsan_go_atomic64_fetch_add(SB), RCALL JAL racecallatomic<>(SB) MOVV add+8(FP), RARG0 // convert fetch_add to add_fetch MOVV ret+16(FP), RARG1 ADDV RARG0, RARG1, RARG0 MOVV RARG0, ret+16(FP) RET TEXT sync∕atomic·AddUint32(SB), NOSPLIT, $0-20 GO_ARGS JMP sync∕atomic·AddInt32(SB) TEXT sync∕atomic·AddUint64(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·AddInt64(SB) TEXT sync∕atomic·AddUintptr(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·AddInt64(SB) // And TEXT sync∕atomic·AndInt32(SB), NOSPLIT, $0-20 GO_ARGS MOVV $__tsan_go_atomic32_fetch_and(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·AndInt64(SB), NOSPLIT, $0-24 GO_ARGS MOVV $__tsan_go_atomic64_fetch_and(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·AndUint32(SB), NOSPLIT, $0-20 GO_ARGS JMP sync∕atomic·AndInt32(SB) TEXT sync∕atomic·AndUint64(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·AndInt64(SB) TEXT sync∕atomic·AndUintptr(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·AndInt64(SB) // Or TEXT sync∕atomic·OrInt32(SB), NOSPLIT, $0-20 GO_ARGS MOVV $__tsan_go_atomic32_fetch_or(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·OrInt64(SB), NOSPLIT, $0-24 GO_ARGS MOVV $__tsan_go_atomic64_fetch_or(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·OrUint32(SB), NOSPLIT, $0-20 GO_ARGS JMP sync∕atomic·OrInt32(SB) TEXT sync∕atomic·OrUint64(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·OrInt64(SB) TEXT sync∕atomic·OrUintptr(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·OrInt64(SB) // CompareAndSwap TEXT sync∕atomic·CompareAndSwapInt32(SB), NOSPLIT, $0-17 GO_ARGS MOVV $__tsan_go_atomic32_compare_exchange(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·CompareAndSwapInt64(SB), NOSPLIT, $0-25 GO_ARGS MOVV $__tsan_go_atomic64_compare_exchange(SB), RCALL JAL racecallatomic<>(SB) RET TEXT sync∕atomic·CompareAndSwapUint32(SB), NOSPLIT, $0-17 GO_ARGS JMP sync∕atomic·CompareAndSwapInt32(SB) TEXT sync∕atomic·CompareAndSwapUint64(SB), NOSPLIT, $0-25 GO_ARGS JMP sync∕atomic·CompareAndSwapInt64(SB) TEXT sync∕atomic·CompareAndSwapUintptr(SB), NOSPLIT, $0-25 GO_ARGS JMP sync∕atomic·CompareAndSwapInt64(SB) // Generic atomic operation implementation. // RCALL = addr of target function TEXT racecallatomic<>(SB), NOSPLIT, $0 // Set up these registers // RARG0 = *ThreadState // RARG1 = caller pc // RARG2 = pc // RARG3 = addr of incoming arg list // Trigger SIGSEGV early. MOVV 24(R3), RARG3 // 1st arg is addr. after two times JAL, get it at 24(R3) MOVB (RARG3), R12 // segv here if addr is bad // Check that addr is within [arenastart, arenaend) or within [racedatastart, racedataend). MOVV runtime·racearenastart(SB), R12 BLT RARG3, R12, racecallatomic_data MOVV runtime·racearenaend(SB), R12 BLT RARG3, R12, racecallatomic_ok racecallatomic_data: MOVV runtime·racedatastart(SB), R12 BLT RARG3, R12, racecallatomic_ignore MOVV runtime·racedataend(SB), R12 BGE RARG3, R12, racecallatomic_ignore racecallatomic_ok: // Addr is within the good range, call the atomic function. load_g MOVV g_racectx(g), RARG0 // goroutine context MOVV 8(R3), RARG1 // caller pc MOVV RCALL, RARG2 // pc ADDV $24, R3, RARG3 JAL racecall<>(SB) // does not return RET racecallatomic_ignore: // Addr is outside the good range. // Call __tsan_go_ignore_sync_begin to ignore synchronization during the atomic op. // An attempt to synchronize on the address would cause crash. MOVV RCALL, R25 // remember the original function MOVV $__tsan_go_ignore_sync_begin(SB), RCALL load_g MOVV g_racectx(g), RARG0 // goroutine context JAL racecall<>(SB) MOVV R25, RCALL // restore the original function // Call the atomic function. // racecall will call LLVM race code which might clobber R22 (g) load_g MOVV g_racectx(g), RARG0 // goroutine context MOVV 8(R3), RARG1 // caller pc MOVV RCALL, RARG2 // pc ADDV $24, R3, RARG3 // arguments JAL racecall<>(SB) // Call __tsan_go_ignore_sync_end. MOVV $__tsan_go_ignore_sync_end(SB), RCALL MOVV g_racectx(g), RARG0 // goroutine context JAL racecall<>(SB) RET // func runtime·racecall(void(*f)(...), ...) // Calls C function f from race runtime and passes up to 4 arguments to it. // The arguments are never heap-object-preserving pointers, so we pretend there are no arguments. TEXT runtime·racecall(SB), NOSPLIT, $0-0 MOVV fn+0(FP), RCALL MOVV arg0+8(FP), RARG0 MOVV arg1+16(FP), RARG1 MOVV arg2+24(FP), RARG2 MOVV arg3+32(FP), RARG3 JMP racecall<>(SB) // Switches SP to g0 stack and calls (RCALL). Arguments already set. TEXT racecall<>(SB), NOSPLIT|NOFRAME, $0-0 MOVV g_m(g), R12 // Switch to g0 stack. MOVV R3, R23 // callee-saved, preserved across the CALL MOVV R1, R24 // callee-saved, preserved across the CALL MOVV m_g0(R12), R13 BEQ R13, g, call // already on g0 MOVV (g_sched+gobuf_sp)(R13), R3 call: JAL (RCALL) MOVV R23, R3 JAL (R24) RET // C->Go callback thunk that allows to call runtime·racesymbolize from C code. // Direct Go->C race call has only switched SP, finish g->g0 switch by setting correct g. // The overall effect of Go->C->Go call chain is similar to that of mcall. // RARG0 contains command code. RARG1 contains command-specific context. // See racecallback for command codes. TEXT runtime·racecallbackthunk(SB), NOSPLIT|NOFRAME, $0 // Handle command raceGetProcCmd (0) here. // First, code below assumes that we are on curg, while raceGetProcCmd // can be executed on g0. Second, it is called frequently, so will // benefit from this fast path. BNE RARG0, R0, rest MOVV g, R15 load_g MOVV g_m(g), RARG0 MOVV m_p(RARG0), RARG0 MOVV p_raceprocctx(RARG0), RARG0 MOVV RARG0, (RARG1) MOVV R15, g JMP (R1) rest: // Save callee-saved registers (Go code won't respect that). // 8(R3) and 16(R3) are for args passed through racecallback ADDV $-176, R3 MOVV R1, 0(R3) SAVE_R22_TO_R31(8*3) SAVE_F24_TO_F31(8*13) // Set g = g0. load_g MOVV g_m(g), R15 MOVV m_g0(R15), R14 BEQ R14, g, noswitch // branch if already on g0 MOVV R14, g JAL runtime·racecallback(SB) // All registers are smashed after Go code, reload. MOVV g_m(g), R15 MOVV m_curg(R15), g // g = m->curg ret: // Restore callee-saved registers. MOVV 0(R3), R1 RESTORE_F24_TO_F31(8*13) RESTORE_R22_TO_R31(8*3) ADDV $176, R3 JMP (R1) noswitch: // already on g0 JAL runtime·racecallback(SB) JMP ret // tls_g, g value for each thread in TLS GLOBL runtime·tls_g+0(SB), TLSBSS+DUPOK, $8