Source file src/runtime/mpagealloc.go
1 // Copyright 2019 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Page allocator. 6 // 7 // The page allocator manages mapped pages (defined by pageSize, NOT 8 // physPageSize) for allocation and re-use. It is embedded into mheap. 9 // 10 // Pages are managed using a bitmap that is sharded into chunks. 11 // In the bitmap, 1 means in-use, and 0 means free. The bitmap spans the 12 // process's address space. Chunks are managed in a sparse-array-style structure 13 // similar to mheap.arenas, since the bitmap may be large on some systems. 14 // 15 // The bitmap is efficiently searched by using a radix tree in combination 16 // with fast bit-wise intrinsics. Allocation is performed using an address-ordered 17 // first-fit approach. 18 // 19 // Each entry in the radix tree is a summary that describes three properties of 20 // a particular region of the address space: the number of contiguous free pages 21 // at the start and end of the region it represents, and the maximum number of 22 // contiguous free pages found anywhere in that region. 23 // 24 // Each level of the radix tree is stored as one contiguous array, which represents 25 // a different granularity of subdivision of the processes' address space. Thus, this 26 // radix tree is actually implicit in these large arrays, as opposed to having explicit 27 // dynamically-allocated pointer-based node structures. Naturally, these arrays may be 28 // quite large for system with large address spaces, so in these cases they are mapped 29 // into memory as needed. The leaf summaries of the tree correspond to a bitmap chunk. 30 // 31 // The root level (referred to as L0 and index 0 in pageAlloc.summary) has each 32 // summary represent the largest section of address space (16 GiB on 64-bit systems), 33 // with each subsequent level representing successively smaller subsections until we 34 // reach the finest granularity at the leaves, a chunk. 35 // 36 // More specifically, each summary in each level (except for leaf summaries) 37 // represents some number of entries in the following level. For example, each 38 // summary in the root level may represent a 16 GiB region of address space, 39 // and in the next level there could be 8 corresponding entries which represent 2 40 // GiB subsections of that 16 GiB region, each of which could correspond to 8 41 // entries in the next level which each represent 256 MiB regions, and so on. 42 // 43 // Thus, this design only scales to heaps so large, but can always be extended to 44 // larger heaps by simply adding levels to the radix tree, which mostly costs 45 // additional virtual address space. The choice of managing large arrays also means 46 // that a large amount of virtual address space may be reserved by the runtime. 47 48 package runtime 49 50 import ( 51 "internal/runtime/atomic" 52 "unsafe" 53 ) 54 55 const ( 56 // The size of a bitmap chunk, i.e. the amount of bits (that is, pages) to consider 57 // in the bitmap at once. 58 pallocChunkPages = 1 << logPallocChunkPages 59 pallocChunkBytes = pallocChunkPages * pageSize 60 logPallocChunkPages = 9 61 logPallocChunkBytes = logPallocChunkPages + pageShift 62 63 // The number of radix bits for each level. 64 // 65 // The value of 3 is chosen such that the block of summaries we need to scan at 66 // each level fits in 64 bytes (2^3 summaries * 8 bytes per summary), which is 67 // close to the L1 cache line width on many systems. Also, a value of 3 fits 4 tree 68 // levels perfectly into the 21-bit pallocBits summary field at the root level. 69 // 70 // The following equation explains how each of the constants relate: 71 // summaryL0Bits + (summaryLevels-1)*summaryLevelBits + logPallocChunkBytes = heapAddrBits 72 // 73 // summaryLevels is an architecture-dependent value defined in mpagealloc_*.go. 74 summaryLevelBits = 3 75 summaryL0Bits = heapAddrBits - logPallocChunkBytes - (summaryLevels-1)*summaryLevelBits 76 77 // pallocChunksL2Bits is the number of bits of the chunk index number 78 // covered by the second level of the chunks map. 79 // 80 // See (*pageAlloc).chunks for more details. Update the documentation 81 // there should this change. 82 pallocChunksL2Bits = heapAddrBits - logPallocChunkBytes - pallocChunksL1Bits 83 pallocChunksL1Shift = pallocChunksL2Bits 84 85 vmaNamePageAllocIndex = "page alloc index" 86 ) 87 88 // maxSearchAddr returns the maximum searchAddr value, which indicates 89 // that the heap has no free space. 90 // 91 // This function exists just to make it clear that this is the maximum address 92 // for the page allocator's search space. See maxOffAddr for details. 93 // 94 // It's a function (rather than a variable) because it needs to be 95 // usable before package runtime's dynamic initialization is complete. 96 // See #51913 for details. 97 func maxSearchAddr() offAddr { return maxOffAddr } 98 99 // Global chunk index. 100 // 101 // Represents an index into the leaf level of the radix tree. 102 // Similar to arenaIndex, except instead of arenas, it divides the address 103 // space into chunks. 104 type chunkIdx uint 105 106 // chunkIndex returns the global index of the palloc chunk containing the 107 // pointer p. 108 func chunkIndex(p uintptr) chunkIdx { 109 return chunkIdx((p - arenaBaseOffset) / pallocChunkBytes) 110 } 111 112 // chunkBase returns the base address of the palloc chunk at index ci. 113 func chunkBase(ci chunkIdx) uintptr { 114 return uintptr(ci)*pallocChunkBytes + arenaBaseOffset 115 } 116 117 // chunkPageIndex computes the index of the page that contains p, 118 // relative to the chunk which contains p. 119 func chunkPageIndex(p uintptr) uint { 120 return uint(p % pallocChunkBytes / pageSize) 121 } 122 123 // l1 returns the index into the first level of (*pageAlloc).chunks. 124 func (i chunkIdx) l1() uint { 125 if pallocChunksL1Bits == 0 { 126 // Let the compiler optimize this away if there's no 127 // L1 map. 128 return 0 129 } else { 130 return uint(i) >> pallocChunksL1Shift 131 } 132 } 133 134 // l2 returns the index into the second level of (*pageAlloc).chunks. 135 func (i chunkIdx) l2() uint { 136 if pallocChunksL1Bits == 0 { 137 return uint(i) 138 } else { 139 return uint(i) & (1<<pallocChunksL2Bits - 1) 140 } 141 } 142 143 // offAddrToLevelIndex converts an address in the offset address space 144 // to the index into summary[level] containing addr. 145 func offAddrToLevelIndex(level int, addr offAddr) int { 146 return int((addr.a - arenaBaseOffset) >> levelShift[level]) 147 } 148 149 // levelIndexToOffAddr converts an index into summary[level] into 150 // the corresponding address in the offset address space. 151 func levelIndexToOffAddr(level, idx int) offAddr { 152 return offAddr{(uintptr(idx) << levelShift[level]) + arenaBaseOffset} 153 } 154 155 // addrsToSummaryRange converts base and limit pointers into a range 156 // of entries for the given summary level. 157 // 158 // The returned range is inclusive on the lower bound and exclusive on 159 // the upper bound. 160 func addrsToSummaryRange(level int, base, limit uintptr) (lo int, hi int) { 161 // This is slightly more nuanced than just a shift for the exclusive 162 // upper-bound. Note that the exclusive upper bound may be within a 163 // summary at this level, meaning if we just do the obvious computation 164 // hi will end up being an inclusive upper bound. Unfortunately, just 165 // adding 1 to that is too broad since we might be on the very edge 166 // of a summary's max page count boundary for this level 167 // (1 << levelLogPages[level]). So, make limit an inclusive upper bound 168 // then shift, then add 1, so we get an exclusive upper bound at the end. 169 lo = int((base - arenaBaseOffset) >> levelShift[level]) 170 hi = int(((limit-1)-arenaBaseOffset)>>levelShift[level]) + 1 171 return 172 } 173 174 // blockAlignSummaryRange aligns indices into the given level to that 175 // level's block width (1 << levelBits[level]). It assumes lo is inclusive 176 // and hi is exclusive, and so aligns them down and up respectively. 177 func blockAlignSummaryRange(level int, lo, hi int) (int, int) { 178 e := uintptr(1) << levelBits[level] 179 return int(alignDown(uintptr(lo), e)), int(alignUp(uintptr(hi), e)) 180 } 181 182 type pageAlloc struct { 183 // Radix tree of summaries. 184 // 185 // Each slice's cap represents the whole memory reservation. 186 // Each slice's len reflects the allocator's maximum known 187 // mapped heap address for that level. 188 // 189 // The backing store of each summary level is reserved in init 190 // and may or may not be committed in grow (small address spaces 191 // may commit all the memory in init). 192 // 193 // The purpose of keeping len <= cap is to enforce bounds checks 194 // on the top end of the slice so that instead of an unknown 195 // runtime segmentation fault, we get a much friendlier out-of-bounds 196 // error. 197 // 198 // To iterate over a summary level, use inUse to determine which ranges 199 // are currently available. Otherwise one might try to access 200 // memory which is only Reserved which may result in a hard fault. 201 // 202 // We may still get segmentation faults < len since some of that 203 // memory may not be committed yet. 204 summary [summaryLevels][]pallocSum 205 206 // chunks is a slice of bitmap chunks. 207 // 208 // The total size of chunks is quite large on most 64-bit platforms 209 // (O(GiB) or more) if flattened, so rather than making one large mapping 210 // (which has problems on some platforms, even when PROT_NONE) we use a 211 // two-level sparse array approach similar to the arena index in mheap. 212 // 213 // To find the chunk containing a memory address `a`, do: 214 // chunkOf(chunkIndex(a)) 215 // 216 // Below is a table describing the configuration for chunks for various 217 // heapAddrBits supported by the runtime. 218 // 219 // heapAddrBits | L1 Bits | L2 Bits | L2 Entry Size 220 // ------------------------------------------------ 221 // 32 | 0 | 10 | 128 KiB 222 // 33 (iOS) | 0 | 11 | 256 KiB 223 // 48 | 13 | 13 | 1 MiB 224 // 225 // There's no reason to use the L1 part of chunks on 32-bit, the 226 // address space is small so the L2 is small. For platforms with a 227 // 48-bit address space, we pick the L1 such that the L2 is 1 MiB 228 // in size, which is a good balance between low granularity without 229 // making the impact on BSS too high (note the L1 is stored directly 230 // in pageAlloc). 231 // 232 // To iterate over the bitmap, use inUse to determine which ranges 233 // are currently available. Otherwise one might iterate over unused 234 // ranges. 235 // 236 // Protected by mheapLock. 237 // 238 // TODO(mknyszek): Consider changing the definition of the bitmap 239 // such that 1 means free and 0 means in-use so that summaries and 240 // the bitmaps align better on zero-values. 241 chunks [1 << pallocChunksL1Bits]*[1 << pallocChunksL2Bits]pallocData 242 243 // The address to start an allocation search with. It must never 244 // point to any memory that is not contained in inUse, i.e. 245 // inUse.contains(searchAddr.addr()) must always be true. The one 246 // exception to this rule is that it may take on the value of 247 // maxOffAddr to indicate that the heap is exhausted. 248 // 249 // We guarantee that all valid heap addresses below this value 250 // are allocated and not worth searching. 251 searchAddr offAddr 252 253 // start and end represent the chunk indices 254 // which pageAlloc knows about. It assumes 255 // chunks in the range [start, end) are 256 // currently ready to use. 257 start, end chunkIdx 258 259 // inUse is a slice of ranges of address space which are 260 // known by the page allocator to be currently in-use (passed 261 // to grow). 262 // 263 // We care much more about having a contiguous heap in these cases 264 // and take additional measures to ensure that, so in nearly all 265 // cases this should have just 1 element. 266 // 267 // All access is protected by the mheapLock. 268 inUse addrRanges 269 270 // scav stores the scavenger state. 271 scav struct { 272 // index is an efficient index of chunks that have pages available to 273 // scavenge. 274 index scavengeIndex 275 276 // releasedBg is the amount of memory released in the background this 277 // scavenge cycle. 278 releasedBg atomic.Uintptr 279 280 // releasedEager is the amount of memory released eagerly this scavenge 281 // cycle. 282 releasedEager atomic.Uintptr 283 } 284 285 // mheap_.lock. This level of indirection makes it possible 286 // to test pageAlloc independently of the runtime allocator. 287 mheapLock *mutex 288 289 // sysStat is the runtime memstat to update when new system 290 // memory is committed by the pageAlloc for allocation metadata. 291 sysStat *sysMemStat 292 293 // summaryMappedReady is the number of bytes mapped in the Ready state 294 // in the summary structure. Used only for testing currently. 295 // 296 // Protected by mheapLock. 297 summaryMappedReady uintptr 298 299 // chunkHugePages indicates whether page bitmap chunks should be backed 300 // by huge pages. 301 chunkHugePages bool 302 303 // Whether or not this struct is being used in tests. 304 test bool 305 } 306 307 func (p *pageAlloc) init(mheapLock *mutex, sysStat *sysMemStat, test bool) { 308 if levelLogPages[0] > logMaxPackedValue { 309 // We can't represent 1<<levelLogPages[0] pages, the maximum number 310 // of pages we need to represent at the root level, in a summary, which 311 // is a big problem. Throw. 312 print("runtime: root level max pages = ", 1<<levelLogPages[0], "\n") 313 print("runtime: summary max pages = ", maxPackedValue, "\n") 314 throw("root level max pages doesn't fit in summary") 315 } 316 p.sysStat = sysStat 317 318 // Initialize p.inUse. 319 p.inUse.init(sysStat) 320 321 // System-dependent initialization. 322 p.sysInit(test) 323 324 // Start with the searchAddr in a state indicating there's no free memory. 325 p.searchAddr = maxSearchAddr() 326 327 // Set the mheapLock. 328 p.mheapLock = mheapLock 329 330 // Initialize the scavenge index. 331 p.summaryMappedReady += p.scav.index.init(test, sysStat) 332 333 // Set if we're in a test. 334 p.test = test 335 } 336 337 // tryChunkOf returns the bitmap data for the given chunk. 338 // 339 // Returns nil if the chunk data has not been mapped. 340 func (p *pageAlloc) tryChunkOf(ci chunkIdx) *pallocData { 341 l2 := p.chunks[ci.l1()] 342 if l2 == nil { 343 return nil 344 } 345 return &l2[ci.l2()] 346 } 347 348 // chunkOf returns the chunk at the given chunk index. 349 // 350 // The chunk index must be valid or this method may throw. 351 func (p *pageAlloc) chunkOf(ci chunkIdx) *pallocData { 352 return &p.chunks[ci.l1()][ci.l2()] 353 } 354 355 // grow sets up the metadata for the address range [base, base+size). 356 // It may allocate metadata, in which case *p.sysStat will be updated. 357 // 358 // p.mheapLock must be held. 359 func (p *pageAlloc) grow(base, size uintptr) { 360 assertLockHeld(p.mheapLock) 361 362 // Round up to chunks, since we can't deal with increments smaller 363 // than chunks. Also, sysGrow expects aligned values. 364 limit := alignUp(base+size, pallocChunkBytes) 365 base = alignDown(base, pallocChunkBytes) 366 367 // Grow the summary levels in a system-dependent manner. 368 // We just update a bunch of additional metadata here. 369 p.sysGrow(base, limit) 370 371 // Grow the scavenge index. 372 p.summaryMappedReady += p.scav.index.grow(base, limit, p.sysStat) 373 374 // Update p.start and p.end. 375 // If no growth happened yet, start == 0. This is generally 376 // safe since the zero page is unmapped. 377 firstGrowth := p.start == 0 378 start, end := chunkIndex(base), chunkIndex(limit) 379 if firstGrowth || start < p.start { 380 p.start = start 381 } 382 if end > p.end { 383 p.end = end 384 } 385 // Note that [base, limit) will never overlap with any existing 386 // range inUse because grow only ever adds never-used memory 387 // regions to the page allocator. 388 p.inUse.add(makeAddrRange(base, limit)) 389 390 // A grow operation is a lot like a free operation, so if our 391 // chunk ends up below p.searchAddr, update p.searchAddr to the 392 // new address, just like in free. 393 if b := (offAddr{base}); b.lessThan(p.searchAddr) { 394 p.searchAddr = b 395 } 396 397 // Add entries into chunks, which is sparse, if needed. Then, 398 // initialize the bitmap. 399 // 400 // Newly-grown memory is always considered scavenged. 401 // Set all the bits in the scavenged bitmaps high. 402 for c := chunkIndex(base); c < chunkIndex(limit); c++ { 403 if p.chunks[c.l1()] == nil { 404 // Create the necessary l2 entry. 405 const l2Size = unsafe.Sizeof(*p.chunks[0]) 406 r := sysAlloc(l2Size, p.sysStat, vmaNamePageAllocIndex) 407 if r == nil { 408 throw("pageAlloc: out of memory") 409 } 410 if !p.test { 411 // Make the chunk mapping eligible or ineligible 412 // for huge pages, depending on what our current 413 // state is. 414 if p.chunkHugePages { 415 sysHugePage(r, l2Size) 416 } else { 417 sysNoHugePage(r, l2Size) 418 } 419 } 420 // Store the new chunk block but avoid a write barrier. 421 // grow is used in call chains that disallow write barriers. 422 *(*uintptr)(unsafe.Pointer(&p.chunks[c.l1()])) = uintptr(r) 423 } 424 p.chunkOf(c).scavenged.setRange(0, pallocChunkPages) 425 } 426 427 // Update summaries accordingly. The grow acts like a free, so 428 // we need to ensure this newly-free memory is visible in the 429 // summaries. 430 p.update(base, size/pageSize, true, false) 431 } 432 433 // enableChunkHugePages enables huge pages for the chunk bitmap mappings (disabled by default). 434 // 435 // This function is idempotent. 436 // 437 // A note on latency: for sufficiently small heaps (<10s of GiB) this function will take constant 438 // time, but may take time proportional to the size of the mapped heap beyond that. 439 // 440 // The heap lock must not be held over this operation, since it will briefly acquire 441 // the heap lock. 442 // 443 // Must be called on the system stack because it acquires the heap lock. 444 // 445 //go:systemstack 446 func (p *pageAlloc) enableChunkHugePages() { 447 // Grab the heap lock to turn on huge pages for new chunks and clone the current 448 // heap address space ranges. 449 // 450 // After the lock is released, we can be sure that bitmaps for any new chunks may 451 // be backed with huge pages, and we have the address space for the rest of the 452 // chunks. At the end of this function, all chunk metadata should be backed by huge 453 // pages. 454 lock(&mheap_.lock) 455 if p.chunkHugePages { 456 unlock(&mheap_.lock) 457 return 458 } 459 p.chunkHugePages = true 460 var inUse addrRanges 461 inUse.sysStat = p.sysStat 462 p.inUse.cloneInto(&inUse) 463 unlock(&mheap_.lock) 464 465 // This might seem like a lot of work, but all these loops are for generality. 466 // 467 // For a 1 GiB contiguous heap, a 48-bit address space, 13 L1 bits, a palloc chunk size 468 // of 4 MiB, and adherence to the default set of heap address hints, this will result in 469 // exactly 1 call to sysHugePage. 470 for _, r := range p.inUse.ranges { 471 for i := chunkIndex(r.base.addr()).l1(); i < chunkIndex(r.limit.addr()-1).l1(); i++ { 472 // N.B. We can assume that p.chunks[i] is non-nil and in a mapped part of p.chunks 473 // because it's derived from inUse, which never shrinks. 474 sysHugePage(unsafe.Pointer(p.chunks[i]), unsafe.Sizeof(*p.chunks[0])) 475 } 476 } 477 } 478 479 // update updates heap metadata. It must be called each time the bitmap 480 // is updated. 481 // 482 // If contig is true, update does some optimizations assuming that there was 483 // a contiguous allocation or free between addr and addr+npages. alloc indicates 484 // whether the operation performed was an allocation or a free. 485 // 486 // p.mheapLock must be held. 487 func (p *pageAlloc) update(base, npages uintptr, contig, alloc bool) { 488 assertLockHeld(p.mheapLock) 489 490 // base, limit, start, and end are inclusive. 491 limit := base + npages*pageSize - 1 492 sc, ec := chunkIndex(base), chunkIndex(limit) 493 494 // Handle updating the lowest level first. 495 if sc == ec { 496 // Fast path: the allocation doesn't span more than one chunk, 497 // so update this one and if the summary didn't change, return. 498 x := p.summary[len(p.summary)-1][sc] 499 y := p.chunkOf(sc).summarize() 500 if x == y { 501 return 502 } 503 p.summary[len(p.summary)-1][sc] = y 504 } else if contig { 505 // Slow contiguous path: the allocation spans more than one chunk 506 // and at least one summary is guaranteed to change. 507 summary := p.summary[len(p.summary)-1] 508 509 // Update the summary for chunk sc. 510 summary[sc] = p.chunkOf(sc).summarize() 511 512 // Update the summaries for chunks in between, which are 513 // either totally allocated or freed. 514 whole := p.summary[len(p.summary)-1][sc+1 : ec] 515 if alloc { 516 clear(whole) 517 } else { 518 for i := range whole { 519 whole[i] = freeChunkSum 520 } 521 } 522 523 // Update the summary for chunk ec. 524 summary[ec] = p.chunkOf(ec).summarize() 525 } else { 526 // Slow general path: the allocation spans more than one chunk 527 // and at least one summary is guaranteed to change. 528 // 529 // We can't assume a contiguous allocation happened, so walk over 530 // every chunk in the range and manually recompute the summary. 531 summary := p.summary[len(p.summary)-1] 532 for c := sc; c <= ec; c++ { 533 summary[c] = p.chunkOf(c).summarize() 534 } 535 } 536 537 // Walk up the radix tree and update the summaries appropriately. 538 changed := true 539 for l := len(p.summary) - 2; l >= 0 && changed; l-- { 540 // Update summaries at level l from summaries at level l+1. 541 changed = false 542 543 // "Constants" for the previous level which we 544 // need to compute the summary from that level. 545 logEntriesPerBlock := levelBits[l+1] 546 logMaxPages := levelLogPages[l+1] 547 548 // lo and hi describe all the parts of the level we need to look at. 549 lo, hi := addrsToSummaryRange(l, base, limit+1) 550 551 // Iterate over each block, updating the corresponding summary in the less-granular level. 552 for i := lo; i < hi; i++ { 553 children := p.summary[l+1][i<<logEntriesPerBlock : (i+1)<<logEntriesPerBlock] 554 sum := mergeSummaries(children, logMaxPages) 555 old := p.summary[l][i] 556 if old != sum { 557 changed = true 558 p.summary[l][i] = sum 559 } 560 } 561 } 562 } 563 564 // allocRange marks the range of memory [base, base+npages*pageSize) as 565 // allocated. It also updates the summaries to reflect the newly-updated 566 // bitmap. 567 // 568 // Returns the amount of scavenged memory in bytes present in the 569 // allocated range. 570 // 571 // p.mheapLock must be held. 572 func (p *pageAlloc) allocRange(base, npages uintptr) uintptr { 573 assertLockHeld(p.mheapLock) 574 575 limit := base + npages*pageSize - 1 576 sc, ec := chunkIndex(base), chunkIndex(limit) 577 si, ei := chunkPageIndex(base), chunkPageIndex(limit) 578 579 scav := uint(0) 580 if sc == ec { 581 // The range doesn't cross any chunk boundaries. 582 chunk := p.chunkOf(sc) 583 scav += chunk.scavenged.popcntRange(si, ei+1-si) 584 chunk.allocRange(si, ei+1-si) 585 p.scav.index.alloc(sc, ei+1-si) 586 } else { 587 // The range crosses at least one chunk boundary. 588 chunk := p.chunkOf(sc) 589 scav += chunk.scavenged.popcntRange(si, pallocChunkPages-si) 590 chunk.allocRange(si, pallocChunkPages-si) 591 p.scav.index.alloc(sc, pallocChunkPages-si) 592 for c := sc + 1; c < ec; c++ { 593 chunk := p.chunkOf(c) 594 scav += chunk.scavenged.popcntRange(0, pallocChunkPages) 595 chunk.allocAll() 596 p.scav.index.alloc(c, pallocChunkPages) 597 } 598 chunk = p.chunkOf(ec) 599 scav += chunk.scavenged.popcntRange(0, ei+1) 600 chunk.allocRange(0, ei+1) 601 p.scav.index.alloc(ec, ei+1) 602 } 603 p.update(base, npages, true, true) 604 return uintptr(scav) * pageSize 605 } 606 607 // findMappedAddr returns the smallest mapped offAddr that is 608 // >= addr. That is, if addr refers to mapped memory, then it is 609 // returned. If addr is higher than any mapped region, then 610 // it returns maxOffAddr. 611 // 612 // p.mheapLock must be held. 613 func (p *pageAlloc) findMappedAddr(addr offAddr) offAddr { 614 assertLockHeld(p.mheapLock) 615 616 // If we're not in a test, validate first by checking mheap_.arenas. 617 // This is a fast path which is only safe to use outside of testing. 618 ai := arenaIndex(addr.addr()) 619 if p.test || mheap_.arenas[ai.l1()] == nil || mheap_.arenas[ai.l1()][ai.l2()] == nil { 620 vAddr, ok := p.inUse.findAddrGreaterEqual(addr.addr()) 621 if ok { 622 return offAddr{vAddr} 623 } else { 624 // The candidate search address is greater than any 625 // known address, which means we definitely have no 626 // free memory left. 627 return maxOffAddr 628 } 629 } 630 return addr 631 } 632 633 // find searches for the first (address-ordered) contiguous free region of 634 // npages in size and returns a base address for that region. 635 // 636 // It uses p.searchAddr to prune its search and assumes that no palloc chunks 637 // below chunkIndex(p.searchAddr) contain any free memory at all. 638 // 639 // find also computes and returns a candidate p.searchAddr, which may or 640 // may not prune more of the address space than p.searchAddr already does. 641 // This candidate is always a valid p.searchAddr. 642 // 643 // find represents the slow path and the full radix tree search. 644 // 645 // Returns a base address of 0 on failure, in which case the candidate 646 // searchAddr returned is invalid and must be ignored. 647 // 648 // p.mheapLock must be held. 649 func (p *pageAlloc) find(npages uintptr) (uintptr, offAddr) { 650 assertLockHeld(p.mheapLock) 651 652 // Search algorithm. 653 // 654 // This algorithm walks each level l of the radix tree from the root level 655 // to the leaf level. It iterates over at most 1 << levelBits[l] of entries 656 // in a given level in the radix tree, and uses the summary information to 657 // find either: 658 // 1) That a given subtree contains a large enough contiguous region, at 659 // which point it continues iterating on the next level, or 660 // 2) That there are enough contiguous boundary-crossing bits to satisfy 661 // the allocation, at which point it knows exactly where to start 662 // allocating from. 663 // 664 // i tracks the index into the current level l's structure for the 665 // contiguous 1 << levelBits[l] entries we're actually interested in. 666 // 667 // NOTE: Technically this search could allocate a region which crosses 668 // the arenaBaseOffset boundary, which when arenaBaseOffset != 0, is 669 // a discontinuity. However, the only way this could happen is if the 670 // page at the zero address is mapped, and this is impossible on 671 // every system we support where arenaBaseOffset != 0. So, the 672 // discontinuity is already encoded in the fact that the OS will never 673 // map the zero page for us, and this function doesn't try to handle 674 // this case in any way. 675 676 // i is the beginning of the block of entries we're searching at the 677 // current level. 678 i := 0 679 680 // firstFree is the region of address space that we are certain to 681 // find the first free page in the heap. base and bound are the inclusive 682 // bounds of this window, and both are addresses in the linearized, contiguous 683 // view of the address space (with arenaBaseOffset pre-added). At each level, 684 // this window is narrowed as we find the memory region containing the 685 // first free page of memory. To begin with, the range reflects the 686 // full process address space. 687 // 688 // firstFree is updated by calling foundFree each time free space in the 689 // heap is discovered. 690 // 691 // At the end of the search, base.addr() is the best new 692 // searchAddr we could deduce in this search. 693 firstFree := struct { 694 base, bound offAddr 695 }{ 696 base: minOffAddr, 697 bound: maxOffAddr, 698 } 699 // foundFree takes the given address range [addr, addr+size) and 700 // updates firstFree if it is a narrower range. The input range must 701 // either be fully contained within firstFree or not overlap with it 702 // at all. 703 // 704 // This way, we'll record the first summary we find with any free 705 // pages on the root level and narrow that down if we descend into 706 // that summary. But as soon as we need to iterate beyond that summary 707 // in a level to find a large enough range, we'll stop narrowing. 708 foundFree := func(addr offAddr, size uintptr) { 709 if firstFree.base.lessEqual(addr) && addr.add(size-1).lessEqual(firstFree.bound) { 710 // This range fits within the current firstFree window, so narrow 711 // down the firstFree window to the base and bound of this range. 712 firstFree.base = addr 713 firstFree.bound = addr.add(size - 1) 714 } else if !(addr.add(size-1).lessThan(firstFree.base) || firstFree.bound.lessThan(addr)) { 715 // This range only partially overlaps with the firstFree range, 716 // so throw. 717 print("runtime: addr = ", hex(addr.addr()), ", size = ", size, "\n") 718 print("runtime: base = ", hex(firstFree.base.addr()), ", bound = ", hex(firstFree.bound.addr()), "\n") 719 throw("range partially overlaps") 720 } 721 } 722 723 // lastSum is the summary which we saw on the previous level that made us 724 // move on to the next level. Used to print additional information in the 725 // case of a catastrophic failure. 726 // lastSumIdx is that summary's index in the previous level. 727 lastSum := packPallocSum(0, 0, 0) 728 lastSumIdx := -1 729 730 nextLevel: 731 for l := 0; l < len(p.summary); l++ { 732 // For the root level, entriesPerBlock is the whole level. 733 entriesPerBlock := 1 << levelBits[l] 734 logMaxPages := levelLogPages[l] 735 736 // We've moved into a new level, so let's update i to our new 737 // starting index. This is a no-op for level 0. 738 i <<= levelBits[l] 739 740 // Slice out the block of entries we care about. 741 entries := p.summary[l][i : i+entriesPerBlock] 742 743 // Determine j0, the first index we should start iterating from. 744 // The searchAddr may help us eliminate iterations if we followed the 745 // searchAddr on the previous level or we're on the root level, in which 746 // case the searchAddr should be the same as i after levelShift. 747 j0 := 0 748 if searchIdx := offAddrToLevelIndex(l, p.searchAddr); searchIdx&^(entriesPerBlock-1) == i { 749 j0 = searchIdx & (entriesPerBlock - 1) 750 } 751 752 // Run over the level entries looking for 753 // a contiguous run of at least npages either 754 // within an entry or across entries. 755 // 756 // base contains the page index (relative to 757 // the first entry's first page) of the currently 758 // considered run of consecutive pages. 759 // 760 // size contains the size of the currently considered 761 // run of consecutive pages. 762 var base, size uint 763 for j := j0; j < len(entries); j++ { 764 sum := entries[j] 765 if sum == 0 { 766 // A full entry means we broke any streak and 767 // that we should skip it altogether. 768 size = 0 769 continue 770 } 771 772 // We've encountered a non-zero summary which means 773 // free memory, so update firstFree. 774 foundFree(levelIndexToOffAddr(l, i+j), (uintptr(1)<<logMaxPages)*pageSize) 775 776 s := sum.start() 777 if size+s >= uint(npages) { 778 // If size == 0 we don't have a run yet, 779 // which means base isn't valid. So, set 780 // base to the first page in this block. 781 if size == 0 { 782 base = uint(j) << logMaxPages 783 } 784 // We hit npages; we're done! 785 size += s 786 break 787 } 788 if sum.max() >= uint(npages) { 789 // The entry itself contains npages contiguous 790 // free pages, so continue on the next level 791 // to find that run. 792 i += j 793 lastSumIdx = i 794 lastSum = sum 795 continue nextLevel 796 } 797 if size == 0 || s < 1<<logMaxPages { 798 // We either don't have a current run started, or this entry 799 // isn't totally free (meaning we can't continue the current 800 // one), so try to begin a new run by setting size and base 801 // based on sum.end. 802 size = sum.end() 803 base = uint(j+1)<<logMaxPages - size 804 continue 805 } 806 // The entry is completely free, so continue the run. 807 size += 1 << logMaxPages 808 } 809 if size >= uint(npages) { 810 // We found a sufficiently large run of free pages straddling 811 // some boundary, so compute the address and return it. 812 addr := levelIndexToOffAddr(l, i).add(uintptr(base) * pageSize).addr() 813 return addr, p.findMappedAddr(firstFree.base) 814 } 815 if l == 0 { 816 // We're at level zero, so that means we've exhausted our search. 817 return 0, maxSearchAddr() 818 } 819 820 // We're not at level zero, and we exhausted the level we were looking in. 821 // This means that either our calculations were wrong or the level above 822 // lied to us. In either case, dump some useful state and throw. 823 print("runtime: summary[", l-1, "][", lastSumIdx, "] = ", lastSum.start(), ", ", lastSum.max(), ", ", lastSum.end(), "\n") 824 print("runtime: level = ", l, ", npages = ", npages, ", j0 = ", j0, "\n") 825 print("runtime: p.searchAddr = ", hex(p.searchAddr.addr()), ", i = ", i, "\n") 826 print("runtime: levelShift[level] = ", levelShift[l], ", levelBits[level] = ", levelBits[l], "\n") 827 for j := 0; j < len(entries); j++ { 828 sum := entries[j] 829 print("runtime: summary[", l, "][", i+j, "] = (", sum.start(), ", ", sum.max(), ", ", sum.end(), ")\n") 830 } 831 throw("bad summary data") 832 } 833 834 // Since we've gotten to this point, that means we haven't found a 835 // sufficiently-sized free region straddling some boundary (chunk or larger). 836 // This means the last summary we inspected must have had a large enough "max" 837 // value, so look inside the chunk to find a suitable run. 838 // 839 // After iterating over all levels, i must contain a chunk index which 840 // is what the final level represents. 841 ci := chunkIdx(i) 842 j, searchIdx := p.chunkOf(ci).find(npages, 0) 843 if j == ^uint(0) { 844 // We couldn't find any space in this chunk despite the summaries telling 845 // us it should be there. There's likely a bug, so dump some state and throw. 846 sum := p.summary[len(p.summary)-1][i] 847 print("runtime: summary[", len(p.summary)-1, "][", i, "] = (", sum.start(), ", ", sum.max(), ", ", sum.end(), ")\n") 848 print("runtime: npages = ", npages, "\n") 849 throw("bad summary data") 850 } 851 852 // Compute the address at which the free space starts. 853 addr := chunkBase(ci) + uintptr(j)*pageSize 854 855 // Since we actually searched the chunk, we may have 856 // found an even narrower free window. 857 searchAddr := chunkBase(ci) + uintptr(searchIdx)*pageSize 858 foundFree(offAddr{searchAddr}, chunkBase(ci+1)-searchAddr) 859 return addr, p.findMappedAddr(firstFree.base) 860 } 861 862 // alloc allocates npages worth of memory from the page heap, returning the base 863 // address for the allocation and the amount of scavenged memory in bytes 864 // contained in the region [base address, base address + npages*pageSize). 865 // 866 // Returns a 0 base address on failure, in which case other returned values 867 // should be ignored. 868 // 869 // p.mheapLock must be held. 870 // 871 // Must run on the system stack because p.mheapLock must be held. 872 // 873 //go:systemstack 874 func (p *pageAlloc) alloc(npages uintptr) (addr uintptr, scav uintptr) { 875 assertLockHeld(p.mheapLock) 876 877 // If the searchAddr refers to a region which has a higher address than 878 // any known chunk, then we know we're out of memory. 879 if chunkIndex(p.searchAddr.addr()) >= p.end { 880 return 0, 0 881 } 882 883 // If npages has a chance of fitting in the chunk where the searchAddr is, 884 // search it directly. 885 searchAddr := minOffAddr 886 if pallocChunkPages-chunkPageIndex(p.searchAddr.addr()) >= uint(npages) { 887 // npages is guaranteed to be no greater than pallocChunkPages here. 888 i := chunkIndex(p.searchAddr.addr()) 889 if max := p.summary[len(p.summary)-1][i].max(); max >= uint(npages) { 890 j, searchIdx := p.chunkOf(i).find(npages, chunkPageIndex(p.searchAddr.addr())) 891 if j == ^uint(0) { 892 print("runtime: max = ", max, ", npages = ", npages, "\n") 893 print("runtime: searchIdx = ", chunkPageIndex(p.searchAddr.addr()), ", p.searchAddr = ", hex(p.searchAddr.addr()), "\n") 894 throw("bad summary data") 895 } 896 addr = chunkBase(i) + uintptr(j)*pageSize 897 searchAddr = offAddr{chunkBase(i) + uintptr(searchIdx)*pageSize} 898 goto Found 899 } 900 } 901 // We failed to use a searchAddr for one reason or another, so try 902 // the slow path. 903 addr, searchAddr = p.find(npages) 904 if addr == 0 { 905 if npages == 1 { 906 // We failed to find a single free page, the smallest unit 907 // of allocation. This means we know the heap is completely 908 // exhausted. Otherwise, the heap still might have free 909 // space in it, just not enough contiguous space to 910 // accommodate npages. 911 p.searchAddr = maxSearchAddr() 912 } 913 return 0, 0 914 } 915 Found: 916 // Go ahead and actually mark the bits now that we have an address. 917 scav = p.allocRange(addr, npages) 918 919 // If we found a higher searchAddr, we know that all the 920 // heap memory before that searchAddr in an offset address space is 921 // allocated, so bump p.searchAddr up to the new one. 922 if p.searchAddr.lessThan(searchAddr) { 923 p.searchAddr = searchAddr 924 } 925 return addr, scav 926 } 927 928 // free returns npages worth of memory starting at base back to the page heap. 929 // 930 // p.mheapLock must be held. 931 // 932 // Must run on the system stack because p.mheapLock must be held. 933 // 934 //go:systemstack 935 func (p *pageAlloc) free(base, npages uintptr) { 936 assertLockHeld(p.mheapLock) 937 938 // If we're freeing pages below the p.searchAddr, update searchAddr. 939 if b := (offAddr{base}); b.lessThan(p.searchAddr) { 940 p.searchAddr = b 941 } 942 limit := base + npages*pageSize - 1 943 if npages == 1 { 944 // Fast path: we're clearing a single bit, and we know exactly 945 // where it is, so mark it directly. 946 i := chunkIndex(base) 947 pi := chunkPageIndex(base) 948 p.chunkOf(i).free1(pi) 949 p.scav.index.free(i, pi, 1) 950 } else { 951 // Slow path: we're clearing more bits so we may need to iterate. 952 sc, ec := chunkIndex(base), chunkIndex(limit) 953 si, ei := chunkPageIndex(base), chunkPageIndex(limit) 954 955 if sc == ec { 956 // The range doesn't cross any chunk boundaries. 957 p.chunkOf(sc).free(si, ei+1-si) 958 p.scav.index.free(sc, si, ei+1-si) 959 } else { 960 // The range crosses at least one chunk boundary. 961 p.chunkOf(sc).free(si, pallocChunkPages-si) 962 p.scav.index.free(sc, si, pallocChunkPages-si) 963 for c := sc + 1; c < ec; c++ { 964 p.chunkOf(c).freeAll() 965 p.scav.index.free(c, 0, pallocChunkPages) 966 } 967 p.chunkOf(ec).free(0, ei+1) 968 p.scav.index.free(ec, 0, ei+1) 969 } 970 } 971 p.update(base, npages, true, false) 972 } 973 974 const ( 975 pallocSumBytes = unsafe.Sizeof(pallocSum(0)) 976 977 // maxPackedValue is the maximum value that any of the three fields in 978 // the pallocSum may take on. 979 maxPackedValue = 1 << logMaxPackedValue 980 logMaxPackedValue = logPallocChunkPages + (summaryLevels-1)*summaryLevelBits 981 982 freeChunkSum = pallocSum(uint64(pallocChunkPages) | 983 uint64(pallocChunkPages<<logMaxPackedValue) | 984 uint64(pallocChunkPages<<(2*logMaxPackedValue))) 985 ) 986 987 // pallocSum is a packed summary type which packs three numbers: start, max, 988 // and end into a single 8-byte value. Each of these values are a summary of 989 // a bitmap and are thus counts, each of which may have a maximum value of 990 // 2^21 - 1, or all three may be equal to 2^21. The latter case is represented 991 // by just setting the 64th bit. 992 type pallocSum uint64 993 994 // packPallocSum takes a start, max, and end value and produces a pallocSum. 995 func packPallocSum(start, max, end uint) pallocSum { 996 if max == maxPackedValue { 997 return pallocSum(uint64(1 << 63)) 998 } 999 return pallocSum((uint64(start) & (maxPackedValue - 1)) | 1000 ((uint64(max) & (maxPackedValue - 1)) << logMaxPackedValue) | 1001 ((uint64(end) & (maxPackedValue - 1)) << (2 * logMaxPackedValue))) 1002 } 1003 1004 // start extracts the start value from a packed sum. 1005 func (p pallocSum) start() uint { 1006 if uint64(p)&uint64(1<<63) != 0 { 1007 return maxPackedValue 1008 } 1009 return uint(uint64(p) & (maxPackedValue - 1)) 1010 } 1011 1012 // max extracts the max value from a packed sum. 1013 func (p pallocSum) max() uint { 1014 if uint64(p)&uint64(1<<63) != 0 { 1015 return maxPackedValue 1016 } 1017 return uint((uint64(p) >> logMaxPackedValue) & (maxPackedValue - 1)) 1018 } 1019 1020 // end extracts the end value from a packed sum. 1021 func (p pallocSum) end() uint { 1022 if uint64(p)&uint64(1<<63) != 0 { 1023 return maxPackedValue 1024 } 1025 return uint((uint64(p) >> (2 * logMaxPackedValue)) & (maxPackedValue - 1)) 1026 } 1027 1028 // unpack unpacks all three values from the summary. 1029 func (p pallocSum) unpack() (uint, uint, uint) { 1030 if uint64(p)&uint64(1<<63) != 0 { 1031 return maxPackedValue, maxPackedValue, maxPackedValue 1032 } 1033 return uint(uint64(p) & (maxPackedValue - 1)), 1034 uint((uint64(p) >> logMaxPackedValue) & (maxPackedValue - 1)), 1035 uint((uint64(p) >> (2 * logMaxPackedValue)) & (maxPackedValue - 1)) 1036 } 1037 1038 // mergeSummaries merges consecutive summaries which may each represent at 1039 // most 1 << logMaxPagesPerSum pages each together into one. 1040 func mergeSummaries(sums []pallocSum, logMaxPagesPerSum uint) pallocSum { 1041 // Merge the summaries in sums into one. 1042 // 1043 // We do this by keeping a running summary representing the merged 1044 // summaries of sums[:i] in start, most, and end. 1045 start, most, end := sums[0].unpack() 1046 for i := 1; i < len(sums); i++ { 1047 // Merge in sums[i]. 1048 si, mi, ei := sums[i].unpack() 1049 1050 // Merge in sums[i].start only if the running summary is 1051 // completely free, otherwise this summary's start 1052 // plays no role in the combined sum. 1053 if start == uint(i)<<logMaxPagesPerSum { 1054 start += si 1055 } 1056 1057 // Recompute the max value of the running sum by looking 1058 // across the boundary between the running sum and sums[i] 1059 // and at the max sums[i], taking the greatest of those two 1060 // and the max of the running sum. 1061 most = max(most, end+si, mi) 1062 1063 // Merge in end by checking if this new summary is totally 1064 // free. If it is, then we want to extend the running sum's 1065 // end by the new summary. If not, then we have some alloc'd 1066 // pages in there and we just want to take the end value in 1067 // sums[i]. 1068 if ei == 1<<logMaxPagesPerSum { 1069 end += 1 << logMaxPagesPerSum 1070 } else { 1071 end = ei 1072 } 1073 } 1074 return packPallocSum(start, most, end) 1075 } 1076