Source file src/runtime/mheap.go
1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Page heap. 6 // 7 // See malloc.go for overview. 8 9 package runtime 10 11 import ( 12 "internal/abi" 13 "internal/cpu" 14 "internal/goarch" 15 "internal/runtime/atomic" 16 "internal/runtime/sys" 17 "unsafe" 18 ) 19 20 const ( 21 // minPhysPageSize is a lower-bound on the physical page size. The 22 // true physical page size may be larger than this. In contrast, 23 // sys.PhysPageSize is an upper-bound on the physical page size. 24 minPhysPageSize = 4096 25 26 // maxPhysPageSize is the maximum page size the runtime supports. 27 maxPhysPageSize = 512 << 10 28 29 // maxPhysHugePageSize sets an upper-bound on the maximum huge page size 30 // that the runtime supports. 31 maxPhysHugePageSize = pallocChunkBytes 32 33 // pagesPerReclaimerChunk indicates how many pages to scan from the 34 // pageInUse bitmap at a time. Used by the page reclaimer. 35 // 36 // Higher values reduce contention on scanning indexes (such as 37 // h.reclaimIndex), but increase the minimum latency of the 38 // operation. 39 // 40 // The time required to scan this many pages can vary a lot depending 41 // on how many spans are actually freed. Experimentally, it can 42 // scan for pages at ~300 GB/ms on a 2.6GHz Core i7, but can only 43 // free spans at ~32 MB/ms. Using 512 pages bounds this at 44 // roughly 100µs. 45 // 46 // Must be a multiple of the pageInUse bitmap element size and 47 // must also evenly divide pagesPerArena. 48 pagesPerReclaimerChunk = 512 49 50 // physPageAlignedStacks indicates whether stack allocations must be 51 // physical page aligned. This is a requirement for MAP_STACK on 52 // OpenBSD. 53 physPageAlignedStacks = GOOS == "openbsd" 54 ) 55 56 // Main malloc heap. 57 // The heap itself is the "free" and "scav" treaps, 58 // but all the other global data is here too. 59 // 60 // mheap must not be heap-allocated because it contains mSpanLists, 61 // which must not be heap-allocated. 62 type mheap struct { 63 _ sys.NotInHeap 64 65 // lock must only be acquired on the system stack, otherwise a g 66 // could self-deadlock if its stack grows with the lock held. 67 lock mutex 68 69 pages pageAlloc // page allocation data structure 70 71 sweepgen uint32 // sweep generation, see comment in mspan; written during STW 72 73 // allspans is a slice of all mspans ever created. Each mspan 74 // appears exactly once. 75 // 76 // The memory for allspans is manually managed and can be 77 // reallocated and move as the heap grows. 78 // 79 // In general, allspans is protected by mheap_.lock, which 80 // prevents concurrent access as well as freeing the backing 81 // store. Accesses during STW might not hold the lock, but 82 // must ensure that allocation cannot happen around the 83 // access (since that may free the backing store). 84 allspans []*mspan // all spans out there 85 86 // Proportional sweep 87 // 88 // These parameters represent a linear function from gcController.heapLive 89 // to page sweep count. The proportional sweep system works to 90 // stay in the black by keeping the current page sweep count 91 // above this line at the current gcController.heapLive. 92 // 93 // The line has slope sweepPagesPerByte and passes through a 94 // basis point at (sweepHeapLiveBasis, pagesSweptBasis). At 95 // any given time, the system is at (gcController.heapLive, 96 // pagesSwept) in this space. 97 // 98 // It is important that the line pass through a point we 99 // control rather than simply starting at a 0,0 origin 100 // because that lets us adjust sweep pacing at any time while 101 // accounting for current progress. If we could only adjust 102 // the slope, it would create a discontinuity in debt if any 103 // progress has already been made. 104 pagesInUse atomic.Uintptr // pages of spans in stats mSpanInUse 105 pagesSwept atomic.Uint64 // pages swept this cycle 106 pagesSweptBasis atomic.Uint64 // pagesSwept to use as the origin of the sweep ratio 107 sweepHeapLiveBasis uint64 // value of gcController.heapLive to use as the origin of sweep ratio; written with lock, read without 108 sweepPagesPerByte float64 // proportional sweep ratio; written with lock, read without 109 110 // Page reclaimer state 111 112 // reclaimIndex is the page index in heapArenas of next page to 113 // reclaim. Specifically, it refers to page (i % 114 // pagesPerArena) of arena heapArenas[i / pagesPerArena]. 115 // 116 // If this is >= 1<<63, the page reclaimer is done scanning 117 // the page marks. 118 reclaimIndex atomic.Uint64 119 120 // reclaimCredit is spare credit for extra pages swept. Since 121 // the page reclaimer works in large chunks, it may reclaim 122 // more than requested. Any spare pages released go to this 123 // credit pool. 124 reclaimCredit atomic.Uintptr 125 126 _ cpu.CacheLinePad // prevents false-sharing between arenas and preceding variables 127 128 // arenas is the heap arena map. It points to the metadata for 129 // the heap for every arena frame of the entire usable virtual 130 // address space. 131 // 132 // Use arenaIndex to compute indexes into this array. 133 // 134 // For regions of the address space that are not backed by the 135 // Go heap, the arena map contains nil. 136 // 137 // Modifications are protected by mheap_.lock. Reads can be 138 // performed without locking; however, a given entry can 139 // transition from nil to non-nil at any time when the lock 140 // isn't held. (Entries never transitions back to nil.) 141 // 142 // In general, this is a two-level mapping consisting of an L1 143 // map and possibly many L2 maps. This saves space when there 144 // are a huge number of arena frames. However, on many 145 // platforms (even 64-bit), arenaL1Bits is 0, making this 146 // effectively a single-level map. In this case, arenas[0] 147 // will never be nil. 148 arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena 149 150 // arenasHugePages indicates whether arenas' L2 entries are eligible 151 // to be backed by huge pages. 152 arenasHugePages bool 153 154 // heapArenaAlloc is pre-reserved space for allocating heapArena 155 // objects. This is only used on 32-bit, where we pre-reserve 156 // this space to avoid interleaving it with the heap itself. 157 heapArenaAlloc linearAlloc 158 159 // arenaHints is a list of addresses at which to attempt to 160 // add more heap arenas. This is initially populated with a 161 // set of general hint addresses, and grown with the bounds of 162 // actual heap arena ranges. 163 arenaHints *arenaHint 164 165 // arena is a pre-reserved space for allocating heap arenas 166 // (the actual arenas). This is only used on 32-bit. 167 arena linearAlloc 168 169 // heapArenas is the arenaIndex of every mapped arena mapped for the heap. 170 // This can be used to iterate through the heap address space. 171 // 172 // Access is protected by mheap_.lock. However, since this is 173 // append-only and old backing arrays are never freed, it is 174 // safe to acquire mheap_.lock, copy the slice header, and 175 // then release mheap_.lock. 176 heapArenas []arenaIdx 177 178 // userArenaArenas is the arenaIndex of every mapped arena mapped for 179 // user arenas. 180 // 181 // Access is protected by mheap_.lock. However, since this is 182 // append-only and old backing arrays are never freed, it is 183 // safe to acquire mheap_.lock, copy the slice header, and 184 // then release mheap_.lock. 185 userArenaArenas []arenaIdx 186 187 // sweepArenas is a snapshot of heapArenas taken at the 188 // beginning of the sweep cycle. This can be read safely by 189 // simply blocking GC (by disabling preemption). 190 sweepArenas []arenaIdx 191 192 // markArenas is a snapshot of heapArenas taken at the beginning 193 // of the mark cycle. Because heapArenas is append-only, neither 194 // this slice nor its contents will change during the mark, so 195 // it can be read safely. 196 markArenas []arenaIdx 197 198 // curArena is the arena that the heap is currently growing 199 // into. This should always be physPageSize-aligned. 200 curArena struct { 201 base, end uintptr 202 } 203 204 // central free lists for small size classes. 205 // the padding makes sure that the mcentrals are 206 // spaced CacheLinePadSize bytes apart, so that each mcentral.lock 207 // gets its own cache line. 208 // central is indexed by spanClass. 209 central [numSpanClasses]struct { 210 mcentral mcentral 211 pad [(cpu.CacheLinePadSize - unsafe.Sizeof(mcentral{})%cpu.CacheLinePadSize) % cpu.CacheLinePadSize]byte 212 } 213 214 spanalloc fixalloc // allocator for span* 215 cachealloc fixalloc // allocator for mcache* 216 specialfinalizeralloc fixalloc // allocator for specialfinalizer* 217 specialCleanupAlloc fixalloc // allocator for specialcleanup* 218 specialprofilealloc fixalloc // allocator for specialprofile* 219 specialReachableAlloc fixalloc // allocator for specialReachable 220 specialPinCounterAlloc fixalloc // allocator for specialPinCounter 221 specialWeakHandleAlloc fixalloc // allocator for specialWeakHandle 222 speciallock mutex // lock for special record allocators. 223 arenaHintAlloc fixalloc // allocator for arenaHints 224 225 // User arena state. 226 // 227 // Protected by mheap_.lock. 228 userArena struct { 229 // arenaHints is a list of addresses at which to attempt to 230 // add more heap arenas for user arena chunks. This is initially 231 // populated with a set of general hint addresses, and grown with 232 // the bounds of actual heap arena ranges. 233 arenaHints *arenaHint 234 235 // quarantineList is a list of user arena spans that have been set to fault, but 236 // are waiting for all pointers into them to go away. Sweeping handles 237 // identifying when this is true, and moves the span to the ready list. 238 quarantineList mSpanList 239 240 // readyList is a list of empty user arena spans that are ready for reuse. 241 readyList mSpanList 242 } 243 244 // cleanupID is a counter which is incremented each time a cleanup special is added 245 // to a span. It's used to create globally unique identifiers for individual cleanup. 246 // cleanupID is protected by mheap_.lock. It should only be incremented while holding 247 // the lock. 248 cleanupID uint64 249 250 _ cpu.CacheLinePad 251 252 immortalWeakHandles immortalWeakHandleMap 253 254 unused *specialfinalizer // never set, just here to force the specialfinalizer type into DWARF 255 } 256 257 var mheap_ mheap 258 259 // A heapArena stores metadata for a heap arena. heapArenas are stored 260 // outside of the Go heap and accessed via the mheap_.arenas index. 261 type heapArena struct { 262 _ sys.NotInHeap 263 264 // spans maps from virtual address page ID within this arena to *mspan. 265 // For allocated spans, their pages map to the span itself. 266 // For free spans, only the lowest and highest pages map to the span itself. 267 // Internal pages map to an arbitrary span. 268 // For pages that have never been allocated, spans entries are nil. 269 // 270 // Modifications are protected by mheap.lock. Reads can be 271 // performed without locking, but ONLY from indexes that are 272 // known to contain in-use or stack spans. This means there 273 // must not be a safe-point between establishing that an 274 // address is live and looking it up in the spans array. 275 spans [pagesPerArena]*mspan 276 277 // pageInUse is a bitmap that indicates which spans are in 278 // state mSpanInUse. This bitmap is indexed by page number, 279 // but only the bit corresponding to the first page in each 280 // span is used. 281 // 282 // Reads and writes are atomic. 283 pageInUse [pagesPerArena / 8]uint8 284 285 // pageMarks is a bitmap that indicates which spans have any 286 // marked objects on them. Like pageInUse, only the bit 287 // corresponding to the first page in each span is used. 288 // 289 // Writes are done atomically during marking. Reads are 290 // non-atomic and lock-free since they only occur during 291 // sweeping (and hence never race with writes). 292 // 293 // This is used to quickly find whole spans that can be freed. 294 // 295 // TODO(austin): It would be nice if this was uint64 for 296 // faster scanning, but we don't have 64-bit atomic bit 297 // operations. 298 pageMarks [pagesPerArena / 8]uint8 299 300 // pageSpecials is a bitmap that indicates which spans have 301 // specials (finalizers or other). Like pageInUse, only the bit 302 // corresponding to the first page in each span is used. 303 // 304 // Writes are done atomically whenever a special is added to 305 // a span and whenever the last special is removed from a span. 306 // Reads are done atomically to find spans containing specials 307 // during marking. 308 pageSpecials [pagesPerArena / 8]uint8 309 310 // checkmarks stores the debug.gccheckmark state. It is only 311 // used if debug.gccheckmark > 0. 312 checkmarks *checkmarksMap 313 314 // zeroedBase marks the first byte of the first page in this 315 // arena which hasn't been used yet and is therefore already 316 // zero. zeroedBase is relative to the arena base. 317 // Increases monotonically until it hits heapArenaBytes. 318 // 319 // This field is sufficient to determine if an allocation 320 // needs to be zeroed because the page allocator follows an 321 // address-ordered first-fit policy. 322 // 323 // Read atomically and written with an atomic CAS. 324 zeroedBase uintptr 325 } 326 327 // arenaHint is a hint for where to grow the heap arenas. See 328 // mheap_.arenaHints. 329 type arenaHint struct { 330 _ sys.NotInHeap 331 addr uintptr 332 down bool 333 next *arenaHint 334 } 335 336 // An mspan is a run of pages. 337 // 338 // When a mspan is in the heap free treap, state == mSpanFree 339 // and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span. 340 // If the mspan is in the heap scav treap, then in addition to the 341 // above scavenged == true. scavenged == false in all other cases. 342 // 343 // When a mspan is allocated, state == mSpanInUse or mSpanManual 344 // and heapmap(i) == span for all s->start <= i < s->start+s->npages. 345 346 // Every mspan is in one doubly-linked list, either in the mheap's 347 // busy list or one of the mcentral's span lists. 348 349 // An mspan representing actual memory has state mSpanInUse, 350 // mSpanManual, or mSpanFree. Transitions between these states are 351 // constrained as follows: 352 // 353 // - A span may transition from free to in-use or manual during any GC 354 // phase. 355 // 356 // - During sweeping (gcphase == _GCoff), a span may transition from 357 // in-use to free (as a result of sweeping) or manual to free (as a 358 // result of stacks being freed). 359 // 360 // - During GC (gcphase != _GCoff), a span *must not* transition from 361 // manual or in-use to free. Because concurrent GC may read a pointer 362 // and then look up its span, the span state must be monotonic. 363 // 364 // Setting mspan.state to mSpanInUse or mSpanManual must be done 365 // atomically and only after all other span fields are valid. 366 // Likewise, if inspecting a span is contingent on it being 367 // mSpanInUse, the state should be loaded atomically and checked 368 // before depending on other fields. This allows the garbage collector 369 // to safely deal with potentially invalid pointers, since resolving 370 // such pointers may race with a span being allocated. 371 type mSpanState uint8 372 373 const ( 374 mSpanDead mSpanState = iota 375 mSpanInUse // allocated for garbage collected heap 376 mSpanManual // allocated for manual management (e.g., stack allocator) 377 ) 378 379 // mSpanStateNames are the names of the span states, indexed by 380 // mSpanState. 381 var mSpanStateNames = []string{ 382 "mSpanDead", 383 "mSpanInUse", 384 "mSpanManual", 385 } 386 387 // mSpanStateBox holds an atomic.Uint8 to provide atomic operations on 388 // an mSpanState. This is a separate type to disallow accidental comparison 389 // or assignment with mSpanState. 390 type mSpanStateBox struct { 391 s atomic.Uint8 392 } 393 394 // It is nosplit to match get, below. 395 396 //go:nosplit 397 func (b *mSpanStateBox) set(s mSpanState) { 398 b.s.Store(uint8(s)) 399 } 400 401 // It is nosplit because it's called indirectly by typedmemclr, 402 // which must not be preempted. 403 404 //go:nosplit 405 func (b *mSpanStateBox) get() mSpanState { 406 return mSpanState(b.s.Load()) 407 } 408 409 // mSpanList heads a linked list of spans. 410 type mSpanList struct { 411 _ sys.NotInHeap 412 first *mspan // first span in list, or nil if none 413 last *mspan // last span in list, or nil if none 414 } 415 416 type mspan struct { 417 _ sys.NotInHeap 418 next *mspan // next span in list, or nil if none 419 prev *mspan // previous span in list, or nil if none 420 list *mSpanList // For debugging. 421 422 startAddr uintptr // address of first byte of span aka s.base() 423 npages uintptr // number of pages in span 424 425 manualFreeList gclinkptr // list of free objects in mSpanManual spans 426 427 // freeindex is the slot index between 0 and nelems at which to begin scanning 428 // for the next free object in this span. 429 // Each allocation scans allocBits starting at freeindex until it encounters a 0 430 // indicating a free object. freeindex is then adjusted so that subsequent scans begin 431 // just past the newly discovered free object. 432 // 433 // If freeindex == nelem, this span has no free objects. 434 // 435 // allocBits is a bitmap of objects in this span. 436 // If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0 437 // then object n is free; 438 // otherwise, object n is allocated. Bits starting at nelem are 439 // undefined and should never be referenced. 440 // 441 // Object n starts at address n*elemsize + (start << pageShift). 442 freeindex uint16 443 // TODO: Look up nelems from sizeclass and remove this field if it 444 // helps performance. 445 nelems uint16 // number of object in the span. 446 // freeIndexForScan is like freeindex, except that freeindex is 447 // used by the allocator whereas freeIndexForScan is used by the 448 // GC scanner. They are two fields so that the GC sees the object 449 // is allocated only when the object and the heap bits are 450 // initialized (see also the assignment of freeIndexForScan in 451 // mallocgc, and issue 54596). 452 freeIndexForScan uint16 453 454 // Cache of the allocBits at freeindex. allocCache is shifted 455 // such that the lowest bit corresponds to the bit freeindex. 456 // allocCache holds the complement of allocBits, thus allowing 457 // ctz (count trailing zero) to use it directly. 458 // allocCache may contain bits beyond s.nelems; the caller must ignore 459 // these. 460 allocCache uint64 461 462 // allocBits and gcmarkBits hold pointers to a span's mark and 463 // allocation bits. The pointers are 8 byte aligned. 464 // There are three arenas where this data is held. 465 // free: Dirty arenas that are no longer accessed 466 // and can be reused. 467 // next: Holds information to be used in the next GC cycle. 468 // current: Information being used during this GC cycle. 469 // previous: Information being used during the last GC cycle. 470 // A new GC cycle starts with the call to finishsweep_m. 471 // finishsweep_m moves the previous arena to the free arena, 472 // the current arena to the previous arena, and 473 // the next arena to the current arena. 474 // The next arena is populated as the spans request 475 // memory to hold gcmarkBits for the next GC cycle as well 476 // as allocBits for newly allocated spans. 477 // 478 // The pointer arithmetic is done "by hand" instead of using 479 // arrays to avoid bounds checks along critical performance 480 // paths. 481 // The sweep will free the old allocBits and set allocBits to the 482 // gcmarkBits. The gcmarkBits are replaced with a fresh zeroed 483 // out memory. 484 allocBits *gcBits 485 gcmarkBits *gcBits 486 pinnerBits *gcBits // bitmap for pinned objects; accessed atomically 487 488 // sweep generation: 489 // if sweepgen == h->sweepgen - 2, the span needs sweeping 490 // if sweepgen == h->sweepgen - 1, the span is currently being swept 491 // if sweepgen == h->sweepgen, the span is swept and ready to use 492 // if sweepgen == h->sweepgen + 1, the span was cached before sweep began and is still cached, and needs sweeping 493 // if sweepgen == h->sweepgen + 3, the span was swept and then cached and is still cached 494 // h->sweepgen is incremented by 2 after every GC 495 496 sweepgen uint32 497 divMul uint32 // for divide by elemsize 498 allocCount uint16 // number of allocated objects 499 spanclass spanClass // size class and noscan (uint8) 500 state mSpanStateBox // mSpanInUse etc; accessed atomically (get/set methods) 501 needzero uint8 // needs to be zeroed before allocation 502 isUserArenaChunk bool // whether or not this span represents a user arena 503 allocCountBeforeCache uint16 // a copy of allocCount that is stored just before this span is cached 504 elemsize uintptr // computed from sizeclass or from npages 505 limit uintptr // end of data in span 506 speciallock mutex // guards specials list and changes to pinnerBits 507 specials *special // linked list of special records sorted by offset. 508 userArenaChunkFree addrRange // interval for managing chunk allocation 509 largeType *_type // malloc header for large objects. 510 } 511 512 func (s *mspan) base() uintptr { 513 return s.startAddr 514 } 515 516 func (s *mspan) layout() (size, n, total uintptr) { 517 total = s.npages << _PageShift 518 size = s.elemsize 519 if size > 0 { 520 n = total / size 521 } 522 return 523 } 524 525 // recordspan adds a newly allocated span to h.allspans. 526 // 527 // This only happens the first time a span is allocated from 528 // mheap.spanalloc (it is not called when a span is reused). 529 // 530 // Write barriers are disallowed here because it can be called from 531 // gcWork when allocating new workbufs. However, because it's an 532 // indirect call from the fixalloc initializer, the compiler can't see 533 // this. 534 // 535 // The heap lock must be held. 536 // 537 //go:nowritebarrierrec 538 func recordspan(vh unsafe.Pointer, p unsafe.Pointer) { 539 h := (*mheap)(vh) 540 s := (*mspan)(p) 541 542 assertLockHeld(&h.lock) 543 544 if len(h.allspans) >= cap(h.allspans) { 545 n := 64 * 1024 / goarch.PtrSize 546 if n < cap(h.allspans)*3/2 { 547 n = cap(h.allspans) * 3 / 2 548 } 549 var new []*mspan 550 sp := (*slice)(unsafe.Pointer(&new)) 551 sp.array = sysAlloc(uintptr(n)*goarch.PtrSize, &memstats.other_sys, "allspans array") 552 if sp.array == nil { 553 throw("runtime: cannot allocate memory") 554 } 555 sp.len = len(h.allspans) 556 sp.cap = n 557 if len(h.allspans) > 0 { 558 copy(new, h.allspans) 559 } 560 oldAllspans := h.allspans 561 *(*notInHeapSlice)(unsafe.Pointer(&h.allspans)) = *(*notInHeapSlice)(unsafe.Pointer(&new)) 562 if len(oldAllspans) != 0 { 563 sysFree(unsafe.Pointer(&oldAllspans[0]), uintptr(cap(oldAllspans))*unsafe.Sizeof(oldAllspans[0]), &memstats.other_sys) 564 } 565 } 566 h.allspans = h.allspans[:len(h.allspans)+1] 567 h.allspans[len(h.allspans)-1] = s 568 } 569 570 // A spanClass represents the size class and noscan-ness of a span. 571 // 572 // Each size class has a noscan spanClass and a scan spanClass. The 573 // noscan spanClass contains only noscan objects, which do not contain 574 // pointers and thus do not need to be scanned by the garbage 575 // collector. 576 type spanClass uint8 577 578 const ( 579 numSpanClasses = _NumSizeClasses << 1 580 tinySpanClass = spanClass(tinySizeClass<<1 | 1) 581 ) 582 583 func makeSpanClass(sizeclass uint8, noscan bool) spanClass { 584 return spanClass(sizeclass<<1) | spanClass(bool2int(noscan)) 585 } 586 587 //go:nosplit 588 func (sc spanClass) sizeclass() int8 { 589 return int8(sc >> 1) 590 } 591 592 //go:nosplit 593 func (sc spanClass) noscan() bool { 594 return sc&1 != 0 595 } 596 597 // arenaIndex returns the index into mheap_.arenas of the arena 598 // containing metadata for p. This index combines of an index into the 599 // L1 map and an index into the L2 map and should be used as 600 // mheap_.arenas[ai.l1()][ai.l2()]. 601 // 602 // If p is outside the range of valid heap addresses, either l1() or 603 // l2() will be out of bounds. 604 // 605 // It is nosplit because it's called by spanOf and several other 606 // nosplit functions. 607 // 608 //go:nosplit 609 func arenaIndex(p uintptr) arenaIdx { 610 return arenaIdx((p - arenaBaseOffset) / heapArenaBytes) 611 } 612 613 // arenaBase returns the low address of the region covered by heap 614 // arena i. 615 func arenaBase(i arenaIdx) uintptr { 616 return uintptr(i)*heapArenaBytes + arenaBaseOffset 617 } 618 619 type arenaIdx uint 620 621 // l1 returns the "l1" portion of an arenaIdx. 622 // 623 // Marked nosplit because it's called by spanOf and other nosplit 624 // functions. 625 // 626 //go:nosplit 627 func (i arenaIdx) l1() uint { 628 if arenaL1Bits == 0 { 629 // Let the compiler optimize this away if there's no 630 // L1 map. 631 return 0 632 } else { 633 return uint(i) >> arenaL1Shift 634 } 635 } 636 637 // l2 returns the "l2" portion of an arenaIdx. 638 // 639 // Marked nosplit because it's called by spanOf and other nosplit funcs. 640 // functions. 641 // 642 //go:nosplit 643 func (i arenaIdx) l2() uint { 644 if arenaL1Bits == 0 { 645 return uint(i) 646 } else { 647 return uint(i) & (1<<arenaL2Bits - 1) 648 } 649 } 650 651 // inheap reports whether b is a pointer into a (potentially dead) heap object. 652 // It returns false for pointers into mSpanManual spans. 653 // Non-preemptible because it is used by write barriers. 654 // 655 //go:nowritebarrier 656 //go:nosplit 657 func inheap(b uintptr) bool { 658 return spanOfHeap(b) != nil 659 } 660 661 // inHeapOrStack is a variant of inheap that returns true for pointers 662 // into any allocated heap span. 663 // 664 //go:nowritebarrier 665 //go:nosplit 666 func inHeapOrStack(b uintptr) bool { 667 s := spanOf(b) 668 if s == nil || b < s.base() { 669 return false 670 } 671 switch s.state.get() { 672 case mSpanInUse, mSpanManual: 673 return b < s.limit 674 default: 675 return false 676 } 677 } 678 679 // spanOf returns the span of p. If p does not point into the heap 680 // arena or no span has ever contained p, spanOf returns nil. 681 // 682 // If p does not point to allocated memory, this may return a non-nil 683 // span that does *not* contain p. If this is a possibility, the 684 // caller should either call spanOfHeap or check the span bounds 685 // explicitly. 686 // 687 // Must be nosplit because it has callers that are nosplit. 688 // 689 //go:nosplit 690 func spanOf(p uintptr) *mspan { 691 // This function looks big, but we use a lot of constant 692 // folding around arenaL1Bits to get it under the inlining 693 // budget. Also, many of the checks here are safety checks 694 // that Go needs to do anyway, so the generated code is quite 695 // short. 696 ri := arenaIndex(p) 697 if arenaL1Bits == 0 { 698 // If there's no L1, then ri.l1() can't be out of bounds but ri.l2() can. 699 if ri.l2() >= uint(len(mheap_.arenas[0])) { 700 return nil 701 } 702 } else { 703 // If there's an L1, then ri.l1() can be out of bounds but ri.l2() can't. 704 if ri.l1() >= uint(len(mheap_.arenas)) { 705 return nil 706 } 707 } 708 l2 := mheap_.arenas[ri.l1()] 709 if arenaL1Bits != 0 && l2 == nil { // Should never happen if there's no L1. 710 return nil 711 } 712 ha := l2[ri.l2()] 713 if ha == nil { 714 return nil 715 } 716 return ha.spans[(p/pageSize)%pagesPerArena] 717 } 718 719 // spanOfUnchecked is equivalent to spanOf, but the caller must ensure 720 // that p points into an allocated heap arena. 721 // 722 // Must be nosplit because it has callers that are nosplit. 723 // 724 //go:nosplit 725 func spanOfUnchecked(p uintptr) *mspan { 726 ai := arenaIndex(p) 727 return mheap_.arenas[ai.l1()][ai.l2()].spans[(p/pageSize)%pagesPerArena] 728 } 729 730 // spanOfHeap is like spanOf, but returns nil if p does not point to a 731 // heap object. 732 // 733 // Must be nosplit because it has callers that are nosplit. 734 // 735 //go:nosplit 736 func spanOfHeap(p uintptr) *mspan { 737 s := spanOf(p) 738 // s is nil if it's never been allocated. Otherwise, we check 739 // its state first because we don't trust this pointer, so we 740 // have to synchronize with span initialization. Then, it's 741 // still possible we picked up a stale span pointer, so we 742 // have to check the span's bounds. 743 if s == nil || s.state.get() != mSpanInUse || p < s.base() || p >= s.limit { 744 return nil 745 } 746 return s 747 } 748 749 // pageIndexOf returns the arena, page index, and page mask for pointer p. 750 // The caller must ensure p is in the heap. 751 func pageIndexOf(p uintptr) (arena *heapArena, pageIdx uintptr, pageMask uint8) { 752 ai := arenaIndex(p) 753 arena = mheap_.arenas[ai.l1()][ai.l2()] 754 pageIdx = ((p / pageSize) / 8) % uintptr(len(arena.pageInUse)) 755 pageMask = byte(1 << ((p / pageSize) % 8)) 756 return 757 } 758 759 // Initialize the heap. 760 func (h *mheap) init() { 761 lockInit(&h.lock, lockRankMheap) 762 lockInit(&h.speciallock, lockRankMheapSpecial) 763 764 h.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys) 765 h.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys) 766 h.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys) 767 h.specialCleanupAlloc.init(unsafe.Sizeof(specialCleanup{}), nil, nil, &memstats.other_sys) 768 h.specialprofilealloc.init(unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys) 769 h.specialReachableAlloc.init(unsafe.Sizeof(specialReachable{}), nil, nil, &memstats.other_sys) 770 h.specialPinCounterAlloc.init(unsafe.Sizeof(specialPinCounter{}), nil, nil, &memstats.other_sys) 771 h.specialWeakHandleAlloc.init(unsafe.Sizeof(specialWeakHandle{}), nil, nil, &memstats.gcMiscSys) 772 h.arenaHintAlloc.init(unsafe.Sizeof(arenaHint{}), nil, nil, &memstats.other_sys) 773 774 // Don't zero mspan allocations. Background sweeping can 775 // inspect a span concurrently with allocating it, so it's 776 // important that the span's sweepgen survive across freeing 777 // and re-allocating a span to prevent background sweeping 778 // from improperly cas'ing it from 0. 779 // 780 // This is safe because mspan contains no heap pointers. 781 h.spanalloc.zero = false 782 783 // h->mapcache needs no init 784 785 for i := range h.central { 786 h.central[i].mcentral.init(spanClass(i)) 787 } 788 789 h.pages.init(&h.lock, &memstats.gcMiscSys, false) 790 } 791 792 // reclaim sweeps and reclaims at least npage pages into the heap. 793 // It is called before allocating npage pages to keep growth in check. 794 // 795 // reclaim implements the page-reclaimer half of the sweeper. 796 // 797 // h.lock must NOT be held. 798 func (h *mheap) reclaim(npage uintptr) { 799 // TODO(austin): Half of the time spent freeing spans is in 800 // locking/unlocking the heap (even with low contention). We 801 // could make the slow path here several times faster by 802 // batching heap frees. 803 804 // Bail early if there's no more reclaim work. 805 if h.reclaimIndex.Load() >= 1<<63 { 806 return 807 } 808 809 // Disable preemption so the GC can't start while we're 810 // sweeping, so we can read h.sweepArenas, and so 811 // traceGCSweepStart/Done pair on the P. 812 mp := acquirem() 813 814 trace := traceAcquire() 815 if trace.ok() { 816 trace.GCSweepStart() 817 traceRelease(trace) 818 } 819 820 arenas := h.sweepArenas 821 locked := false 822 for npage > 0 { 823 // Pull from accumulated credit first. 824 if credit := h.reclaimCredit.Load(); credit > 0 { 825 take := credit 826 if take > npage { 827 // Take only what we need. 828 take = npage 829 } 830 if h.reclaimCredit.CompareAndSwap(credit, credit-take) { 831 npage -= take 832 } 833 continue 834 } 835 836 // Claim a chunk of work. 837 idx := uintptr(h.reclaimIndex.Add(pagesPerReclaimerChunk) - pagesPerReclaimerChunk) 838 if idx/pagesPerArena >= uintptr(len(arenas)) { 839 // Page reclaiming is done. 840 h.reclaimIndex.Store(1 << 63) 841 break 842 } 843 844 if !locked { 845 // Lock the heap for reclaimChunk. 846 lock(&h.lock) 847 locked = true 848 } 849 850 // Scan this chunk. 851 nfound := h.reclaimChunk(arenas, idx, pagesPerReclaimerChunk) 852 if nfound <= npage { 853 npage -= nfound 854 } else { 855 // Put spare pages toward global credit. 856 h.reclaimCredit.Add(nfound - npage) 857 npage = 0 858 } 859 } 860 if locked { 861 unlock(&h.lock) 862 } 863 864 trace = traceAcquire() 865 if trace.ok() { 866 trace.GCSweepDone() 867 traceRelease(trace) 868 } 869 releasem(mp) 870 } 871 872 // reclaimChunk sweeps unmarked spans that start at page indexes [pageIdx, pageIdx+n). 873 // It returns the number of pages returned to the heap. 874 // 875 // h.lock must be held and the caller must be non-preemptible. Note: h.lock may be 876 // temporarily unlocked and re-locked in order to do sweeping or if tracing is 877 // enabled. 878 func (h *mheap) reclaimChunk(arenas []arenaIdx, pageIdx, n uintptr) uintptr { 879 // The heap lock must be held because this accesses the 880 // heapArena.spans arrays using potentially non-live pointers. 881 // In particular, if a span were freed and merged concurrently 882 // with this probing heapArena.spans, it would be possible to 883 // observe arbitrary, stale span pointers. 884 assertLockHeld(&h.lock) 885 886 n0 := n 887 var nFreed uintptr 888 sl := sweep.active.begin() 889 if !sl.valid { 890 return 0 891 } 892 for n > 0 { 893 ai := arenas[pageIdx/pagesPerArena] 894 ha := h.arenas[ai.l1()][ai.l2()] 895 896 // Get a chunk of the bitmap to work on. 897 arenaPage := uint(pageIdx % pagesPerArena) 898 inUse := ha.pageInUse[arenaPage/8:] 899 marked := ha.pageMarks[arenaPage/8:] 900 if uintptr(len(inUse)) > n/8 { 901 inUse = inUse[:n/8] 902 marked = marked[:n/8] 903 } 904 905 // Scan this bitmap chunk for spans that are in-use 906 // but have no marked objects on them. 907 for i := range inUse { 908 inUseUnmarked := atomic.Load8(&inUse[i]) &^ marked[i] 909 if inUseUnmarked == 0 { 910 continue 911 } 912 913 for j := uint(0); j < 8; j++ { 914 if inUseUnmarked&(1<<j) != 0 { 915 s := ha.spans[arenaPage+uint(i)*8+j] 916 if s, ok := sl.tryAcquire(s); ok { 917 npages := s.npages 918 unlock(&h.lock) 919 if s.sweep(false) { 920 nFreed += npages 921 } 922 lock(&h.lock) 923 // Reload inUse. It's possible nearby 924 // spans were freed when we dropped the 925 // lock and we don't want to get stale 926 // pointers from the spans array. 927 inUseUnmarked = atomic.Load8(&inUse[i]) &^ marked[i] 928 } 929 } 930 } 931 } 932 933 // Advance. 934 pageIdx += uintptr(len(inUse) * 8) 935 n -= uintptr(len(inUse) * 8) 936 } 937 sweep.active.end(sl) 938 trace := traceAcquire() 939 if trace.ok() { 940 unlock(&h.lock) 941 // Account for pages scanned but not reclaimed. 942 trace.GCSweepSpan((n0 - nFreed) * pageSize) 943 traceRelease(trace) 944 lock(&h.lock) 945 } 946 947 assertLockHeld(&h.lock) // Must be locked on return. 948 return nFreed 949 } 950 951 // spanAllocType represents the type of allocation to make, or 952 // the type of allocation to be freed. 953 type spanAllocType uint8 954 955 const ( 956 spanAllocHeap spanAllocType = iota // heap span 957 spanAllocStack // stack span 958 spanAllocPtrScalarBits // unrolled GC prog bitmap span 959 spanAllocWorkBuf // work buf span 960 ) 961 962 // manual returns true if the span allocation is manually managed. 963 func (s spanAllocType) manual() bool { 964 return s != spanAllocHeap 965 } 966 967 // alloc allocates a new span of npage pages from the GC'd heap. 968 // 969 // spanclass indicates the span's size class and scannability. 970 // 971 // Returns a span that has been fully initialized. span.needzero indicates 972 // whether the span has been zeroed. Note that it may not be. 973 func (h *mheap) alloc(npages uintptr, spanclass spanClass) *mspan { 974 // Don't do any operations that lock the heap on the G stack. 975 // It might trigger stack growth, and the stack growth code needs 976 // to be able to allocate heap. 977 var s *mspan 978 systemstack(func() { 979 // To prevent excessive heap growth, before allocating n pages 980 // we need to sweep and reclaim at least n pages. 981 if !isSweepDone() { 982 h.reclaim(npages) 983 } 984 s = h.allocSpan(npages, spanAllocHeap, spanclass) 985 }) 986 return s 987 } 988 989 // allocManual allocates a manually-managed span of npage pages. 990 // allocManual returns nil if allocation fails. 991 // 992 // allocManual adds the bytes used to *stat, which should be a 993 // memstats in-use field. Unlike allocations in the GC'd heap, the 994 // allocation does *not* count toward heapInUse. 995 // 996 // The memory backing the returned span may not be zeroed if 997 // span.needzero is set. 998 // 999 // allocManual must be called on the system stack because it may 1000 // acquire the heap lock via allocSpan. See mheap for details. 1001 // 1002 // If new code is written to call allocManual, do NOT use an 1003 // existing spanAllocType value and instead declare a new one. 1004 // 1005 //go:systemstack 1006 func (h *mheap) allocManual(npages uintptr, typ spanAllocType) *mspan { 1007 if !typ.manual() { 1008 throw("manual span allocation called with non-manually-managed type") 1009 } 1010 return h.allocSpan(npages, typ, 0) 1011 } 1012 1013 // setSpans modifies the span map so [spanOf(base), spanOf(base+npage*pageSize)) 1014 // is s. 1015 func (h *mheap) setSpans(base, npage uintptr, s *mspan) { 1016 p := base / pageSize 1017 ai := arenaIndex(base) 1018 ha := h.arenas[ai.l1()][ai.l2()] 1019 for n := uintptr(0); n < npage; n++ { 1020 i := (p + n) % pagesPerArena 1021 if i == 0 { 1022 ai = arenaIndex(base + n*pageSize) 1023 ha = h.arenas[ai.l1()][ai.l2()] 1024 } 1025 ha.spans[i] = s 1026 } 1027 } 1028 1029 // allocNeedsZero checks if the region of address space [base, base+npage*pageSize), 1030 // assumed to be allocated, needs to be zeroed, updating heap arena metadata for 1031 // future allocations. 1032 // 1033 // This must be called each time pages are allocated from the heap, even if the page 1034 // allocator can otherwise prove the memory it's allocating is already zero because 1035 // they're fresh from the operating system. It updates heapArena metadata that is 1036 // critical for future page allocations. 1037 // 1038 // There are no locking constraints on this method. 1039 func (h *mheap) allocNeedsZero(base, npage uintptr) (needZero bool) { 1040 for npage > 0 { 1041 ai := arenaIndex(base) 1042 ha := h.arenas[ai.l1()][ai.l2()] 1043 1044 zeroedBase := atomic.Loaduintptr(&ha.zeroedBase) 1045 arenaBase := base % heapArenaBytes 1046 if arenaBase < zeroedBase { 1047 // We extended into the non-zeroed part of the 1048 // arena, so this region needs to be zeroed before use. 1049 // 1050 // zeroedBase is monotonically increasing, so if we see this now then 1051 // we can be sure we need to zero this memory region. 1052 // 1053 // We still need to update zeroedBase for this arena, and 1054 // potentially more arenas. 1055 needZero = true 1056 } 1057 // We may observe arenaBase > zeroedBase if we're racing with one or more 1058 // allocations which are acquiring memory directly before us in the address 1059 // space. But, because we know no one else is acquiring *this* memory, it's 1060 // still safe to not zero. 1061 1062 // Compute how far into the arena we extend into, capped 1063 // at heapArenaBytes. 1064 arenaLimit := arenaBase + npage*pageSize 1065 if arenaLimit > heapArenaBytes { 1066 arenaLimit = heapArenaBytes 1067 } 1068 // Increase ha.zeroedBase so it's >= arenaLimit. 1069 // We may be racing with other updates. 1070 for arenaLimit > zeroedBase { 1071 if atomic.Casuintptr(&ha.zeroedBase, zeroedBase, arenaLimit) { 1072 break 1073 } 1074 zeroedBase = atomic.Loaduintptr(&ha.zeroedBase) 1075 // Double check basic conditions of zeroedBase. 1076 if zeroedBase <= arenaLimit && zeroedBase > arenaBase { 1077 // The zeroedBase moved into the space we were trying to 1078 // claim. That's very bad, and indicates someone allocated 1079 // the same region we did. 1080 throw("potentially overlapping in-use allocations detected") 1081 } 1082 } 1083 1084 // Move base forward and subtract from npage to move into 1085 // the next arena, or finish. 1086 base += arenaLimit - arenaBase 1087 npage -= (arenaLimit - arenaBase) / pageSize 1088 } 1089 return 1090 } 1091 1092 // tryAllocMSpan attempts to allocate an mspan object from 1093 // the P-local cache, but may fail. 1094 // 1095 // h.lock need not be held. 1096 // 1097 // This caller must ensure that its P won't change underneath 1098 // it during this function. Currently to ensure that we enforce 1099 // that the function is run on the system stack, because that's 1100 // the only place it is used now. In the future, this requirement 1101 // may be relaxed if its use is necessary elsewhere. 1102 // 1103 //go:systemstack 1104 func (h *mheap) tryAllocMSpan() *mspan { 1105 pp := getg().m.p.ptr() 1106 // If we don't have a p or the cache is empty, we can't do 1107 // anything here. 1108 if pp == nil || pp.mspancache.len == 0 { 1109 return nil 1110 } 1111 // Pull off the last entry in the cache. 1112 s := pp.mspancache.buf[pp.mspancache.len-1] 1113 pp.mspancache.len-- 1114 return s 1115 } 1116 1117 // allocMSpanLocked allocates an mspan object. 1118 // 1119 // h.lock must be held. 1120 // 1121 // allocMSpanLocked must be called on the system stack because 1122 // its caller holds the heap lock. See mheap for details. 1123 // Running on the system stack also ensures that we won't 1124 // switch Ps during this function. See tryAllocMSpan for details. 1125 // 1126 //go:systemstack 1127 func (h *mheap) allocMSpanLocked() *mspan { 1128 assertLockHeld(&h.lock) 1129 1130 pp := getg().m.p.ptr() 1131 if pp == nil { 1132 // We don't have a p so just do the normal thing. 1133 return (*mspan)(h.spanalloc.alloc()) 1134 } 1135 // Refill the cache if necessary. 1136 if pp.mspancache.len == 0 { 1137 const refillCount = len(pp.mspancache.buf) / 2 1138 for i := 0; i < refillCount; i++ { 1139 pp.mspancache.buf[i] = (*mspan)(h.spanalloc.alloc()) 1140 } 1141 pp.mspancache.len = refillCount 1142 } 1143 // Pull off the last entry in the cache. 1144 s := pp.mspancache.buf[pp.mspancache.len-1] 1145 pp.mspancache.len-- 1146 return s 1147 } 1148 1149 // freeMSpanLocked free an mspan object. 1150 // 1151 // h.lock must be held. 1152 // 1153 // freeMSpanLocked must be called on the system stack because 1154 // its caller holds the heap lock. See mheap for details. 1155 // Running on the system stack also ensures that we won't 1156 // switch Ps during this function. See tryAllocMSpan for details. 1157 // 1158 //go:systemstack 1159 func (h *mheap) freeMSpanLocked(s *mspan) { 1160 assertLockHeld(&h.lock) 1161 1162 pp := getg().m.p.ptr() 1163 // First try to free the mspan directly to the cache. 1164 if pp != nil && pp.mspancache.len < len(pp.mspancache.buf) { 1165 pp.mspancache.buf[pp.mspancache.len] = s 1166 pp.mspancache.len++ 1167 return 1168 } 1169 // Failing that (or if we don't have a p), just free it to 1170 // the heap. 1171 h.spanalloc.free(unsafe.Pointer(s)) 1172 } 1173 1174 // allocSpan allocates an mspan which owns npages worth of memory. 1175 // 1176 // If typ.manual() == false, allocSpan allocates a heap span of class spanclass 1177 // and updates heap accounting. If manual == true, allocSpan allocates a 1178 // manually-managed span (spanclass is ignored), and the caller is 1179 // responsible for any accounting related to its use of the span. Either 1180 // way, allocSpan will atomically add the bytes in the newly allocated 1181 // span to *sysStat. 1182 // 1183 // The returned span is fully initialized. 1184 // 1185 // h.lock must not be held. 1186 // 1187 // allocSpan must be called on the system stack both because it acquires 1188 // the heap lock and because it must block GC transitions. 1189 // 1190 //go:systemstack 1191 func (h *mheap) allocSpan(npages uintptr, typ spanAllocType, spanclass spanClass) (s *mspan) { 1192 // Function-global state. 1193 gp := getg() 1194 base, scav := uintptr(0), uintptr(0) 1195 growth := uintptr(0) 1196 1197 // On some platforms we need to provide physical page aligned stack 1198 // allocations. Where the page size is less than the physical page 1199 // size, we already manage to do this by default. 1200 needPhysPageAlign := physPageAlignedStacks && typ == spanAllocStack && pageSize < physPageSize 1201 1202 // If the allocation is small enough, try the page cache! 1203 // The page cache does not support aligned allocations, so we cannot use 1204 // it if we need to provide a physical page aligned stack allocation. 1205 pp := gp.m.p.ptr() 1206 if !needPhysPageAlign && pp != nil && npages < pageCachePages/4 { 1207 c := &pp.pcache 1208 1209 // If the cache is empty, refill it. 1210 if c.empty() { 1211 lock(&h.lock) 1212 *c = h.pages.allocToCache() 1213 unlock(&h.lock) 1214 } 1215 1216 // Try to allocate from the cache. 1217 base, scav = c.alloc(npages) 1218 if base != 0 { 1219 s = h.tryAllocMSpan() 1220 if s != nil { 1221 goto HaveSpan 1222 } 1223 // We have a base but no mspan, so we need 1224 // to lock the heap. 1225 } 1226 } 1227 1228 // For one reason or another, we couldn't get the 1229 // whole job done without the heap lock. 1230 lock(&h.lock) 1231 1232 if needPhysPageAlign { 1233 // Overallocate by a physical page to allow for later alignment. 1234 extraPages := physPageSize / pageSize 1235 1236 // Find a big enough region first, but then only allocate the 1237 // aligned portion. We can't just allocate and then free the 1238 // edges because we need to account for scavenged memory, and 1239 // that's difficult with alloc. 1240 // 1241 // Note that we skip updates to searchAddr here. It's OK if 1242 // it's stale and higher than normal; it'll operate correctly, 1243 // just come with a performance cost. 1244 base, _ = h.pages.find(npages + extraPages) 1245 if base == 0 { 1246 var ok bool 1247 growth, ok = h.grow(npages + extraPages) 1248 if !ok { 1249 unlock(&h.lock) 1250 return nil 1251 } 1252 base, _ = h.pages.find(npages + extraPages) 1253 if base == 0 { 1254 throw("grew heap, but no adequate free space found") 1255 } 1256 } 1257 base = alignUp(base, physPageSize) 1258 scav = h.pages.allocRange(base, npages) 1259 } 1260 1261 if base == 0 { 1262 // Try to acquire a base address. 1263 base, scav = h.pages.alloc(npages) 1264 if base == 0 { 1265 var ok bool 1266 growth, ok = h.grow(npages) 1267 if !ok { 1268 unlock(&h.lock) 1269 return nil 1270 } 1271 base, scav = h.pages.alloc(npages) 1272 if base == 0 { 1273 throw("grew heap, but no adequate free space found") 1274 } 1275 } 1276 } 1277 if s == nil { 1278 // We failed to get an mspan earlier, so grab 1279 // one now that we have the heap lock. 1280 s = h.allocMSpanLocked() 1281 } 1282 unlock(&h.lock) 1283 1284 HaveSpan: 1285 // Decide if we need to scavenge in response to what we just allocated. 1286 // Specifically, we track the maximum amount of memory to scavenge of all 1287 // the alternatives below, assuming that the maximum satisfies *all* 1288 // conditions we check (e.g. if we need to scavenge X to satisfy the 1289 // memory limit and Y to satisfy heap-growth scavenging, and Y > X, then 1290 // it's fine to pick Y, because the memory limit is still satisfied). 1291 // 1292 // It's fine to do this after allocating because we expect any scavenged 1293 // pages not to get touched until we return. Simultaneously, it's important 1294 // to do this before calling sysUsed because that may commit address space. 1295 bytesToScavenge := uintptr(0) 1296 forceScavenge := false 1297 if limit := gcController.memoryLimit.Load(); !gcCPULimiter.limiting() { 1298 // Assist with scavenging to maintain the memory limit by the amount 1299 // that we expect to page in. 1300 inuse := gcController.mappedReady.Load() 1301 // Be careful about overflow, especially with uintptrs. Even on 32-bit platforms 1302 // someone can set a really big memory limit that isn't maxInt64. 1303 if uint64(scav)+inuse > uint64(limit) { 1304 bytesToScavenge = uintptr(uint64(scav) + inuse - uint64(limit)) 1305 forceScavenge = true 1306 } 1307 } 1308 if goal := scavenge.gcPercentGoal.Load(); goal != ^uint64(0) && growth > 0 { 1309 // We just caused a heap growth, so scavenge down what will soon be used. 1310 // By scavenging inline we deal with the failure to allocate out of 1311 // memory fragments by scavenging the memory fragments that are least 1312 // likely to be re-used. 1313 // 1314 // Only bother with this because we're not using a memory limit. We don't 1315 // care about heap growths as long as we're under the memory limit, and the 1316 // previous check for scaving already handles that. 1317 if retained := heapRetained(); retained+uint64(growth) > goal { 1318 // The scavenging algorithm requires the heap lock to be dropped so it 1319 // can acquire it only sparingly. This is a potentially expensive operation 1320 // so it frees up other goroutines to allocate in the meanwhile. In fact, 1321 // they can make use of the growth we just created. 1322 todo := growth 1323 if overage := uintptr(retained + uint64(growth) - goal); todo > overage { 1324 todo = overage 1325 } 1326 if todo > bytesToScavenge { 1327 bytesToScavenge = todo 1328 } 1329 } 1330 } 1331 // There are a few very limited circumstances where we won't have a P here. 1332 // It's OK to simply skip scavenging in these cases. Something else will notice 1333 // and pick up the tab. 1334 var now int64 1335 if pp != nil && bytesToScavenge > 0 { 1336 // Measure how long we spent scavenging and add that measurement to the assist 1337 // time so we can track it for the GC CPU limiter. 1338 // 1339 // Limiter event tracking might be disabled if we end up here 1340 // while on a mark worker. 1341 start := nanotime() 1342 track := pp.limiterEvent.start(limiterEventScavengeAssist, start) 1343 1344 // Scavenge, but back out if the limiter turns on. 1345 released := h.pages.scavenge(bytesToScavenge, func() bool { 1346 return gcCPULimiter.limiting() 1347 }, forceScavenge) 1348 1349 mheap_.pages.scav.releasedEager.Add(released) 1350 1351 // Finish up accounting. 1352 now = nanotime() 1353 if track { 1354 pp.limiterEvent.stop(limiterEventScavengeAssist, now) 1355 } 1356 scavenge.assistTime.Add(now - start) 1357 } 1358 1359 // Initialize the span. 1360 h.initSpan(s, typ, spanclass, base, npages) 1361 1362 // Commit and account for any scavenged memory that the span now owns. 1363 nbytes := npages * pageSize 1364 if scav != 0 { 1365 // sysUsed all the pages that are actually available 1366 // in the span since some of them might be scavenged. 1367 sysUsed(unsafe.Pointer(base), nbytes, scav) 1368 gcController.heapReleased.add(-int64(scav)) 1369 } 1370 // Update stats. 1371 gcController.heapFree.add(-int64(nbytes - scav)) 1372 if typ == spanAllocHeap { 1373 gcController.heapInUse.add(int64(nbytes)) 1374 } 1375 // Update consistent stats. 1376 stats := memstats.heapStats.acquire() 1377 atomic.Xaddint64(&stats.committed, int64(scav)) 1378 atomic.Xaddint64(&stats.released, -int64(scav)) 1379 switch typ { 1380 case spanAllocHeap: 1381 atomic.Xaddint64(&stats.inHeap, int64(nbytes)) 1382 case spanAllocStack: 1383 atomic.Xaddint64(&stats.inStacks, int64(nbytes)) 1384 case spanAllocPtrScalarBits: 1385 atomic.Xaddint64(&stats.inPtrScalarBits, int64(nbytes)) 1386 case spanAllocWorkBuf: 1387 atomic.Xaddint64(&stats.inWorkBufs, int64(nbytes)) 1388 } 1389 memstats.heapStats.release() 1390 1391 // Trace the span alloc. 1392 if traceAllocFreeEnabled() { 1393 trace := traceAcquire() 1394 if trace.ok() { 1395 trace.SpanAlloc(s) 1396 traceRelease(trace) 1397 } 1398 } 1399 return s 1400 } 1401 1402 // initSpan initializes a blank span s which will represent the range 1403 // [base, base+npages*pageSize). typ is the type of span being allocated. 1404 func (h *mheap) initSpan(s *mspan, typ spanAllocType, spanclass spanClass, base, npages uintptr) { 1405 // At this point, both s != nil and base != 0, and the heap 1406 // lock is no longer held. Initialize the span. 1407 s.init(base, npages) 1408 if h.allocNeedsZero(base, npages) { 1409 s.needzero = 1 1410 } 1411 nbytes := npages * pageSize 1412 if typ.manual() { 1413 s.manualFreeList = 0 1414 s.nelems = 0 1415 s.limit = s.base() + s.npages*pageSize 1416 s.state.set(mSpanManual) 1417 } else { 1418 // We must set span properties before the span is published anywhere 1419 // since we're not holding the heap lock. 1420 s.spanclass = spanclass 1421 if sizeclass := spanclass.sizeclass(); sizeclass == 0 { 1422 s.elemsize = nbytes 1423 s.nelems = 1 1424 s.divMul = 0 1425 } else { 1426 s.elemsize = uintptr(class_to_size[sizeclass]) 1427 if !s.spanclass.noscan() && heapBitsInSpan(s.elemsize) { 1428 // Reserve space for the pointer/scan bitmap at the end. 1429 s.nelems = uint16((nbytes - (nbytes / goarch.PtrSize / 8)) / s.elemsize) 1430 } else { 1431 s.nelems = uint16(nbytes / s.elemsize) 1432 } 1433 s.divMul = class_to_divmagic[sizeclass] 1434 } 1435 1436 // Initialize mark and allocation structures. 1437 s.freeindex = 0 1438 s.freeIndexForScan = 0 1439 s.allocCache = ^uint64(0) // all 1s indicating all free. 1440 s.gcmarkBits = newMarkBits(uintptr(s.nelems)) 1441 s.allocBits = newAllocBits(uintptr(s.nelems)) 1442 1443 // It's safe to access h.sweepgen without the heap lock because it's 1444 // only ever updated with the world stopped and we run on the 1445 // systemstack which blocks a STW transition. 1446 atomic.Store(&s.sweepgen, h.sweepgen) 1447 1448 // Now that the span is filled in, set its state. This 1449 // is a publication barrier for the other fields in 1450 // the span. While valid pointers into this span 1451 // should never be visible until the span is returned, 1452 // if the garbage collector finds an invalid pointer, 1453 // access to the span may race with initialization of 1454 // the span. We resolve this race by atomically 1455 // setting the state after the span is fully 1456 // initialized, and atomically checking the state in 1457 // any situation where a pointer is suspect. 1458 s.state.set(mSpanInUse) 1459 } 1460 1461 // Publish the span in various locations. 1462 1463 // This is safe to call without the lock held because the slots 1464 // related to this span will only ever be read or modified by 1465 // this thread until pointers into the span are published (and 1466 // we execute a publication barrier at the end of this function 1467 // before that happens) or pageInUse is updated. 1468 h.setSpans(s.base(), npages, s) 1469 1470 if !typ.manual() { 1471 // Mark in-use span in arena page bitmap. 1472 // 1473 // This publishes the span to the page sweeper, so 1474 // it's imperative that the span be completely initialized 1475 // prior to this line. 1476 arena, pageIdx, pageMask := pageIndexOf(s.base()) 1477 atomic.Or8(&arena.pageInUse[pageIdx], pageMask) 1478 1479 // Update related page sweeper stats. 1480 h.pagesInUse.Add(npages) 1481 } 1482 1483 // Make sure the newly allocated span will be observed 1484 // by the GC before pointers into the span are published. 1485 publicationBarrier() 1486 } 1487 1488 // Try to add at least npage pages of memory to the heap, 1489 // returning how much the heap grew by and whether it worked. 1490 // 1491 // h.lock must be held. 1492 func (h *mheap) grow(npage uintptr) (uintptr, bool) { 1493 assertLockHeld(&h.lock) 1494 1495 // We must grow the heap in whole palloc chunks. 1496 // We call sysMap below but note that because we 1497 // round up to pallocChunkPages which is on the order 1498 // of MiB (generally >= to the huge page size) we 1499 // won't be calling it too much. 1500 ask := alignUp(npage, pallocChunkPages) * pageSize 1501 1502 totalGrowth := uintptr(0) 1503 // This may overflow because ask could be very large 1504 // and is otherwise unrelated to h.curArena.base. 1505 end := h.curArena.base + ask 1506 nBase := alignUp(end, physPageSize) 1507 if nBase > h.curArena.end || /* overflow */ end < h.curArena.base { 1508 // Not enough room in the current arena. Allocate more 1509 // arena space. This may not be contiguous with the 1510 // current arena, so we have to request the full ask. 1511 av, asize := h.sysAlloc(ask, &h.arenaHints, &h.heapArenas) 1512 if av == nil { 1513 inUse := gcController.heapFree.load() + gcController.heapReleased.load() + gcController.heapInUse.load() 1514 print("runtime: out of memory: cannot allocate ", ask, "-byte block (", inUse, " in use)\n") 1515 return 0, false 1516 } 1517 1518 if uintptr(av) == h.curArena.end { 1519 // The new space is contiguous with the old 1520 // space, so just extend the current space. 1521 h.curArena.end = uintptr(av) + asize 1522 } else { 1523 // The new space is discontiguous. Track what 1524 // remains of the current space and switch to 1525 // the new space. This should be rare. 1526 if size := h.curArena.end - h.curArena.base; size != 0 { 1527 // Transition this space from Reserved to Prepared and mark it 1528 // as released since we'll be able to start using it after updating 1529 // the page allocator and releasing the lock at any time. 1530 sysMap(unsafe.Pointer(h.curArena.base), size, &gcController.heapReleased, "heap") 1531 // Update stats. 1532 stats := memstats.heapStats.acquire() 1533 atomic.Xaddint64(&stats.released, int64(size)) 1534 memstats.heapStats.release() 1535 // Update the page allocator's structures to make this 1536 // space ready for allocation. 1537 h.pages.grow(h.curArena.base, size) 1538 totalGrowth += size 1539 } 1540 // Switch to the new space. 1541 h.curArena.base = uintptr(av) 1542 h.curArena.end = uintptr(av) + asize 1543 } 1544 1545 // Recalculate nBase. 1546 // We know this won't overflow, because sysAlloc returned 1547 // a valid region starting at h.curArena.base which is at 1548 // least ask bytes in size. 1549 nBase = alignUp(h.curArena.base+ask, physPageSize) 1550 } 1551 1552 // Grow into the current arena. 1553 v := h.curArena.base 1554 h.curArena.base = nBase 1555 1556 // Transition the space we're going to use from Reserved to Prepared. 1557 // 1558 // The allocation is always aligned to the heap arena 1559 // size which is always > physPageSize, so its safe to 1560 // just add directly to heapReleased. 1561 sysMap(unsafe.Pointer(v), nBase-v, &gcController.heapReleased, "heap") 1562 1563 // The memory just allocated counts as both released 1564 // and idle, even though it's not yet backed by spans. 1565 stats := memstats.heapStats.acquire() 1566 atomic.Xaddint64(&stats.released, int64(nBase-v)) 1567 memstats.heapStats.release() 1568 1569 // Update the page allocator's structures to make this 1570 // space ready for allocation. 1571 h.pages.grow(v, nBase-v) 1572 totalGrowth += nBase - v 1573 return totalGrowth, true 1574 } 1575 1576 // Free the span back into the heap. 1577 func (h *mheap) freeSpan(s *mspan) { 1578 systemstack(func() { 1579 // Trace the span free. 1580 if traceAllocFreeEnabled() { 1581 trace := traceAcquire() 1582 if trace.ok() { 1583 trace.SpanFree(s) 1584 traceRelease(trace) 1585 } 1586 } 1587 1588 lock(&h.lock) 1589 if msanenabled { 1590 // Tell msan that this entire span is no longer in use. 1591 base := unsafe.Pointer(s.base()) 1592 bytes := s.npages << _PageShift 1593 msanfree(base, bytes) 1594 } 1595 if asanenabled { 1596 // Tell asan that this entire span is no longer in use. 1597 base := unsafe.Pointer(s.base()) 1598 bytes := s.npages << _PageShift 1599 asanpoison(base, bytes) 1600 } 1601 h.freeSpanLocked(s, spanAllocHeap) 1602 unlock(&h.lock) 1603 }) 1604 } 1605 1606 // freeManual frees a manually-managed span returned by allocManual. 1607 // typ must be the same as the spanAllocType passed to the allocManual that 1608 // allocated s. 1609 // 1610 // This must only be called when gcphase == _GCoff. See mSpanState for 1611 // an explanation. 1612 // 1613 // freeManual must be called on the system stack because it acquires 1614 // the heap lock. See mheap for details. 1615 // 1616 //go:systemstack 1617 func (h *mheap) freeManual(s *mspan, typ spanAllocType) { 1618 // Trace the span free. 1619 if traceAllocFreeEnabled() { 1620 trace := traceAcquire() 1621 if trace.ok() { 1622 trace.SpanFree(s) 1623 traceRelease(trace) 1624 } 1625 } 1626 1627 s.needzero = 1 1628 lock(&h.lock) 1629 h.freeSpanLocked(s, typ) 1630 unlock(&h.lock) 1631 } 1632 1633 func (h *mheap) freeSpanLocked(s *mspan, typ spanAllocType) { 1634 assertLockHeld(&h.lock) 1635 1636 switch s.state.get() { 1637 case mSpanManual: 1638 if s.allocCount != 0 { 1639 throw("mheap.freeSpanLocked - invalid stack free") 1640 } 1641 case mSpanInUse: 1642 if s.isUserArenaChunk { 1643 throw("mheap.freeSpanLocked - invalid free of user arena chunk") 1644 } 1645 if s.allocCount != 0 || s.sweepgen != h.sweepgen { 1646 print("mheap.freeSpanLocked - span ", s, " ptr ", hex(s.base()), " allocCount ", s.allocCount, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n") 1647 throw("mheap.freeSpanLocked - invalid free") 1648 } 1649 h.pagesInUse.Add(-s.npages) 1650 1651 // Clear in-use bit in arena page bitmap. 1652 arena, pageIdx, pageMask := pageIndexOf(s.base()) 1653 atomic.And8(&arena.pageInUse[pageIdx], ^pageMask) 1654 default: 1655 throw("mheap.freeSpanLocked - invalid span state") 1656 } 1657 1658 // Update stats. 1659 // 1660 // Mirrors the code in allocSpan. 1661 nbytes := s.npages * pageSize 1662 gcController.heapFree.add(int64(nbytes)) 1663 if typ == spanAllocHeap { 1664 gcController.heapInUse.add(-int64(nbytes)) 1665 } 1666 // Update consistent stats. 1667 stats := memstats.heapStats.acquire() 1668 switch typ { 1669 case spanAllocHeap: 1670 atomic.Xaddint64(&stats.inHeap, -int64(nbytes)) 1671 case spanAllocStack: 1672 atomic.Xaddint64(&stats.inStacks, -int64(nbytes)) 1673 case spanAllocPtrScalarBits: 1674 atomic.Xaddint64(&stats.inPtrScalarBits, -int64(nbytes)) 1675 case spanAllocWorkBuf: 1676 atomic.Xaddint64(&stats.inWorkBufs, -int64(nbytes)) 1677 } 1678 memstats.heapStats.release() 1679 1680 // Mark the space as free. 1681 h.pages.free(s.base(), s.npages) 1682 1683 // Free the span structure. We no longer have a use for it. 1684 s.state.set(mSpanDead) 1685 h.freeMSpanLocked(s) 1686 } 1687 1688 // scavengeAll acquires the heap lock (blocking any additional 1689 // manipulation of the page allocator) and iterates over the whole 1690 // heap, scavenging every free page available. 1691 // 1692 // Must run on the system stack because it acquires the heap lock. 1693 // 1694 //go:systemstack 1695 func (h *mheap) scavengeAll() { 1696 // Disallow malloc or panic while holding the heap lock. We do 1697 // this here because this is a non-mallocgc entry-point to 1698 // the mheap API. 1699 gp := getg() 1700 gp.m.mallocing++ 1701 1702 // Force scavenge everything. 1703 released := h.pages.scavenge(^uintptr(0), nil, true) 1704 1705 gp.m.mallocing-- 1706 1707 if debug.scavtrace > 0 { 1708 printScavTrace(0, released, true) 1709 } 1710 } 1711 1712 //go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory 1713 func runtime_debug_freeOSMemory() { 1714 GC() 1715 systemstack(func() { mheap_.scavengeAll() }) 1716 } 1717 1718 // Initialize a new span with the given start and npages. 1719 func (span *mspan) init(base uintptr, npages uintptr) { 1720 // span is *not* zeroed. 1721 span.next = nil 1722 span.prev = nil 1723 span.list = nil 1724 span.startAddr = base 1725 span.npages = npages 1726 span.allocCount = 0 1727 span.spanclass = 0 1728 span.elemsize = 0 1729 span.speciallock.key = 0 1730 span.specials = nil 1731 span.needzero = 0 1732 span.freeindex = 0 1733 span.freeIndexForScan = 0 1734 span.allocBits = nil 1735 span.gcmarkBits = nil 1736 span.pinnerBits = nil 1737 span.state.set(mSpanDead) 1738 lockInit(&span.speciallock, lockRankMspanSpecial) 1739 } 1740 1741 func (span *mspan) inList() bool { 1742 return span.list != nil 1743 } 1744 1745 // Initialize an empty doubly-linked list. 1746 func (list *mSpanList) init() { 1747 list.first = nil 1748 list.last = nil 1749 } 1750 1751 func (list *mSpanList) remove(span *mspan) { 1752 if span.list != list { 1753 print("runtime: failed mSpanList.remove span.npages=", span.npages, 1754 " span=", span, " prev=", span.prev, " span.list=", span.list, " list=", list, "\n") 1755 throw("mSpanList.remove") 1756 } 1757 if list.first == span { 1758 list.first = span.next 1759 } else { 1760 span.prev.next = span.next 1761 } 1762 if list.last == span { 1763 list.last = span.prev 1764 } else { 1765 span.next.prev = span.prev 1766 } 1767 span.next = nil 1768 span.prev = nil 1769 span.list = nil 1770 } 1771 1772 func (list *mSpanList) isEmpty() bool { 1773 return list.first == nil 1774 } 1775 1776 func (list *mSpanList) insert(span *mspan) { 1777 if span.next != nil || span.prev != nil || span.list != nil { 1778 println("runtime: failed mSpanList.insert", span, span.next, span.prev, span.list) 1779 throw("mSpanList.insert") 1780 } 1781 span.next = list.first 1782 if list.first != nil { 1783 // The list contains at least one span; link it in. 1784 // The last span in the list doesn't change. 1785 list.first.prev = span 1786 } else { 1787 // The list contains no spans, so this is also the last span. 1788 list.last = span 1789 } 1790 list.first = span 1791 span.list = list 1792 } 1793 1794 func (list *mSpanList) insertBack(span *mspan) { 1795 if span.next != nil || span.prev != nil || span.list != nil { 1796 println("runtime: failed mSpanList.insertBack", span, span.next, span.prev, span.list) 1797 throw("mSpanList.insertBack") 1798 } 1799 span.prev = list.last 1800 if list.last != nil { 1801 // The list contains at least one span. 1802 list.last.next = span 1803 } else { 1804 // The list contains no spans, so this is also the first span. 1805 list.first = span 1806 } 1807 list.last = span 1808 span.list = list 1809 } 1810 1811 // takeAll removes all spans from other and inserts them at the front 1812 // of list. 1813 func (list *mSpanList) takeAll(other *mSpanList) { 1814 if other.isEmpty() { 1815 return 1816 } 1817 1818 // Reparent everything in other to list. 1819 for s := other.first; s != nil; s = s.next { 1820 s.list = list 1821 } 1822 1823 // Concatenate the lists. 1824 if list.isEmpty() { 1825 *list = *other 1826 } else { 1827 // Neither list is empty. Put other before list. 1828 other.last.next = list.first 1829 list.first.prev = other.last 1830 list.first = other.first 1831 } 1832 1833 other.first, other.last = nil, nil 1834 } 1835 1836 const ( 1837 // _KindSpecialFinalizer is for tracking finalizers. 1838 _KindSpecialFinalizer = 1 1839 // _KindSpecialWeakHandle is used for creating weak pointers. 1840 _KindSpecialWeakHandle = 2 1841 // _KindSpecialProfile is for memory profiling. 1842 _KindSpecialProfile = 3 1843 // _KindSpecialReachable is a special used for tracking 1844 // reachability during testing. 1845 _KindSpecialReachable = 4 1846 // _KindSpecialPinCounter is a special used for objects that are pinned 1847 // multiple times 1848 _KindSpecialPinCounter = 5 1849 // _KindSpecialCleanup is for tracking cleanups. 1850 _KindSpecialCleanup = 6 1851 ) 1852 1853 type special struct { 1854 _ sys.NotInHeap 1855 next *special // linked list in span 1856 offset uintptr // span offset of object 1857 kind byte // kind of special 1858 } 1859 1860 // spanHasSpecials marks a span as having specials in the arena bitmap. 1861 func spanHasSpecials(s *mspan) { 1862 arenaPage := (s.base() / pageSize) % pagesPerArena 1863 ai := arenaIndex(s.base()) 1864 ha := mheap_.arenas[ai.l1()][ai.l2()] 1865 atomic.Or8(&ha.pageSpecials[arenaPage/8], uint8(1)<<(arenaPage%8)) 1866 } 1867 1868 // spanHasNoSpecials marks a span as having no specials in the arena bitmap. 1869 func spanHasNoSpecials(s *mspan) { 1870 arenaPage := (s.base() / pageSize) % pagesPerArena 1871 ai := arenaIndex(s.base()) 1872 ha := mheap_.arenas[ai.l1()][ai.l2()] 1873 atomic.And8(&ha.pageSpecials[arenaPage/8], ^(uint8(1) << (arenaPage % 8))) 1874 } 1875 1876 // addspecial adds the special record s to the list of special records for 1877 // the object p. All fields of s should be filled in except for 1878 // offset & next, which this routine will fill in. 1879 // Returns true if the special was successfully added, false otherwise. 1880 // (The add will fail only if a record with the same p and s->kind 1881 // already exists unless force is set to true.) 1882 func addspecial(p unsafe.Pointer, s *special, force bool) bool { 1883 span := spanOfHeap(uintptr(p)) 1884 if span == nil { 1885 throw("addspecial on invalid pointer") 1886 } 1887 1888 // Ensure that the span is swept. 1889 // Sweeping accesses the specials list w/o locks, so we have 1890 // to synchronize with it. And it's just much safer. 1891 mp := acquirem() 1892 span.ensureSwept() 1893 1894 offset := uintptr(p) - span.base() 1895 kind := s.kind 1896 1897 lock(&span.speciallock) 1898 1899 // Find splice point, check for existing record. 1900 iter, exists := span.specialFindSplicePoint(offset, kind) 1901 if !exists || force { 1902 // Splice in record, fill in offset. 1903 s.offset = offset 1904 s.next = *iter 1905 *iter = s 1906 spanHasSpecials(span) 1907 } 1908 1909 unlock(&span.speciallock) 1910 releasem(mp) 1911 // We're converting p to a uintptr and looking it up, and we 1912 // don't want it to die and get swept while we're doing so. 1913 KeepAlive(p) 1914 return !exists || force // already exists or addition was forced 1915 } 1916 1917 // Removes the Special record of the given kind for the object p. 1918 // Returns the record if the record existed, nil otherwise. 1919 // The caller must FixAlloc_Free the result. 1920 func removespecial(p unsafe.Pointer, kind uint8) *special { 1921 span := spanOfHeap(uintptr(p)) 1922 if span == nil { 1923 throw("removespecial on invalid pointer") 1924 } 1925 1926 // Ensure that the span is swept. 1927 // Sweeping accesses the specials list w/o locks, so we have 1928 // to synchronize with it. And it's just much safer. 1929 mp := acquirem() 1930 span.ensureSwept() 1931 1932 offset := uintptr(p) - span.base() 1933 1934 var result *special 1935 lock(&span.speciallock) 1936 1937 iter, exists := span.specialFindSplicePoint(offset, kind) 1938 if exists { 1939 s := *iter 1940 *iter = s.next 1941 result = s 1942 } 1943 if span.specials == nil { 1944 spanHasNoSpecials(span) 1945 } 1946 unlock(&span.speciallock) 1947 releasem(mp) 1948 return result 1949 } 1950 1951 // Find a splice point in the sorted list and check for an already existing 1952 // record. Returns a pointer to the next-reference in the list predecessor. 1953 // Returns true, if the referenced item is an exact match. 1954 func (span *mspan) specialFindSplicePoint(offset uintptr, kind byte) (**special, bool) { 1955 // Find splice point, check for existing record. 1956 iter := &span.specials 1957 found := false 1958 for { 1959 s := *iter 1960 if s == nil { 1961 break 1962 } 1963 if offset == uintptr(s.offset) && kind == s.kind { 1964 found = true 1965 break 1966 } 1967 if offset < uintptr(s.offset) || (offset == uintptr(s.offset) && kind < s.kind) { 1968 break 1969 } 1970 iter = &s.next 1971 } 1972 return iter, found 1973 } 1974 1975 // The described object has a finalizer set for it. 1976 // 1977 // specialfinalizer is allocated from non-GC'd memory, so any heap 1978 // pointers must be specially handled. 1979 type specialfinalizer struct { 1980 _ sys.NotInHeap 1981 special special 1982 fn *funcval // May be a heap pointer. 1983 nret uintptr 1984 fint *_type // May be a heap pointer, but always live. 1985 ot *ptrtype // May be a heap pointer, but always live. 1986 } 1987 1988 // Adds a finalizer to the object p. Returns true if it succeeded. 1989 func addfinalizer(p unsafe.Pointer, f *funcval, nret uintptr, fint *_type, ot *ptrtype) bool { 1990 lock(&mheap_.speciallock) 1991 s := (*specialfinalizer)(mheap_.specialfinalizeralloc.alloc()) 1992 unlock(&mheap_.speciallock) 1993 s.special.kind = _KindSpecialFinalizer 1994 s.fn = f 1995 s.nret = nret 1996 s.fint = fint 1997 s.ot = ot 1998 if addspecial(p, &s.special, false) { 1999 // This is responsible for maintaining the same 2000 // GC-related invariants as markrootSpans in any 2001 // situation where it's possible that markrootSpans 2002 // has already run but mark termination hasn't yet. 2003 if gcphase != _GCoff { 2004 base, span, _ := findObject(uintptr(p), 0, 0) 2005 mp := acquirem() 2006 gcw := &mp.p.ptr().gcw 2007 // Mark everything reachable from the object 2008 // so it's retained for the finalizer. 2009 if !span.spanclass.noscan() { 2010 scanobject(base, gcw) 2011 } 2012 // Mark the finalizer itself, since the 2013 // special isn't part of the GC'd heap. 2014 scanblock(uintptr(unsafe.Pointer(&s.fn)), goarch.PtrSize, &oneptrmask[0], gcw, nil) 2015 releasem(mp) 2016 } 2017 return true 2018 } 2019 2020 // There was an old finalizer 2021 lock(&mheap_.speciallock) 2022 mheap_.specialfinalizeralloc.free(unsafe.Pointer(s)) 2023 unlock(&mheap_.speciallock) 2024 return false 2025 } 2026 2027 // Removes the finalizer (if any) from the object p. 2028 func removefinalizer(p unsafe.Pointer) { 2029 s := (*specialfinalizer)(unsafe.Pointer(removespecial(p, _KindSpecialFinalizer))) 2030 if s == nil { 2031 return // there wasn't a finalizer to remove 2032 } 2033 lock(&mheap_.speciallock) 2034 mheap_.specialfinalizeralloc.free(unsafe.Pointer(s)) 2035 unlock(&mheap_.speciallock) 2036 } 2037 2038 // The described object has a cleanup set for it. 2039 type specialCleanup struct { 2040 _ sys.NotInHeap 2041 special special 2042 fn *funcval 2043 // Globally unique ID for the cleanup, obtained from mheap_.cleanupID. 2044 id uint64 2045 } 2046 2047 // addCleanup attaches a cleanup function to the object. Multiple 2048 // cleanups are allowed on an object, and even the same pointer. 2049 // A cleanup id is returned which can be used to uniquely identify 2050 // the cleanup. 2051 func addCleanup(p unsafe.Pointer, f *funcval) uint64 { 2052 lock(&mheap_.speciallock) 2053 s := (*specialCleanup)(mheap_.specialCleanupAlloc.alloc()) 2054 mheap_.cleanupID++ 2055 id := mheap_.cleanupID 2056 unlock(&mheap_.speciallock) 2057 s.special.kind = _KindSpecialCleanup 2058 s.fn = f 2059 s.id = id 2060 2061 mp := acquirem() 2062 addspecial(p, &s.special, true) 2063 // This is responsible for maintaining the same 2064 // GC-related invariants as markrootSpans in any 2065 // situation where it's possible that markrootSpans 2066 // has already run but mark termination hasn't yet. 2067 if gcphase != _GCoff { 2068 gcw := &mp.p.ptr().gcw 2069 // Mark the cleanup itself, since the 2070 // special isn't part of the GC'd heap. 2071 scanblock(uintptr(unsafe.Pointer(&s.fn)), goarch.PtrSize, &oneptrmask[0], gcw, nil) 2072 } 2073 releasem(mp) 2074 // Keep f alive. There's a window in this function where it's 2075 // only reachable via the special while the special hasn't been 2076 // added to the specials list yet. This is similar to a bug 2077 // discovered for weak handles, see #70455. 2078 KeepAlive(f) 2079 return id 2080 } 2081 2082 // The described object has a weak pointer. 2083 // 2084 // Weak pointers in the GC have the following invariants: 2085 // 2086 // - Strong-to-weak conversions must ensure the strong pointer 2087 // remains live until the weak handle is installed. This ensures 2088 // that creating a weak pointer cannot fail. 2089 // 2090 // - Weak-to-strong conversions require the weakly-referenced 2091 // object to be swept before the conversion may proceed. This 2092 // ensures that weak-to-strong conversions cannot resurrect 2093 // dead objects by sweeping them before that happens. 2094 // 2095 // - Weak handles are unique and canonical for each byte offset into 2096 // an object that a strong pointer may point to, until an object 2097 // becomes unreachable. 2098 // 2099 // - Weak handles contain nil as soon as an object becomes unreachable 2100 // the first time, before a finalizer makes it reachable again. New 2101 // weak handles created after resurrection are newly unique. 2102 // 2103 // specialWeakHandle is allocated from non-GC'd memory, so any heap 2104 // pointers must be specially handled. 2105 type specialWeakHandle struct { 2106 _ sys.NotInHeap 2107 special special 2108 // handle is a reference to the actual weak pointer. 2109 // It is always heap-allocated and must be explicitly kept 2110 // live so long as this special exists. 2111 handle *atomic.Uintptr 2112 } 2113 2114 //go:linkname internal_weak_runtime_registerWeakPointer weak.runtime_registerWeakPointer 2115 func internal_weak_runtime_registerWeakPointer(p unsafe.Pointer) unsafe.Pointer { 2116 return unsafe.Pointer(getOrAddWeakHandle(unsafe.Pointer(p))) 2117 } 2118 2119 //go:linkname internal_weak_runtime_makeStrongFromWeak weak.runtime_makeStrongFromWeak 2120 func internal_weak_runtime_makeStrongFromWeak(u unsafe.Pointer) unsafe.Pointer { 2121 handle := (*atomic.Uintptr)(u) 2122 2123 // Prevent preemption. We want to make sure that another GC cycle can't start 2124 // and that work.strongFromWeak.block can't change out from under us. 2125 mp := acquirem() 2126 2127 // Yield to the GC if necessary. 2128 if work.strongFromWeak.block { 2129 releasem(mp) 2130 2131 // Try to park and wait for mark termination. 2132 // N.B. gcParkStrongFromWeak calls acquirem before returning. 2133 mp = gcParkStrongFromWeak() 2134 } 2135 2136 p := handle.Load() 2137 if p == 0 { 2138 releasem(mp) 2139 return nil 2140 } 2141 // Be careful. p may or may not refer to valid memory anymore, as it could've been 2142 // swept and released already. It's always safe to ensure a span is swept, though, 2143 // even if it's just some random span. 2144 span := spanOfHeap(p) 2145 if span == nil { 2146 // If it's immortal, then just return the pointer. 2147 // 2148 // Stay non-preemptible so the GC can't see us convert this potentially 2149 // completely bogus value to an unsafe.Pointer. 2150 if isGoPointerWithoutSpan(unsafe.Pointer(p)) { 2151 releasem(mp) 2152 return unsafe.Pointer(p) 2153 } 2154 // It's heap-allocated, so the span probably just got swept and released. 2155 releasem(mp) 2156 return nil 2157 } 2158 // Ensure the span is swept. 2159 span.ensureSwept() 2160 2161 // Now we can trust whatever we get from handle, so make a strong pointer. 2162 // 2163 // Even if we just swept some random span that doesn't contain this object, because 2164 // this object is long dead and its memory has since been reused, we'll just observe nil. 2165 ptr := unsafe.Pointer(handle.Load()) 2166 2167 // This is responsible for maintaining the same GC-related 2168 // invariants as the Yuasa part of the write barrier. During 2169 // the mark phase, it's possible that we just created the only 2170 // valid pointer to the object pointed to by ptr. If it's only 2171 // ever referenced from our stack, and our stack is blackened 2172 // already, we could fail to mark it. So, mark it now. 2173 if gcphase != _GCoff { 2174 shade(uintptr(ptr)) 2175 } 2176 releasem(mp) 2177 2178 // Explicitly keep ptr alive. This seems unnecessary since we return ptr, 2179 // but let's be explicit since it's important we keep ptr alive across the 2180 // call to shade. 2181 KeepAlive(ptr) 2182 return ptr 2183 } 2184 2185 // gcParkStrongFromWeak puts the current goroutine on the weak->strong queue and parks. 2186 func gcParkStrongFromWeak() *m { 2187 // Prevent preemption as we check strongFromWeak, so it can't change out from under us. 2188 mp := acquirem() 2189 2190 for work.strongFromWeak.block { 2191 lock(&work.strongFromWeak.lock) 2192 releasem(mp) // N.B. Holding the lock prevents preemption. 2193 2194 // Queue ourselves up. 2195 work.strongFromWeak.q.pushBack(getg()) 2196 2197 // Park. 2198 goparkunlock(&work.strongFromWeak.lock, waitReasonGCWeakToStrongWait, traceBlockGCWeakToStrongWait, 2) 2199 2200 // Re-acquire the current M since we're going to check the condition again. 2201 mp = acquirem() 2202 2203 // Re-check condition. We may have awoken in the next GC's mark termination phase. 2204 } 2205 return mp 2206 } 2207 2208 // gcWakeAllStrongFromWeak wakes all currently blocked weak->strong 2209 // conversions. This is used at the end of a GC cycle. 2210 // 2211 // work.strongFromWeak.block must be false to prevent woken goroutines 2212 // from immediately going back to sleep. 2213 func gcWakeAllStrongFromWeak() { 2214 lock(&work.strongFromWeak.lock) 2215 list := work.strongFromWeak.q.popList() 2216 injectglist(&list) 2217 unlock(&work.strongFromWeak.lock) 2218 } 2219 2220 // Retrieves or creates a weak pointer handle for the object p. 2221 func getOrAddWeakHandle(p unsafe.Pointer) *atomic.Uintptr { 2222 // First try to retrieve without allocating. 2223 if handle := getWeakHandle(p); handle != nil { 2224 // Keep p alive for the duration of the function to ensure 2225 // that it cannot die while we're trying to do this. 2226 KeepAlive(p) 2227 return handle 2228 } 2229 2230 lock(&mheap_.speciallock) 2231 s := (*specialWeakHandle)(mheap_.specialWeakHandleAlloc.alloc()) 2232 unlock(&mheap_.speciallock) 2233 2234 handle := new(atomic.Uintptr) 2235 s.special.kind = _KindSpecialWeakHandle 2236 s.handle = handle 2237 handle.Store(uintptr(p)) 2238 if addspecial(p, &s.special, false) { 2239 // This is responsible for maintaining the same 2240 // GC-related invariants as markrootSpans in any 2241 // situation where it's possible that markrootSpans 2242 // has already run but mark termination hasn't yet. 2243 if gcphase != _GCoff { 2244 mp := acquirem() 2245 gcw := &mp.p.ptr().gcw 2246 // Mark the weak handle itself, since the 2247 // special isn't part of the GC'd heap. 2248 scanblock(uintptr(unsafe.Pointer(&s.handle)), goarch.PtrSize, &oneptrmask[0], gcw, nil) 2249 releasem(mp) 2250 } 2251 2252 // Keep p alive for the duration of the function to ensure 2253 // that it cannot die while we're trying to do this. 2254 // 2255 // Same for handle, which is only stored in the special. 2256 // There's a window where it might die if we don't keep it 2257 // alive explicitly. Returning it here is probably good enough, 2258 // but let's be defensive and explicit. See #70455. 2259 KeepAlive(p) 2260 KeepAlive(handle) 2261 return handle 2262 } 2263 2264 // There was an existing handle. Free the special 2265 // and try again. We must succeed because we're explicitly 2266 // keeping p live until the end of this function. Either 2267 // we, or someone else, must have succeeded, because we can 2268 // only fail in the event of a race, and p will still be 2269 // be valid no matter how much time we spend here. 2270 lock(&mheap_.speciallock) 2271 mheap_.specialWeakHandleAlloc.free(unsafe.Pointer(s)) 2272 unlock(&mheap_.speciallock) 2273 2274 handle = getWeakHandle(p) 2275 if handle == nil { 2276 throw("failed to get or create weak handle") 2277 } 2278 2279 // Keep p alive for the duration of the function to ensure 2280 // that it cannot die while we're trying to do this. 2281 // 2282 // Same for handle, just to be defensive. 2283 KeepAlive(p) 2284 KeepAlive(handle) 2285 return handle 2286 } 2287 2288 func getWeakHandle(p unsafe.Pointer) *atomic.Uintptr { 2289 span := spanOfHeap(uintptr(p)) 2290 if span == nil { 2291 if isGoPointerWithoutSpan(p) { 2292 return mheap_.immortalWeakHandles.getOrAdd(uintptr(p)) 2293 } 2294 throw("getWeakHandle on invalid pointer") 2295 } 2296 2297 // Ensure that the span is swept. 2298 // Sweeping accesses the specials list w/o locks, so we have 2299 // to synchronize with it. And it's just much safer. 2300 mp := acquirem() 2301 span.ensureSwept() 2302 2303 offset := uintptr(p) - span.base() 2304 2305 lock(&span.speciallock) 2306 2307 // Find the existing record and return the handle if one exists. 2308 var handle *atomic.Uintptr 2309 iter, exists := span.specialFindSplicePoint(offset, _KindSpecialWeakHandle) 2310 if exists { 2311 handle = ((*specialWeakHandle)(unsafe.Pointer(*iter))).handle 2312 } 2313 unlock(&span.speciallock) 2314 releasem(mp) 2315 2316 // Keep p alive for the duration of the function to ensure 2317 // that it cannot die while we're trying to do this. 2318 KeepAlive(p) 2319 return handle 2320 } 2321 2322 type immortalWeakHandleMap struct { 2323 root atomic.UnsafePointer // *immortalWeakHandle (can't use generics because it's notinheap) 2324 } 2325 2326 // immortalWeakHandle is a lock-free append-only hash-trie. 2327 // 2328 // Key features: 2329 // - 2-ary trie. Child nodes are indexed by the highest bit (remaining) of the hash of the address. 2330 // - New nodes are placed at the first empty level encountered. 2331 // - When the first child is added to a node, the existing value is not moved into a child. 2332 // This means that we must check the value at each level, not just at the leaf. 2333 // - No deletion or rebalancing. 2334 // - Intentionally devolves into a linked list on hash collisions (the hash bits will all 2335 // get shifted out during iteration, and new nodes will just be appended to the 0th child). 2336 type immortalWeakHandle struct { 2337 _ sys.NotInHeap 2338 2339 children [2]atomic.UnsafePointer // *immortalObjectMapNode (can't use generics because it's notinheap) 2340 ptr uintptr // &ptr is the weak handle 2341 } 2342 2343 // handle returns a canonical weak handle. 2344 func (h *immortalWeakHandle) handle() *atomic.Uintptr { 2345 // N.B. Since we just need an *atomic.Uintptr that never changes, we can trivially 2346 // reference ptr to save on some memory in immortalWeakHandle and avoid extra atomics 2347 // in getOrAdd. 2348 return (*atomic.Uintptr)(unsafe.Pointer(&h.ptr)) 2349 } 2350 2351 // getOrAdd introduces p, which must be a pointer to immortal memory (for example, a linker-allocated 2352 // object) and returns a weak handle. The weak handle will never become nil. 2353 func (tab *immortalWeakHandleMap) getOrAdd(p uintptr) *atomic.Uintptr { 2354 var newNode *immortalWeakHandle 2355 m := &tab.root 2356 hash := memhash(abi.NoEscape(unsafe.Pointer(&p)), 0, goarch.PtrSize) 2357 hashIter := hash 2358 for { 2359 n := (*immortalWeakHandle)(m.Load()) 2360 if n == nil { 2361 // Try to insert a new map node. We may end up discarding 2362 // this node if we fail to insert because it turns out the 2363 // value is already in the map. 2364 // 2365 // The discard will only happen if two threads race on inserting 2366 // the same value. Both might create nodes, but only one will 2367 // succeed on insertion. If two threads race to insert two 2368 // different values, then both nodes will *always* get inserted, 2369 // because the equality checking below will always fail. 2370 // 2371 // Performance note: contention on insertion is likely to be 2372 // higher for small maps, but since this data structure is 2373 // append-only, either the map stays small because there isn't 2374 // much activity, or the map gets big and races to insert on 2375 // the same node are much less likely. 2376 if newNode == nil { 2377 newNode = (*immortalWeakHandle)(persistentalloc(unsafe.Sizeof(immortalWeakHandle{}), goarch.PtrSize, &memstats.gcMiscSys)) 2378 newNode.ptr = p 2379 } 2380 if m.CompareAndSwapNoWB(nil, unsafe.Pointer(newNode)) { 2381 return newNode.handle() 2382 } 2383 // Reload n. Because pointers are only stored once, 2384 // we must have lost the race, and therefore n is not nil 2385 // anymore. 2386 n = (*immortalWeakHandle)(m.Load()) 2387 } 2388 if n.ptr == p { 2389 return n.handle() 2390 } 2391 m = &n.children[hashIter>>(8*goarch.PtrSize-1)] 2392 hashIter <<= 1 2393 } 2394 } 2395 2396 // The described object is being heap profiled. 2397 type specialprofile struct { 2398 _ sys.NotInHeap 2399 special special 2400 b *bucket 2401 } 2402 2403 // Set the heap profile bucket associated with addr to b. 2404 func setprofilebucket(p unsafe.Pointer, b *bucket) { 2405 lock(&mheap_.speciallock) 2406 s := (*specialprofile)(mheap_.specialprofilealloc.alloc()) 2407 unlock(&mheap_.speciallock) 2408 s.special.kind = _KindSpecialProfile 2409 s.b = b 2410 if !addspecial(p, &s.special, false) { 2411 throw("setprofilebucket: profile already set") 2412 } 2413 } 2414 2415 // specialReachable tracks whether an object is reachable on the next 2416 // GC cycle. This is used by testing. 2417 type specialReachable struct { 2418 special special 2419 done bool 2420 reachable bool 2421 } 2422 2423 // specialPinCounter tracks whether an object is pinned multiple times. 2424 type specialPinCounter struct { 2425 special special 2426 counter uintptr 2427 } 2428 2429 // specialsIter helps iterate over specials lists. 2430 type specialsIter struct { 2431 pprev **special 2432 s *special 2433 } 2434 2435 func newSpecialsIter(span *mspan) specialsIter { 2436 return specialsIter{&span.specials, span.specials} 2437 } 2438 2439 func (i *specialsIter) valid() bool { 2440 return i.s != nil 2441 } 2442 2443 func (i *specialsIter) next() { 2444 i.pprev = &i.s.next 2445 i.s = *i.pprev 2446 } 2447 2448 // unlinkAndNext removes the current special from the list and moves 2449 // the iterator to the next special. It returns the unlinked special. 2450 func (i *specialsIter) unlinkAndNext() *special { 2451 cur := i.s 2452 i.s = cur.next 2453 *i.pprev = i.s 2454 return cur 2455 } 2456 2457 // freeSpecial performs any cleanup on special s and deallocates it. 2458 // s must already be unlinked from the specials list. 2459 func freeSpecial(s *special, p unsafe.Pointer, size uintptr) { 2460 switch s.kind { 2461 case _KindSpecialFinalizer: 2462 sf := (*specialfinalizer)(unsafe.Pointer(s)) 2463 queuefinalizer(p, sf.fn, sf.nret, sf.fint, sf.ot) 2464 lock(&mheap_.speciallock) 2465 mheap_.specialfinalizeralloc.free(unsafe.Pointer(sf)) 2466 unlock(&mheap_.speciallock) 2467 case _KindSpecialWeakHandle: 2468 sw := (*specialWeakHandle)(unsafe.Pointer(s)) 2469 sw.handle.Store(0) 2470 lock(&mheap_.speciallock) 2471 mheap_.specialWeakHandleAlloc.free(unsafe.Pointer(s)) 2472 unlock(&mheap_.speciallock) 2473 case _KindSpecialProfile: 2474 sp := (*specialprofile)(unsafe.Pointer(s)) 2475 mProf_Free(sp.b, size) 2476 lock(&mheap_.speciallock) 2477 mheap_.specialprofilealloc.free(unsafe.Pointer(sp)) 2478 unlock(&mheap_.speciallock) 2479 case _KindSpecialReachable: 2480 sp := (*specialReachable)(unsafe.Pointer(s)) 2481 sp.done = true 2482 // The creator frees these. 2483 case _KindSpecialPinCounter: 2484 lock(&mheap_.speciallock) 2485 mheap_.specialPinCounterAlloc.free(unsafe.Pointer(s)) 2486 unlock(&mheap_.speciallock) 2487 case _KindSpecialCleanup: 2488 sc := (*specialCleanup)(unsafe.Pointer(s)) 2489 // Cleanups, unlike finalizers, do not resurrect the objects 2490 // they're attached to, so we only need to pass the cleanup 2491 // function, not the object. 2492 queuefinalizer(nil, sc.fn, 0, nil, nil) 2493 lock(&mheap_.speciallock) 2494 mheap_.specialCleanupAlloc.free(unsafe.Pointer(sc)) 2495 unlock(&mheap_.speciallock) 2496 default: 2497 throw("bad special kind") 2498 panic("not reached") 2499 } 2500 } 2501 2502 // gcBits is an alloc/mark bitmap. This is always used as gcBits.x. 2503 type gcBits struct { 2504 _ sys.NotInHeap 2505 x uint8 2506 } 2507 2508 // bytep returns a pointer to the n'th byte of b. 2509 func (b *gcBits) bytep(n uintptr) *uint8 { 2510 return addb(&b.x, n) 2511 } 2512 2513 // bitp returns a pointer to the byte containing bit n and a mask for 2514 // selecting that bit from *bytep. 2515 func (b *gcBits) bitp(n uintptr) (bytep *uint8, mask uint8) { 2516 return b.bytep(n / 8), 1 << (n % 8) 2517 } 2518 2519 const gcBitsChunkBytes = uintptr(64 << 10) 2520 const gcBitsHeaderBytes = unsafe.Sizeof(gcBitsHeader{}) 2521 2522 type gcBitsHeader struct { 2523 free uintptr // free is the index into bits of the next free byte. 2524 next uintptr // *gcBits triggers recursive type bug. (issue 14620) 2525 } 2526 2527 type gcBitsArena struct { 2528 _ sys.NotInHeap 2529 // gcBitsHeader // side step recursive type bug (issue 14620) by including fields by hand. 2530 free uintptr // free is the index into bits of the next free byte; read/write atomically 2531 next *gcBitsArena 2532 bits [gcBitsChunkBytes - gcBitsHeaderBytes]gcBits 2533 } 2534 2535 var gcBitsArenas struct { 2536 lock mutex 2537 free *gcBitsArena 2538 next *gcBitsArena // Read atomically. Write atomically under lock. 2539 current *gcBitsArena 2540 previous *gcBitsArena 2541 } 2542 2543 // tryAlloc allocates from b or returns nil if b does not have enough room. 2544 // This is safe to call concurrently. 2545 func (b *gcBitsArena) tryAlloc(bytes uintptr) *gcBits { 2546 if b == nil || atomic.Loaduintptr(&b.free)+bytes > uintptr(len(b.bits)) { 2547 return nil 2548 } 2549 // Try to allocate from this block. 2550 end := atomic.Xadduintptr(&b.free, bytes) 2551 if end > uintptr(len(b.bits)) { 2552 return nil 2553 } 2554 // There was enough room. 2555 start := end - bytes 2556 return &b.bits[start] 2557 } 2558 2559 // newMarkBits returns a pointer to 8 byte aligned bytes 2560 // to be used for a span's mark bits. 2561 func newMarkBits(nelems uintptr) *gcBits { 2562 blocksNeeded := (nelems + 63) / 64 2563 bytesNeeded := blocksNeeded * 8 2564 2565 // Try directly allocating from the current head arena. 2566 head := (*gcBitsArena)(atomic.Loadp(unsafe.Pointer(&gcBitsArenas.next))) 2567 if p := head.tryAlloc(bytesNeeded); p != nil { 2568 return p 2569 } 2570 2571 // There's not enough room in the head arena. We may need to 2572 // allocate a new arena. 2573 lock(&gcBitsArenas.lock) 2574 // Try the head arena again, since it may have changed. Now 2575 // that we hold the lock, the list head can't change, but its 2576 // free position still can. 2577 if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil { 2578 unlock(&gcBitsArenas.lock) 2579 return p 2580 } 2581 2582 // Allocate a new arena. This may temporarily drop the lock. 2583 fresh := newArenaMayUnlock() 2584 // If newArenaMayUnlock dropped the lock, another thread may 2585 // have put a fresh arena on the "next" list. Try allocating 2586 // from next again. 2587 if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil { 2588 // Put fresh back on the free list. 2589 // TODO: Mark it "already zeroed" 2590 fresh.next = gcBitsArenas.free 2591 gcBitsArenas.free = fresh 2592 unlock(&gcBitsArenas.lock) 2593 return p 2594 } 2595 2596 // Allocate from the fresh arena. We haven't linked it in yet, so 2597 // this cannot race and is guaranteed to succeed. 2598 p := fresh.tryAlloc(bytesNeeded) 2599 if p == nil { 2600 throw("markBits overflow") 2601 } 2602 2603 // Add the fresh arena to the "next" list. 2604 fresh.next = gcBitsArenas.next 2605 atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), unsafe.Pointer(fresh)) 2606 2607 unlock(&gcBitsArenas.lock) 2608 return p 2609 } 2610 2611 // newAllocBits returns a pointer to 8 byte aligned bytes 2612 // to be used for this span's alloc bits. 2613 // newAllocBits is used to provide newly initialized spans 2614 // allocation bits. For spans not being initialized the 2615 // mark bits are repurposed as allocation bits when 2616 // the span is swept. 2617 func newAllocBits(nelems uintptr) *gcBits { 2618 return newMarkBits(nelems) 2619 } 2620 2621 // nextMarkBitArenaEpoch establishes a new epoch for the arenas 2622 // holding the mark bits. The arenas are named relative to the 2623 // current GC cycle which is demarcated by the call to finishweep_m. 2624 // 2625 // All current spans have been swept. 2626 // During that sweep each span allocated room for its gcmarkBits in 2627 // gcBitsArenas.next block. gcBitsArenas.next becomes the gcBitsArenas.current 2628 // where the GC will mark objects and after each span is swept these bits 2629 // will be used to allocate objects. 2630 // gcBitsArenas.current becomes gcBitsArenas.previous where the span's 2631 // gcAllocBits live until all the spans have been swept during this GC cycle. 2632 // The span's sweep extinguishes all the references to gcBitsArenas.previous 2633 // by pointing gcAllocBits into the gcBitsArenas.current. 2634 // The gcBitsArenas.previous is released to the gcBitsArenas.free list. 2635 func nextMarkBitArenaEpoch() { 2636 lock(&gcBitsArenas.lock) 2637 if gcBitsArenas.previous != nil { 2638 if gcBitsArenas.free == nil { 2639 gcBitsArenas.free = gcBitsArenas.previous 2640 } else { 2641 // Find end of previous arenas. 2642 last := gcBitsArenas.previous 2643 for last = gcBitsArenas.previous; last.next != nil; last = last.next { 2644 } 2645 last.next = gcBitsArenas.free 2646 gcBitsArenas.free = gcBitsArenas.previous 2647 } 2648 } 2649 gcBitsArenas.previous = gcBitsArenas.current 2650 gcBitsArenas.current = gcBitsArenas.next 2651 atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), nil) // newMarkBits calls newArena when needed 2652 unlock(&gcBitsArenas.lock) 2653 } 2654 2655 // newArenaMayUnlock allocates and zeroes a gcBits arena. 2656 // The caller must hold gcBitsArena.lock. This may temporarily release it. 2657 func newArenaMayUnlock() *gcBitsArena { 2658 var result *gcBitsArena 2659 if gcBitsArenas.free == nil { 2660 unlock(&gcBitsArenas.lock) 2661 result = (*gcBitsArena)(sysAlloc(gcBitsChunkBytes, &memstats.gcMiscSys, "gc bits")) 2662 if result == nil { 2663 throw("runtime: cannot allocate memory") 2664 } 2665 lock(&gcBitsArenas.lock) 2666 } else { 2667 result = gcBitsArenas.free 2668 gcBitsArenas.free = gcBitsArenas.free.next 2669 memclrNoHeapPointers(unsafe.Pointer(result), gcBitsChunkBytes) 2670 } 2671 result.next = nil 2672 // If result.bits is not 8 byte aligned adjust index so 2673 // that &result.bits[result.free] is 8 byte aligned. 2674 if unsafe.Offsetof(gcBitsArena{}.bits)&7 == 0 { 2675 result.free = 0 2676 } else { 2677 result.free = 8 - (uintptr(unsafe.Pointer(&result.bits[0])) & 7) 2678 } 2679 return result 2680 } 2681