Source file src/runtime/mheap.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Page heap.
     6  //
     7  // See malloc.go for overview.
     8  
     9  package runtime
    10  
    11  import (
    12  	"internal/abi"
    13  	"internal/cpu"
    14  	"internal/goarch"
    15  	"internal/runtime/atomic"
    16  	"internal/runtime/sys"
    17  	"unsafe"
    18  )
    19  
    20  const (
    21  	// minPhysPageSize is a lower-bound on the physical page size. The
    22  	// true physical page size may be larger than this. In contrast,
    23  	// sys.PhysPageSize is an upper-bound on the physical page size.
    24  	minPhysPageSize = 4096
    25  
    26  	// maxPhysPageSize is the maximum page size the runtime supports.
    27  	maxPhysPageSize = 512 << 10
    28  
    29  	// maxPhysHugePageSize sets an upper-bound on the maximum huge page size
    30  	// that the runtime supports.
    31  	maxPhysHugePageSize = pallocChunkBytes
    32  
    33  	// pagesPerReclaimerChunk indicates how many pages to scan from the
    34  	// pageInUse bitmap at a time. Used by the page reclaimer.
    35  	//
    36  	// Higher values reduce contention on scanning indexes (such as
    37  	// h.reclaimIndex), but increase the minimum latency of the
    38  	// operation.
    39  	//
    40  	// The time required to scan this many pages can vary a lot depending
    41  	// on how many spans are actually freed. Experimentally, it can
    42  	// scan for pages at ~300 GB/ms on a 2.6GHz Core i7, but can only
    43  	// free spans at ~32 MB/ms. Using 512 pages bounds this at
    44  	// roughly 100µs.
    45  	//
    46  	// Must be a multiple of the pageInUse bitmap element size and
    47  	// must also evenly divide pagesPerArena.
    48  	pagesPerReclaimerChunk = 512
    49  
    50  	// physPageAlignedStacks indicates whether stack allocations must be
    51  	// physical page aligned. This is a requirement for MAP_STACK on
    52  	// OpenBSD.
    53  	physPageAlignedStacks = GOOS == "openbsd"
    54  )
    55  
    56  // Main malloc heap.
    57  // The heap itself is the "free" and "scav" treaps,
    58  // but all the other global data is here too.
    59  //
    60  // mheap must not be heap-allocated because it contains mSpanLists,
    61  // which must not be heap-allocated.
    62  type mheap struct {
    63  	_ sys.NotInHeap
    64  
    65  	// lock must only be acquired on the system stack, otherwise a g
    66  	// could self-deadlock if its stack grows with the lock held.
    67  	lock mutex
    68  
    69  	pages pageAlloc // page allocation data structure
    70  
    71  	sweepgen uint32 // sweep generation, see comment in mspan; written during STW
    72  
    73  	// allspans is a slice of all mspans ever created. Each mspan
    74  	// appears exactly once.
    75  	//
    76  	// The memory for allspans is manually managed and can be
    77  	// reallocated and move as the heap grows.
    78  	//
    79  	// In general, allspans is protected by mheap_.lock, which
    80  	// prevents concurrent access as well as freeing the backing
    81  	// store. Accesses during STW might not hold the lock, but
    82  	// must ensure that allocation cannot happen around the
    83  	// access (since that may free the backing store).
    84  	allspans []*mspan // all spans out there
    85  
    86  	// Proportional sweep
    87  	//
    88  	// These parameters represent a linear function from gcController.heapLive
    89  	// to page sweep count. The proportional sweep system works to
    90  	// stay in the black by keeping the current page sweep count
    91  	// above this line at the current gcController.heapLive.
    92  	//
    93  	// The line has slope sweepPagesPerByte and passes through a
    94  	// basis point at (sweepHeapLiveBasis, pagesSweptBasis). At
    95  	// any given time, the system is at (gcController.heapLive,
    96  	// pagesSwept) in this space.
    97  	//
    98  	// It is important that the line pass through a point we
    99  	// control rather than simply starting at a 0,0 origin
   100  	// because that lets us adjust sweep pacing at any time while
   101  	// accounting for current progress. If we could only adjust
   102  	// the slope, it would create a discontinuity in debt if any
   103  	// progress has already been made.
   104  	pagesInUse         atomic.Uintptr // pages of spans in stats mSpanInUse
   105  	pagesSwept         atomic.Uint64  // pages swept this cycle
   106  	pagesSweptBasis    atomic.Uint64  // pagesSwept to use as the origin of the sweep ratio
   107  	sweepHeapLiveBasis uint64         // value of gcController.heapLive to use as the origin of sweep ratio; written with lock, read without
   108  	sweepPagesPerByte  float64        // proportional sweep ratio; written with lock, read without
   109  
   110  	// Page reclaimer state
   111  
   112  	// reclaimIndex is the page index in heapArenas of next page to
   113  	// reclaim. Specifically, it refers to page (i %
   114  	// pagesPerArena) of arena heapArenas[i / pagesPerArena].
   115  	//
   116  	// If this is >= 1<<63, the page reclaimer is done scanning
   117  	// the page marks.
   118  	reclaimIndex atomic.Uint64
   119  
   120  	// reclaimCredit is spare credit for extra pages swept. Since
   121  	// the page reclaimer works in large chunks, it may reclaim
   122  	// more than requested. Any spare pages released go to this
   123  	// credit pool.
   124  	reclaimCredit atomic.Uintptr
   125  
   126  	_ cpu.CacheLinePad // prevents false-sharing between arenas and preceding variables
   127  
   128  	// arenas is the heap arena map. It points to the metadata for
   129  	// the heap for every arena frame of the entire usable virtual
   130  	// address space.
   131  	//
   132  	// Use arenaIndex to compute indexes into this array.
   133  	//
   134  	// For regions of the address space that are not backed by the
   135  	// Go heap, the arena map contains nil.
   136  	//
   137  	// Modifications are protected by mheap_.lock. Reads can be
   138  	// performed without locking; however, a given entry can
   139  	// transition from nil to non-nil at any time when the lock
   140  	// isn't held. (Entries never transitions back to nil.)
   141  	//
   142  	// In general, this is a two-level mapping consisting of an L1
   143  	// map and possibly many L2 maps. This saves space when there
   144  	// are a huge number of arena frames. However, on many
   145  	// platforms (even 64-bit), arenaL1Bits is 0, making this
   146  	// effectively a single-level map. In this case, arenas[0]
   147  	// will never be nil.
   148  	arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena
   149  
   150  	// arenasHugePages indicates whether arenas' L2 entries are eligible
   151  	// to be backed by huge pages.
   152  	arenasHugePages bool
   153  
   154  	// heapArenaAlloc is pre-reserved space for allocating heapArena
   155  	// objects. This is only used on 32-bit, where we pre-reserve
   156  	// this space to avoid interleaving it with the heap itself.
   157  	heapArenaAlloc linearAlloc
   158  
   159  	// arenaHints is a list of addresses at which to attempt to
   160  	// add more heap arenas. This is initially populated with a
   161  	// set of general hint addresses, and grown with the bounds of
   162  	// actual heap arena ranges.
   163  	arenaHints *arenaHint
   164  
   165  	// arena is a pre-reserved space for allocating heap arenas
   166  	// (the actual arenas). This is only used on 32-bit.
   167  	arena linearAlloc
   168  
   169  	// heapArenas is the arenaIndex of every mapped arena mapped for the heap.
   170  	// This can be used to iterate through the heap address space.
   171  	//
   172  	// Access is protected by mheap_.lock. However, since this is
   173  	// append-only and old backing arrays are never freed, it is
   174  	// safe to acquire mheap_.lock, copy the slice header, and
   175  	// then release mheap_.lock.
   176  	heapArenas []arenaIdx
   177  
   178  	// userArenaArenas is the arenaIndex of every mapped arena mapped for
   179  	// user arenas.
   180  	//
   181  	// Access is protected by mheap_.lock. However, since this is
   182  	// append-only and old backing arrays are never freed, it is
   183  	// safe to acquire mheap_.lock, copy the slice header, and
   184  	// then release mheap_.lock.
   185  	userArenaArenas []arenaIdx
   186  
   187  	// sweepArenas is a snapshot of heapArenas taken at the
   188  	// beginning of the sweep cycle. This can be read safely by
   189  	// simply blocking GC (by disabling preemption).
   190  	sweepArenas []arenaIdx
   191  
   192  	// markArenas is a snapshot of heapArenas taken at the beginning
   193  	// of the mark cycle. Because heapArenas is append-only, neither
   194  	// this slice nor its contents will change during the mark, so
   195  	// it can be read safely.
   196  	markArenas []arenaIdx
   197  
   198  	// curArena is the arena that the heap is currently growing
   199  	// into. This should always be physPageSize-aligned.
   200  	curArena struct {
   201  		base, end uintptr
   202  	}
   203  
   204  	// central free lists for small size classes.
   205  	// the padding makes sure that the mcentrals are
   206  	// spaced CacheLinePadSize bytes apart, so that each mcentral.lock
   207  	// gets its own cache line.
   208  	// central is indexed by spanClass.
   209  	central [numSpanClasses]struct {
   210  		mcentral mcentral
   211  		pad      [(cpu.CacheLinePadSize - unsafe.Sizeof(mcentral{})%cpu.CacheLinePadSize) % cpu.CacheLinePadSize]byte
   212  	}
   213  
   214  	spanalloc              fixalloc // allocator for span*
   215  	cachealloc             fixalloc // allocator for mcache*
   216  	specialfinalizeralloc  fixalloc // allocator for specialfinalizer*
   217  	specialCleanupAlloc    fixalloc // allocator for specialcleanup*
   218  	specialprofilealloc    fixalloc // allocator for specialprofile*
   219  	specialReachableAlloc  fixalloc // allocator for specialReachable
   220  	specialPinCounterAlloc fixalloc // allocator for specialPinCounter
   221  	specialWeakHandleAlloc fixalloc // allocator for specialWeakHandle
   222  	speciallock            mutex    // lock for special record allocators.
   223  	arenaHintAlloc         fixalloc // allocator for arenaHints
   224  
   225  	// User arena state.
   226  	//
   227  	// Protected by mheap_.lock.
   228  	userArena struct {
   229  		// arenaHints is a list of addresses at which to attempt to
   230  		// add more heap arenas for user arena chunks. This is initially
   231  		// populated with a set of general hint addresses, and grown with
   232  		// the bounds of actual heap arena ranges.
   233  		arenaHints *arenaHint
   234  
   235  		// quarantineList is a list of user arena spans that have been set to fault, but
   236  		// are waiting for all pointers into them to go away. Sweeping handles
   237  		// identifying when this is true, and moves the span to the ready list.
   238  		quarantineList mSpanList
   239  
   240  		// readyList is a list of empty user arena spans that are ready for reuse.
   241  		readyList mSpanList
   242  	}
   243  
   244  	// cleanupID is a counter which is incremented each time a cleanup special is added
   245  	// to a span. It's used to create globally unique identifiers for individual cleanup.
   246  	// cleanupID is protected by mheap_.lock. It should only be incremented while holding
   247  	// the lock.
   248  	cleanupID uint64
   249  
   250  	_ cpu.CacheLinePad
   251  
   252  	immortalWeakHandles immortalWeakHandleMap
   253  
   254  	unused *specialfinalizer // never set, just here to force the specialfinalizer type into DWARF
   255  }
   256  
   257  var mheap_ mheap
   258  
   259  // A heapArena stores metadata for a heap arena. heapArenas are stored
   260  // outside of the Go heap and accessed via the mheap_.arenas index.
   261  type heapArena struct {
   262  	_ sys.NotInHeap
   263  
   264  	// spans maps from virtual address page ID within this arena to *mspan.
   265  	// For allocated spans, their pages map to the span itself.
   266  	// For free spans, only the lowest and highest pages map to the span itself.
   267  	// Internal pages map to an arbitrary span.
   268  	// For pages that have never been allocated, spans entries are nil.
   269  	//
   270  	// Modifications are protected by mheap.lock. Reads can be
   271  	// performed without locking, but ONLY from indexes that are
   272  	// known to contain in-use or stack spans. This means there
   273  	// must not be a safe-point between establishing that an
   274  	// address is live and looking it up in the spans array.
   275  	spans [pagesPerArena]*mspan
   276  
   277  	// pageInUse is a bitmap that indicates which spans are in
   278  	// state mSpanInUse. This bitmap is indexed by page number,
   279  	// but only the bit corresponding to the first page in each
   280  	// span is used.
   281  	//
   282  	// Reads and writes are atomic.
   283  	pageInUse [pagesPerArena / 8]uint8
   284  
   285  	// pageMarks is a bitmap that indicates which spans have any
   286  	// marked objects on them. Like pageInUse, only the bit
   287  	// corresponding to the first page in each span is used.
   288  	//
   289  	// Writes are done atomically during marking. Reads are
   290  	// non-atomic and lock-free since they only occur during
   291  	// sweeping (and hence never race with writes).
   292  	//
   293  	// This is used to quickly find whole spans that can be freed.
   294  	//
   295  	// TODO(austin): It would be nice if this was uint64 for
   296  	// faster scanning, but we don't have 64-bit atomic bit
   297  	// operations.
   298  	pageMarks [pagesPerArena / 8]uint8
   299  
   300  	// pageSpecials is a bitmap that indicates which spans have
   301  	// specials (finalizers or other). Like pageInUse, only the bit
   302  	// corresponding to the first page in each span is used.
   303  	//
   304  	// Writes are done atomically whenever a special is added to
   305  	// a span and whenever the last special is removed from a span.
   306  	// Reads are done atomically to find spans containing specials
   307  	// during marking.
   308  	pageSpecials [pagesPerArena / 8]uint8
   309  
   310  	// checkmarks stores the debug.gccheckmark state. It is only
   311  	// used if debug.gccheckmark > 0.
   312  	checkmarks *checkmarksMap
   313  
   314  	// zeroedBase marks the first byte of the first page in this
   315  	// arena which hasn't been used yet and is therefore already
   316  	// zero. zeroedBase is relative to the arena base.
   317  	// Increases monotonically until it hits heapArenaBytes.
   318  	//
   319  	// This field is sufficient to determine if an allocation
   320  	// needs to be zeroed because the page allocator follows an
   321  	// address-ordered first-fit policy.
   322  	//
   323  	// Read atomically and written with an atomic CAS.
   324  	zeroedBase uintptr
   325  }
   326  
   327  // arenaHint is a hint for where to grow the heap arenas. See
   328  // mheap_.arenaHints.
   329  type arenaHint struct {
   330  	_    sys.NotInHeap
   331  	addr uintptr
   332  	down bool
   333  	next *arenaHint
   334  }
   335  
   336  // An mspan is a run of pages.
   337  //
   338  // When a mspan is in the heap free treap, state == mSpanFree
   339  // and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
   340  // If the mspan is in the heap scav treap, then in addition to the
   341  // above scavenged == true. scavenged == false in all other cases.
   342  //
   343  // When a mspan is allocated, state == mSpanInUse or mSpanManual
   344  // and heapmap(i) == span for all s->start <= i < s->start+s->npages.
   345  
   346  // Every mspan is in one doubly-linked list, either in the mheap's
   347  // busy list or one of the mcentral's span lists.
   348  
   349  // An mspan representing actual memory has state mSpanInUse,
   350  // mSpanManual, or mSpanFree. Transitions between these states are
   351  // constrained as follows:
   352  //
   353  //   - A span may transition from free to in-use or manual during any GC
   354  //     phase.
   355  //
   356  //   - During sweeping (gcphase == _GCoff), a span may transition from
   357  //     in-use to free (as a result of sweeping) or manual to free (as a
   358  //     result of stacks being freed).
   359  //
   360  //   - During GC (gcphase != _GCoff), a span *must not* transition from
   361  //     manual or in-use to free. Because concurrent GC may read a pointer
   362  //     and then look up its span, the span state must be monotonic.
   363  //
   364  // Setting mspan.state to mSpanInUse or mSpanManual must be done
   365  // atomically and only after all other span fields are valid.
   366  // Likewise, if inspecting a span is contingent on it being
   367  // mSpanInUse, the state should be loaded atomically and checked
   368  // before depending on other fields. This allows the garbage collector
   369  // to safely deal with potentially invalid pointers, since resolving
   370  // such pointers may race with a span being allocated.
   371  type mSpanState uint8
   372  
   373  const (
   374  	mSpanDead   mSpanState = iota
   375  	mSpanInUse             // allocated for garbage collected heap
   376  	mSpanManual            // allocated for manual management (e.g., stack allocator)
   377  )
   378  
   379  // mSpanStateNames are the names of the span states, indexed by
   380  // mSpanState.
   381  var mSpanStateNames = []string{
   382  	"mSpanDead",
   383  	"mSpanInUse",
   384  	"mSpanManual",
   385  }
   386  
   387  // mSpanStateBox holds an atomic.Uint8 to provide atomic operations on
   388  // an mSpanState. This is a separate type to disallow accidental comparison
   389  // or assignment with mSpanState.
   390  type mSpanStateBox struct {
   391  	s atomic.Uint8
   392  }
   393  
   394  // It is nosplit to match get, below.
   395  
   396  //go:nosplit
   397  func (b *mSpanStateBox) set(s mSpanState) {
   398  	b.s.Store(uint8(s))
   399  }
   400  
   401  // It is nosplit because it's called indirectly by typedmemclr,
   402  // which must not be preempted.
   403  
   404  //go:nosplit
   405  func (b *mSpanStateBox) get() mSpanState {
   406  	return mSpanState(b.s.Load())
   407  }
   408  
   409  // mSpanList heads a linked list of spans.
   410  type mSpanList struct {
   411  	_     sys.NotInHeap
   412  	first *mspan // first span in list, or nil if none
   413  	last  *mspan // last span in list, or nil if none
   414  }
   415  
   416  type mspan struct {
   417  	_    sys.NotInHeap
   418  	next *mspan     // next span in list, or nil if none
   419  	prev *mspan     // previous span in list, or nil if none
   420  	list *mSpanList // For debugging.
   421  
   422  	startAddr uintptr // address of first byte of span aka s.base()
   423  	npages    uintptr // number of pages in span
   424  
   425  	manualFreeList gclinkptr // list of free objects in mSpanManual spans
   426  
   427  	// freeindex is the slot index between 0 and nelems at which to begin scanning
   428  	// for the next free object in this span.
   429  	// Each allocation scans allocBits starting at freeindex until it encounters a 0
   430  	// indicating a free object. freeindex is then adjusted so that subsequent scans begin
   431  	// just past the newly discovered free object.
   432  	//
   433  	// If freeindex == nelem, this span has no free objects.
   434  	//
   435  	// allocBits is a bitmap of objects in this span.
   436  	// If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0
   437  	// then object n is free;
   438  	// otherwise, object n is allocated. Bits starting at nelem are
   439  	// undefined and should never be referenced.
   440  	//
   441  	// Object n starts at address n*elemsize + (start << pageShift).
   442  	freeindex uint16
   443  	// TODO: Look up nelems from sizeclass and remove this field if it
   444  	// helps performance.
   445  	nelems uint16 // number of object in the span.
   446  	// freeIndexForScan is like freeindex, except that freeindex is
   447  	// used by the allocator whereas freeIndexForScan is used by the
   448  	// GC scanner. They are two fields so that the GC sees the object
   449  	// is allocated only when the object and the heap bits are
   450  	// initialized (see also the assignment of freeIndexForScan in
   451  	// mallocgc, and issue 54596).
   452  	freeIndexForScan uint16
   453  
   454  	// Cache of the allocBits at freeindex. allocCache is shifted
   455  	// such that the lowest bit corresponds to the bit freeindex.
   456  	// allocCache holds the complement of allocBits, thus allowing
   457  	// ctz (count trailing zero) to use it directly.
   458  	// allocCache may contain bits beyond s.nelems; the caller must ignore
   459  	// these.
   460  	allocCache uint64
   461  
   462  	// allocBits and gcmarkBits hold pointers to a span's mark and
   463  	// allocation bits. The pointers are 8 byte aligned.
   464  	// There are three arenas where this data is held.
   465  	// free: Dirty arenas that are no longer accessed
   466  	//       and can be reused.
   467  	// next: Holds information to be used in the next GC cycle.
   468  	// current: Information being used during this GC cycle.
   469  	// previous: Information being used during the last GC cycle.
   470  	// A new GC cycle starts with the call to finishsweep_m.
   471  	// finishsweep_m moves the previous arena to the free arena,
   472  	// the current arena to the previous arena, and
   473  	// the next arena to the current arena.
   474  	// The next arena is populated as the spans request
   475  	// memory to hold gcmarkBits for the next GC cycle as well
   476  	// as allocBits for newly allocated spans.
   477  	//
   478  	// The pointer arithmetic is done "by hand" instead of using
   479  	// arrays to avoid bounds checks along critical performance
   480  	// paths.
   481  	// The sweep will free the old allocBits and set allocBits to the
   482  	// gcmarkBits. The gcmarkBits are replaced with a fresh zeroed
   483  	// out memory.
   484  	allocBits  *gcBits
   485  	gcmarkBits *gcBits
   486  	pinnerBits *gcBits // bitmap for pinned objects; accessed atomically
   487  
   488  	// sweep generation:
   489  	// if sweepgen == h->sweepgen - 2, the span needs sweeping
   490  	// if sweepgen == h->sweepgen - 1, the span is currently being swept
   491  	// if sweepgen == h->sweepgen, the span is swept and ready to use
   492  	// if sweepgen == h->sweepgen + 1, the span was cached before sweep began and is still cached, and needs sweeping
   493  	// if sweepgen == h->sweepgen + 3, the span was swept and then cached and is still cached
   494  	// h->sweepgen is incremented by 2 after every GC
   495  
   496  	sweepgen              uint32
   497  	divMul                uint32        // for divide by elemsize
   498  	allocCount            uint16        // number of allocated objects
   499  	spanclass             spanClass     // size class and noscan (uint8)
   500  	state                 mSpanStateBox // mSpanInUse etc; accessed atomically (get/set methods)
   501  	needzero              uint8         // needs to be zeroed before allocation
   502  	isUserArenaChunk      bool          // whether or not this span represents a user arena
   503  	allocCountBeforeCache uint16        // a copy of allocCount that is stored just before this span is cached
   504  	elemsize              uintptr       // computed from sizeclass or from npages
   505  	limit                 uintptr       // end of data in span
   506  	speciallock           mutex         // guards specials list and changes to pinnerBits
   507  	specials              *special      // linked list of special records sorted by offset.
   508  	userArenaChunkFree    addrRange     // interval for managing chunk allocation
   509  	largeType             *_type        // malloc header for large objects.
   510  }
   511  
   512  func (s *mspan) base() uintptr {
   513  	return s.startAddr
   514  }
   515  
   516  func (s *mspan) layout() (size, n, total uintptr) {
   517  	total = s.npages << _PageShift
   518  	size = s.elemsize
   519  	if size > 0 {
   520  		n = total / size
   521  	}
   522  	return
   523  }
   524  
   525  // recordspan adds a newly allocated span to h.allspans.
   526  //
   527  // This only happens the first time a span is allocated from
   528  // mheap.spanalloc (it is not called when a span is reused).
   529  //
   530  // Write barriers are disallowed here because it can be called from
   531  // gcWork when allocating new workbufs. However, because it's an
   532  // indirect call from the fixalloc initializer, the compiler can't see
   533  // this.
   534  //
   535  // The heap lock must be held.
   536  //
   537  //go:nowritebarrierrec
   538  func recordspan(vh unsafe.Pointer, p unsafe.Pointer) {
   539  	h := (*mheap)(vh)
   540  	s := (*mspan)(p)
   541  
   542  	assertLockHeld(&h.lock)
   543  
   544  	if len(h.allspans) >= cap(h.allspans) {
   545  		n := 64 * 1024 / goarch.PtrSize
   546  		if n < cap(h.allspans)*3/2 {
   547  			n = cap(h.allspans) * 3 / 2
   548  		}
   549  		var new []*mspan
   550  		sp := (*slice)(unsafe.Pointer(&new))
   551  		sp.array = sysAlloc(uintptr(n)*goarch.PtrSize, &memstats.other_sys, "allspans array")
   552  		if sp.array == nil {
   553  			throw("runtime: cannot allocate memory")
   554  		}
   555  		sp.len = len(h.allspans)
   556  		sp.cap = n
   557  		if len(h.allspans) > 0 {
   558  			copy(new, h.allspans)
   559  		}
   560  		oldAllspans := h.allspans
   561  		*(*notInHeapSlice)(unsafe.Pointer(&h.allspans)) = *(*notInHeapSlice)(unsafe.Pointer(&new))
   562  		if len(oldAllspans) != 0 {
   563  			sysFree(unsafe.Pointer(&oldAllspans[0]), uintptr(cap(oldAllspans))*unsafe.Sizeof(oldAllspans[0]), &memstats.other_sys)
   564  		}
   565  	}
   566  	h.allspans = h.allspans[:len(h.allspans)+1]
   567  	h.allspans[len(h.allspans)-1] = s
   568  }
   569  
   570  // A spanClass represents the size class and noscan-ness of a span.
   571  //
   572  // Each size class has a noscan spanClass and a scan spanClass. The
   573  // noscan spanClass contains only noscan objects, which do not contain
   574  // pointers and thus do not need to be scanned by the garbage
   575  // collector.
   576  type spanClass uint8
   577  
   578  const (
   579  	numSpanClasses = _NumSizeClasses << 1
   580  	tinySpanClass  = spanClass(tinySizeClass<<1 | 1)
   581  )
   582  
   583  func makeSpanClass(sizeclass uint8, noscan bool) spanClass {
   584  	return spanClass(sizeclass<<1) | spanClass(bool2int(noscan))
   585  }
   586  
   587  //go:nosplit
   588  func (sc spanClass) sizeclass() int8 {
   589  	return int8(sc >> 1)
   590  }
   591  
   592  //go:nosplit
   593  func (sc spanClass) noscan() bool {
   594  	return sc&1 != 0
   595  }
   596  
   597  // arenaIndex returns the index into mheap_.arenas of the arena
   598  // containing metadata for p. This index combines of an index into the
   599  // L1 map and an index into the L2 map and should be used as
   600  // mheap_.arenas[ai.l1()][ai.l2()].
   601  //
   602  // If p is outside the range of valid heap addresses, either l1() or
   603  // l2() will be out of bounds.
   604  //
   605  // It is nosplit because it's called by spanOf and several other
   606  // nosplit functions.
   607  //
   608  //go:nosplit
   609  func arenaIndex(p uintptr) arenaIdx {
   610  	return arenaIdx((p - arenaBaseOffset) / heapArenaBytes)
   611  }
   612  
   613  // arenaBase returns the low address of the region covered by heap
   614  // arena i.
   615  func arenaBase(i arenaIdx) uintptr {
   616  	return uintptr(i)*heapArenaBytes + arenaBaseOffset
   617  }
   618  
   619  type arenaIdx uint
   620  
   621  // l1 returns the "l1" portion of an arenaIdx.
   622  //
   623  // Marked nosplit because it's called by spanOf and other nosplit
   624  // functions.
   625  //
   626  //go:nosplit
   627  func (i arenaIdx) l1() uint {
   628  	if arenaL1Bits == 0 {
   629  		// Let the compiler optimize this away if there's no
   630  		// L1 map.
   631  		return 0
   632  	} else {
   633  		return uint(i) >> arenaL1Shift
   634  	}
   635  }
   636  
   637  // l2 returns the "l2" portion of an arenaIdx.
   638  //
   639  // Marked nosplit because it's called by spanOf and other nosplit funcs.
   640  // functions.
   641  //
   642  //go:nosplit
   643  func (i arenaIdx) l2() uint {
   644  	if arenaL1Bits == 0 {
   645  		return uint(i)
   646  	} else {
   647  		return uint(i) & (1<<arenaL2Bits - 1)
   648  	}
   649  }
   650  
   651  // inheap reports whether b is a pointer into a (potentially dead) heap object.
   652  // It returns false for pointers into mSpanManual spans.
   653  // Non-preemptible because it is used by write barriers.
   654  //
   655  //go:nowritebarrier
   656  //go:nosplit
   657  func inheap(b uintptr) bool {
   658  	return spanOfHeap(b) != nil
   659  }
   660  
   661  // inHeapOrStack is a variant of inheap that returns true for pointers
   662  // into any allocated heap span.
   663  //
   664  //go:nowritebarrier
   665  //go:nosplit
   666  func inHeapOrStack(b uintptr) bool {
   667  	s := spanOf(b)
   668  	if s == nil || b < s.base() {
   669  		return false
   670  	}
   671  	switch s.state.get() {
   672  	case mSpanInUse, mSpanManual:
   673  		return b < s.limit
   674  	default:
   675  		return false
   676  	}
   677  }
   678  
   679  // spanOf returns the span of p. If p does not point into the heap
   680  // arena or no span has ever contained p, spanOf returns nil.
   681  //
   682  // If p does not point to allocated memory, this may return a non-nil
   683  // span that does *not* contain p. If this is a possibility, the
   684  // caller should either call spanOfHeap or check the span bounds
   685  // explicitly.
   686  //
   687  // Must be nosplit because it has callers that are nosplit.
   688  //
   689  //go:nosplit
   690  func spanOf(p uintptr) *mspan {
   691  	// This function looks big, but we use a lot of constant
   692  	// folding around arenaL1Bits to get it under the inlining
   693  	// budget. Also, many of the checks here are safety checks
   694  	// that Go needs to do anyway, so the generated code is quite
   695  	// short.
   696  	ri := arenaIndex(p)
   697  	if arenaL1Bits == 0 {
   698  		// If there's no L1, then ri.l1() can't be out of bounds but ri.l2() can.
   699  		if ri.l2() >= uint(len(mheap_.arenas[0])) {
   700  			return nil
   701  		}
   702  	} else {
   703  		// If there's an L1, then ri.l1() can be out of bounds but ri.l2() can't.
   704  		if ri.l1() >= uint(len(mheap_.arenas)) {
   705  			return nil
   706  		}
   707  	}
   708  	l2 := mheap_.arenas[ri.l1()]
   709  	if arenaL1Bits != 0 && l2 == nil { // Should never happen if there's no L1.
   710  		return nil
   711  	}
   712  	ha := l2[ri.l2()]
   713  	if ha == nil {
   714  		return nil
   715  	}
   716  	return ha.spans[(p/pageSize)%pagesPerArena]
   717  }
   718  
   719  // spanOfUnchecked is equivalent to spanOf, but the caller must ensure
   720  // that p points into an allocated heap arena.
   721  //
   722  // Must be nosplit because it has callers that are nosplit.
   723  //
   724  //go:nosplit
   725  func spanOfUnchecked(p uintptr) *mspan {
   726  	ai := arenaIndex(p)
   727  	return mheap_.arenas[ai.l1()][ai.l2()].spans[(p/pageSize)%pagesPerArena]
   728  }
   729  
   730  // spanOfHeap is like spanOf, but returns nil if p does not point to a
   731  // heap object.
   732  //
   733  // Must be nosplit because it has callers that are nosplit.
   734  //
   735  //go:nosplit
   736  func spanOfHeap(p uintptr) *mspan {
   737  	s := spanOf(p)
   738  	// s is nil if it's never been allocated. Otherwise, we check
   739  	// its state first because we don't trust this pointer, so we
   740  	// have to synchronize with span initialization. Then, it's
   741  	// still possible we picked up a stale span pointer, so we
   742  	// have to check the span's bounds.
   743  	if s == nil || s.state.get() != mSpanInUse || p < s.base() || p >= s.limit {
   744  		return nil
   745  	}
   746  	return s
   747  }
   748  
   749  // pageIndexOf returns the arena, page index, and page mask for pointer p.
   750  // The caller must ensure p is in the heap.
   751  func pageIndexOf(p uintptr) (arena *heapArena, pageIdx uintptr, pageMask uint8) {
   752  	ai := arenaIndex(p)
   753  	arena = mheap_.arenas[ai.l1()][ai.l2()]
   754  	pageIdx = ((p / pageSize) / 8) % uintptr(len(arena.pageInUse))
   755  	pageMask = byte(1 << ((p / pageSize) % 8))
   756  	return
   757  }
   758  
   759  // Initialize the heap.
   760  func (h *mheap) init() {
   761  	lockInit(&h.lock, lockRankMheap)
   762  	lockInit(&h.speciallock, lockRankMheapSpecial)
   763  
   764  	h.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys)
   765  	h.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys)
   766  	h.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys)
   767  	h.specialCleanupAlloc.init(unsafe.Sizeof(specialCleanup{}), nil, nil, &memstats.other_sys)
   768  	h.specialprofilealloc.init(unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys)
   769  	h.specialReachableAlloc.init(unsafe.Sizeof(specialReachable{}), nil, nil, &memstats.other_sys)
   770  	h.specialPinCounterAlloc.init(unsafe.Sizeof(specialPinCounter{}), nil, nil, &memstats.other_sys)
   771  	h.specialWeakHandleAlloc.init(unsafe.Sizeof(specialWeakHandle{}), nil, nil, &memstats.gcMiscSys)
   772  	h.arenaHintAlloc.init(unsafe.Sizeof(arenaHint{}), nil, nil, &memstats.other_sys)
   773  
   774  	// Don't zero mspan allocations. Background sweeping can
   775  	// inspect a span concurrently with allocating it, so it's
   776  	// important that the span's sweepgen survive across freeing
   777  	// and re-allocating a span to prevent background sweeping
   778  	// from improperly cas'ing it from 0.
   779  	//
   780  	// This is safe because mspan contains no heap pointers.
   781  	h.spanalloc.zero = false
   782  
   783  	// h->mapcache needs no init
   784  
   785  	for i := range h.central {
   786  		h.central[i].mcentral.init(spanClass(i))
   787  	}
   788  
   789  	h.pages.init(&h.lock, &memstats.gcMiscSys, false)
   790  }
   791  
   792  // reclaim sweeps and reclaims at least npage pages into the heap.
   793  // It is called before allocating npage pages to keep growth in check.
   794  //
   795  // reclaim implements the page-reclaimer half of the sweeper.
   796  //
   797  // h.lock must NOT be held.
   798  func (h *mheap) reclaim(npage uintptr) {
   799  	// TODO(austin): Half of the time spent freeing spans is in
   800  	// locking/unlocking the heap (even with low contention). We
   801  	// could make the slow path here several times faster by
   802  	// batching heap frees.
   803  
   804  	// Bail early if there's no more reclaim work.
   805  	if h.reclaimIndex.Load() >= 1<<63 {
   806  		return
   807  	}
   808  
   809  	// Disable preemption so the GC can't start while we're
   810  	// sweeping, so we can read h.sweepArenas, and so
   811  	// traceGCSweepStart/Done pair on the P.
   812  	mp := acquirem()
   813  
   814  	trace := traceAcquire()
   815  	if trace.ok() {
   816  		trace.GCSweepStart()
   817  		traceRelease(trace)
   818  	}
   819  
   820  	arenas := h.sweepArenas
   821  	locked := false
   822  	for npage > 0 {
   823  		// Pull from accumulated credit first.
   824  		if credit := h.reclaimCredit.Load(); credit > 0 {
   825  			take := credit
   826  			if take > npage {
   827  				// Take only what we need.
   828  				take = npage
   829  			}
   830  			if h.reclaimCredit.CompareAndSwap(credit, credit-take) {
   831  				npage -= take
   832  			}
   833  			continue
   834  		}
   835  
   836  		// Claim a chunk of work.
   837  		idx := uintptr(h.reclaimIndex.Add(pagesPerReclaimerChunk) - pagesPerReclaimerChunk)
   838  		if idx/pagesPerArena >= uintptr(len(arenas)) {
   839  			// Page reclaiming is done.
   840  			h.reclaimIndex.Store(1 << 63)
   841  			break
   842  		}
   843  
   844  		if !locked {
   845  			// Lock the heap for reclaimChunk.
   846  			lock(&h.lock)
   847  			locked = true
   848  		}
   849  
   850  		// Scan this chunk.
   851  		nfound := h.reclaimChunk(arenas, idx, pagesPerReclaimerChunk)
   852  		if nfound <= npage {
   853  			npage -= nfound
   854  		} else {
   855  			// Put spare pages toward global credit.
   856  			h.reclaimCredit.Add(nfound - npage)
   857  			npage = 0
   858  		}
   859  	}
   860  	if locked {
   861  		unlock(&h.lock)
   862  	}
   863  
   864  	trace = traceAcquire()
   865  	if trace.ok() {
   866  		trace.GCSweepDone()
   867  		traceRelease(trace)
   868  	}
   869  	releasem(mp)
   870  }
   871  
   872  // reclaimChunk sweeps unmarked spans that start at page indexes [pageIdx, pageIdx+n).
   873  // It returns the number of pages returned to the heap.
   874  //
   875  // h.lock must be held and the caller must be non-preemptible. Note: h.lock may be
   876  // temporarily unlocked and re-locked in order to do sweeping or if tracing is
   877  // enabled.
   878  func (h *mheap) reclaimChunk(arenas []arenaIdx, pageIdx, n uintptr) uintptr {
   879  	// The heap lock must be held because this accesses the
   880  	// heapArena.spans arrays using potentially non-live pointers.
   881  	// In particular, if a span were freed and merged concurrently
   882  	// with this probing heapArena.spans, it would be possible to
   883  	// observe arbitrary, stale span pointers.
   884  	assertLockHeld(&h.lock)
   885  
   886  	n0 := n
   887  	var nFreed uintptr
   888  	sl := sweep.active.begin()
   889  	if !sl.valid {
   890  		return 0
   891  	}
   892  	for n > 0 {
   893  		ai := arenas[pageIdx/pagesPerArena]
   894  		ha := h.arenas[ai.l1()][ai.l2()]
   895  
   896  		// Get a chunk of the bitmap to work on.
   897  		arenaPage := uint(pageIdx % pagesPerArena)
   898  		inUse := ha.pageInUse[arenaPage/8:]
   899  		marked := ha.pageMarks[arenaPage/8:]
   900  		if uintptr(len(inUse)) > n/8 {
   901  			inUse = inUse[:n/8]
   902  			marked = marked[:n/8]
   903  		}
   904  
   905  		// Scan this bitmap chunk for spans that are in-use
   906  		// but have no marked objects on them.
   907  		for i := range inUse {
   908  			inUseUnmarked := atomic.Load8(&inUse[i]) &^ marked[i]
   909  			if inUseUnmarked == 0 {
   910  				continue
   911  			}
   912  
   913  			for j := uint(0); j < 8; j++ {
   914  				if inUseUnmarked&(1<<j) != 0 {
   915  					s := ha.spans[arenaPage+uint(i)*8+j]
   916  					if s, ok := sl.tryAcquire(s); ok {
   917  						npages := s.npages
   918  						unlock(&h.lock)
   919  						if s.sweep(false) {
   920  							nFreed += npages
   921  						}
   922  						lock(&h.lock)
   923  						// Reload inUse. It's possible nearby
   924  						// spans were freed when we dropped the
   925  						// lock and we don't want to get stale
   926  						// pointers from the spans array.
   927  						inUseUnmarked = atomic.Load8(&inUse[i]) &^ marked[i]
   928  					}
   929  				}
   930  			}
   931  		}
   932  
   933  		// Advance.
   934  		pageIdx += uintptr(len(inUse) * 8)
   935  		n -= uintptr(len(inUse) * 8)
   936  	}
   937  	sweep.active.end(sl)
   938  	trace := traceAcquire()
   939  	if trace.ok() {
   940  		unlock(&h.lock)
   941  		// Account for pages scanned but not reclaimed.
   942  		trace.GCSweepSpan((n0 - nFreed) * pageSize)
   943  		traceRelease(trace)
   944  		lock(&h.lock)
   945  	}
   946  
   947  	assertLockHeld(&h.lock) // Must be locked on return.
   948  	return nFreed
   949  }
   950  
   951  // spanAllocType represents the type of allocation to make, or
   952  // the type of allocation to be freed.
   953  type spanAllocType uint8
   954  
   955  const (
   956  	spanAllocHeap          spanAllocType = iota // heap span
   957  	spanAllocStack                              // stack span
   958  	spanAllocPtrScalarBits                      // unrolled GC prog bitmap span
   959  	spanAllocWorkBuf                            // work buf span
   960  )
   961  
   962  // manual returns true if the span allocation is manually managed.
   963  func (s spanAllocType) manual() bool {
   964  	return s != spanAllocHeap
   965  }
   966  
   967  // alloc allocates a new span of npage pages from the GC'd heap.
   968  //
   969  // spanclass indicates the span's size class and scannability.
   970  //
   971  // Returns a span that has been fully initialized. span.needzero indicates
   972  // whether the span has been zeroed. Note that it may not be.
   973  func (h *mheap) alloc(npages uintptr, spanclass spanClass) *mspan {
   974  	// Don't do any operations that lock the heap on the G stack.
   975  	// It might trigger stack growth, and the stack growth code needs
   976  	// to be able to allocate heap.
   977  	var s *mspan
   978  	systemstack(func() {
   979  		// To prevent excessive heap growth, before allocating n pages
   980  		// we need to sweep and reclaim at least n pages.
   981  		if !isSweepDone() {
   982  			h.reclaim(npages)
   983  		}
   984  		s = h.allocSpan(npages, spanAllocHeap, spanclass)
   985  	})
   986  	return s
   987  }
   988  
   989  // allocManual allocates a manually-managed span of npage pages.
   990  // allocManual returns nil if allocation fails.
   991  //
   992  // allocManual adds the bytes used to *stat, which should be a
   993  // memstats in-use field. Unlike allocations in the GC'd heap, the
   994  // allocation does *not* count toward heapInUse.
   995  //
   996  // The memory backing the returned span may not be zeroed if
   997  // span.needzero is set.
   998  //
   999  // allocManual must be called on the system stack because it may
  1000  // acquire the heap lock via allocSpan. See mheap for details.
  1001  //
  1002  // If new code is written to call allocManual, do NOT use an
  1003  // existing spanAllocType value and instead declare a new one.
  1004  //
  1005  //go:systemstack
  1006  func (h *mheap) allocManual(npages uintptr, typ spanAllocType) *mspan {
  1007  	if !typ.manual() {
  1008  		throw("manual span allocation called with non-manually-managed type")
  1009  	}
  1010  	return h.allocSpan(npages, typ, 0)
  1011  }
  1012  
  1013  // setSpans modifies the span map so [spanOf(base), spanOf(base+npage*pageSize))
  1014  // is s.
  1015  func (h *mheap) setSpans(base, npage uintptr, s *mspan) {
  1016  	p := base / pageSize
  1017  	ai := arenaIndex(base)
  1018  	ha := h.arenas[ai.l1()][ai.l2()]
  1019  	for n := uintptr(0); n < npage; n++ {
  1020  		i := (p + n) % pagesPerArena
  1021  		if i == 0 {
  1022  			ai = arenaIndex(base + n*pageSize)
  1023  			ha = h.arenas[ai.l1()][ai.l2()]
  1024  		}
  1025  		ha.spans[i] = s
  1026  	}
  1027  }
  1028  
  1029  // allocNeedsZero checks if the region of address space [base, base+npage*pageSize),
  1030  // assumed to be allocated, needs to be zeroed, updating heap arena metadata for
  1031  // future allocations.
  1032  //
  1033  // This must be called each time pages are allocated from the heap, even if the page
  1034  // allocator can otherwise prove the memory it's allocating is already zero because
  1035  // they're fresh from the operating system. It updates heapArena metadata that is
  1036  // critical for future page allocations.
  1037  //
  1038  // There are no locking constraints on this method.
  1039  func (h *mheap) allocNeedsZero(base, npage uintptr) (needZero bool) {
  1040  	for npage > 0 {
  1041  		ai := arenaIndex(base)
  1042  		ha := h.arenas[ai.l1()][ai.l2()]
  1043  
  1044  		zeroedBase := atomic.Loaduintptr(&ha.zeroedBase)
  1045  		arenaBase := base % heapArenaBytes
  1046  		if arenaBase < zeroedBase {
  1047  			// We extended into the non-zeroed part of the
  1048  			// arena, so this region needs to be zeroed before use.
  1049  			//
  1050  			// zeroedBase is monotonically increasing, so if we see this now then
  1051  			// we can be sure we need to zero this memory region.
  1052  			//
  1053  			// We still need to update zeroedBase for this arena, and
  1054  			// potentially more arenas.
  1055  			needZero = true
  1056  		}
  1057  		// We may observe arenaBase > zeroedBase if we're racing with one or more
  1058  		// allocations which are acquiring memory directly before us in the address
  1059  		// space. But, because we know no one else is acquiring *this* memory, it's
  1060  		// still safe to not zero.
  1061  
  1062  		// Compute how far into the arena we extend into, capped
  1063  		// at heapArenaBytes.
  1064  		arenaLimit := arenaBase + npage*pageSize
  1065  		if arenaLimit > heapArenaBytes {
  1066  			arenaLimit = heapArenaBytes
  1067  		}
  1068  		// Increase ha.zeroedBase so it's >= arenaLimit.
  1069  		// We may be racing with other updates.
  1070  		for arenaLimit > zeroedBase {
  1071  			if atomic.Casuintptr(&ha.zeroedBase, zeroedBase, arenaLimit) {
  1072  				break
  1073  			}
  1074  			zeroedBase = atomic.Loaduintptr(&ha.zeroedBase)
  1075  			// Double check basic conditions of zeroedBase.
  1076  			if zeroedBase <= arenaLimit && zeroedBase > arenaBase {
  1077  				// The zeroedBase moved into the space we were trying to
  1078  				// claim. That's very bad, and indicates someone allocated
  1079  				// the same region we did.
  1080  				throw("potentially overlapping in-use allocations detected")
  1081  			}
  1082  		}
  1083  
  1084  		// Move base forward and subtract from npage to move into
  1085  		// the next arena, or finish.
  1086  		base += arenaLimit - arenaBase
  1087  		npage -= (arenaLimit - arenaBase) / pageSize
  1088  	}
  1089  	return
  1090  }
  1091  
  1092  // tryAllocMSpan attempts to allocate an mspan object from
  1093  // the P-local cache, but may fail.
  1094  //
  1095  // h.lock need not be held.
  1096  //
  1097  // This caller must ensure that its P won't change underneath
  1098  // it during this function. Currently to ensure that we enforce
  1099  // that the function is run on the system stack, because that's
  1100  // the only place it is used now. In the future, this requirement
  1101  // may be relaxed if its use is necessary elsewhere.
  1102  //
  1103  //go:systemstack
  1104  func (h *mheap) tryAllocMSpan() *mspan {
  1105  	pp := getg().m.p.ptr()
  1106  	// If we don't have a p or the cache is empty, we can't do
  1107  	// anything here.
  1108  	if pp == nil || pp.mspancache.len == 0 {
  1109  		return nil
  1110  	}
  1111  	// Pull off the last entry in the cache.
  1112  	s := pp.mspancache.buf[pp.mspancache.len-1]
  1113  	pp.mspancache.len--
  1114  	return s
  1115  }
  1116  
  1117  // allocMSpanLocked allocates an mspan object.
  1118  //
  1119  // h.lock must be held.
  1120  //
  1121  // allocMSpanLocked must be called on the system stack because
  1122  // its caller holds the heap lock. See mheap for details.
  1123  // Running on the system stack also ensures that we won't
  1124  // switch Ps during this function. See tryAllocMSpan for details.
  1125  //
  1126  //go:systemstack
  1127  func (h *mheap) allocMSpanLocked() *mspan {
  1128  	assertLockHeld(&h.lock)
  1129  
  1130  	pp := getg().m.p.ptr()
  1131  	if pp == nil {
  1132  		// We don't have a p so just do the normal thing.
  1133  		return (*mspan)(h.spanalloc.alloc())
  1134  	}
  1135  	// Refill the cache if necessary.
  1136  	if pp.mspancache.len == 0 {
  1137  		const refillCount = len(pp.mspancache.buf) / 2
  1138  		for i := 0; i < refillCount; i++ {
  1139  			pp.mspancache.buf[i] = (*mspan)(h.spanalloc.alloc())
  1140  		}
  1141  		pp.mspancache.len = refillCount
  1142  	}
  1143  	// Pull off the last entry in the cache.
  1144  	s := pp.mspancache.buf[pp.mspancache.len-1]
  1145  	pp.mspancache.len--
  1146  	return s
  1147  }
  1148  
  1149  // freeMSpanLocked free an mspan object.
  1150  //
  1151  // h.lock must be held.
  1152  //
  1153  // freeMSpanLocked must be called on the system stack because
  1154  // its caller holds the heap lock. See mheap for details.
  1155  // Running on the system stack also ensures that we won't
  1156  // switch Ps during this function. See tryAllocMSpan for details.
  1157  //
  1158  //go:systemstack
  1159  func (h *mheap) freeMSpanLocked(s *mspan) {
  1160  	assertLockHeld(&h.lock)
  1161  
  1162  	pp := getg().m.p.ptr()
  1163  	// First try to free the mspan directly to the cache.
  1164  	if pp != nil && pp.mspancache.len < len(pp.mspancache.buf) {
  1165  		pp.mspancache.buf[pp.mspancache.len] = s
  1166  		pp.mspancache.len++
  1167  		return
  1168  	}
  1169  	// Failing that (or if we don't have a p), just free it to
  1170  	// the heap.
  1171  	h.spanalloc.free(unsafe.Pointer(s))
  1172  }
  1173  
  1174  // allocSpan allocates an mspan which owns npages worth of memory.
  1175  //
  1176  // If typ.manual() == false, allocSpan allocates a heap span of class spanclass
  1177  // and updates heap accounting. If manual == true, allocSpan allocates a
  1178  // manually-managed span (spanclass is ignored), and the caller is
  1179  // responsible for any accounting related to its use of the span. Either
  1180  // way, allocSpan will atomically add the bytes in the newly allocated
  1181  // span to *sysStat.
  1182  //
  1183  // The returned span is fully initialized.
  1184  //
  1185  // h.lock must not be held.
  1186  //
  1187  // allocSpan must be called on the system stack both because it acquires
  1188  // the heap lock and because it must block GC transitions.
  1189  //
  1190  //go:systemstack
  1191  func (h *mheap) allocSpan(npages uintptr, typ spanAllocType, spanclass spanClass) (s *mspan) {
  1192  	// Function-global state.
  1193  	gp := getg()
  1194  	base, scav := uintptr(0), uintptr(0)
  1195  	growth := uintptr(0)
  1196  
  1197  	// On some platforms we need to provide physical page aligned stack
  1198  	// allocations. Where the page size is less than the physical page
  1199  	// size, we already manage to do this by default.
  1200  	needPhysPageAlign := physPageAlignedStacks && typ == spanAllocStack && pageSize < physPageSize
  1201  
  1202  	// If the allocation is small enough, try the page cache!
  1203  	// The page cache does not support aligned allocations, so we cannot use
  1204  	// it if we need to provide a physical page aligned stack allocation.
  1205  	pp := gp.m.p.ptr()
  1206  	if !needPhysPageAlign && pp != nil && npages < pageCachePages/4 {
  1207  		c := &pp.pcache
  1208  
  1209  		// If the cache is empty, refill it.
  1210  		if c.empty() {
  1211  			lock(&h.lock)
  1212  			*c = h.pages.allocToCache()
  1213  			unlock(&h.lock)
  1214  		}
  1215  
  1216  		// Try to allocate from the cache.
  1217  		base, scav = c.alloc(npages)
  1218  		if base != 0 {
  1219  			s = h.tryAllocMSpan()
  1220  			if s != nil {
  1221  				goto HaveSpan
  1222  			}
  1223  			// We have a base but no mspan, so we need
  1224  			// to lock the heap.
  1225  		}
  1226  	}
  1227  
  1228  	// For one reason or another, we couldn't get the
  1229  	// whole job done without the heap lock.
  1230  	lock(&h.lock)
  1231  
  1232  	if needPhysPageAlign {
  1233  		// Overallocate by a physical page to allow for later alignment.
  1234  		extraPages := physPageSize / pageSize
  1235  
  1236  		// Find a big enough region first, but then only allocate the
  1237  		// aligned portion. We can't just allocate and then free the
  1238  		// edges because we need to account for scavenged memory, and
  1239  		// that's difficult with alloc.
  1240  		//
  1241  		// Note that we skip updates to searchAddr here. It's OK if
  1242  		// it's stale and higher than normal; it'll operate correctly,
  1243  		// just come with a performance cost.
  1244  		base, _ = h.pages.find(npages + extraPages)
  1245  		if base == 0 {
  1246  			var ok bool
  1247  			growth, ok = h.grow(npages + extraPages)
  1248  			if !ok {
  1249  				unlock(&h.lock)
  1250  				return nil
  1251  			}
  1252  			base, _ = h.pages.find(npages + extraPages)
  1253  			if base == 0 {
  1254  				throw("grew heap, but no adequate free space found")
  1255  			}
  1256  		}
  1257  		base = alignUp(base, physPageSize)
  1258  		scav = h.pages.allocRange(base, npages)
  1259  	}
  1260  
  1261  	if base == 0 {
  1262  		// Try to acquire a base address.
  1263  		base, scav = h.pages.alloc(npages)
  1264  		if base == 0 {
  1265  			var ok bool
  1266  			growth, ok = h.grow(npages)
  1267  			if !ok {
  1268  				unlock(&h.lock)
  1269  				return nil
  1270  			}
  1271  			base, scav = h.pages.alloc(npages)
  1272  			if base == 0 {
  1273  				throw("grew heap, but no adequate free space found")
  1274  			}
  1275  		}
  1276  	}
  1277  	if s == nil {
  1278  		// We failed to get an mspan earlier, so grab
  1279  		// one now that we have the heap lock.
  1280  		s = h.allocMSpanLocked()
  1281  	}
  1282  	unlock(&h.lock)
  1283  
  1284  HaveSpan:
  1285  	// Decide if we need to scavenge in response to what we just allocated.
  1286  	// Specifically, we track the maximum amount of memory to scavenge of all
  1287  	// the alternatives below, assuming that the maximum satisfies *all*
  1288  	// conditions we check (e.g. if we need to scavenge X to satisfy the
  1289  	// memory limit and Y to satisfy heap-growth scavenging, and Y > X, then
  1290  	// it's fine to pick Y, because the memory limit is still satisfied).
  1291  	//
  1292  	// It's fine to do this after allocating because we expect any scavenged
  1293  	// pages not to get touched until we return. Simultaneously, it's important
  1294  	// to do this before calling sysUsed because that may commit address space.
  1295  	bytesToScavenge := uintptr(0)
  1296  	forceScavenge := false
  1297  	if limit := gcController.memoryLimit.Load(); !gcCPULimiter.limiting() {
  1298  		// Assist with scavenging to maintain the memory limit by the amount
  1299  		// that we expect to page in.
  1300  		inuse := gcController.mappedReady.Load()
  1301  		// Be careful about overflow, especially with uintptrs. Even on 32-bit platforms
  1302  		// someone can set a really big memory limit that isn't maxInt64.
  1303  		if uint64(scav)+inuse > uint64(limit) {
  1304  			bytesToScavenge = uintptr(uint64(scav) + inuse - uint64(limit))
  1305  			forceScavenge = true
  1306  		}
  1307  	}
  1308  	if goal := scavenge.gcPercentGoal.Load(); goal != ^uint64(0) && growth > 0 {
  1309  		// We just caused a heap growth, so scavenge down what will soon be used.
  1310  		// By scavenging inline we deal with the failure to allocate out of
  1311  		// memory fragments by scavenging the memory fragments that are least
  1312  		// likely to be re-used.
  1313  		//
  1314  		// Only bother with this because we're not using a memory limit. We don't
  1315  		// care about heap growths as long as we're under the memory limit, and the
  1316  		// previous check for scaving already handles that.
  1317  		if retained := heapRetained(); retained+uint64(growth) > goal {
  1318  			// The scavenging algorithm requires the heap lock to be dropped so it
  1319  			// can acquire it only sparingly. This is a potentially expensive operation
  1320  			// so it frees up other goroutines to allocate in the meanwhile. In fact,
  1321  			// they can make use of the growth we just created.
  1322  			todo := growth
  1323  			if overage := uintptr(retained + uint64(growth) - goal); todo > overage {
  1324  				todo = overage
  1325  			}
  1326  			if todo > bytesToScavenge {
  1327  				bytesToScavenge = todo
  1328  			}
  1329  		}
  1330  	}
  1331  	// There are a few very limited circumstances where we won't have a P here.
  1332  	// It's OK to simply skip scavenging in these cases. Something else will notice
  1333  	// and pick up the tab.
  1334  	var now int64
  1335  	if pp != nil && bytesToScavenge > 0 {
  1336  		// Measure how long we spent scavenging and add that measurement to the assist
  1337  		// time so we can track it for the GC CPU limiter.
  1338  		//
  1339  		// Limiter event tracking might be disabled if we end up here
  1340  		// while on a mark worker.
  1341  		start := nanotime()
  1342  		track := pp.limiterEvent.start(limiterEventScavengeAssist, start)
  1343  
  1344  		// Scavenge, but back out if the limiter turns on.
  1345  		released := h.pages.scavenge(bytesToScavenge, func() bool {
  1346  			return gcCPULimiter.limiting()
  1347  		}, forceScavenge)
  1348  
  1349  		mheap_.pages.scav.releasedEager.Add(released)
  1350  
  1351  		// Finish up accounting.
  1352  		now = nanotime()
  1353  		if track {
  1354  			pp.limiterEvent.stop(limiterEventScavengeAssist, now)
  1355  		}
  1356  		scavenge.assistTime.Add(now - start)
  1357  	}
  1358  
  1359  	// Initialize the span.
  1360  	h.initSpan(s, typ, spanclass, base, npages)
  1361  
  1362  	// Commit and account for any scavenged memory that the span now owns.
  1363  	nbytes := npages * pageSize
  1364  	if scav != 0 {
  1365  		// sysUsed all the pages that are actually available
  1366  		// in the span since some of them might be scavenged.
  1367  		sysUsed(unsafe.Pointer(base), nbytes, scav)
  1368  		gcController.heapReleased.add(-int64(scav))
  1369  	}
  1370  	// Update stats.
  1371  	gcController.heapFree.add(-int64(nbytes - scav))
  1372  	if typ == spanAllocHeap {
  1373  		gcController.heapInUse.add(int64(nbytes))
  1374  	}
  1375  	// Update consistent stats.
  1376  	stats := memstats.heapStats.acquire()
  1377  	atomic.Xaddint64(&stats.committed, int64(scav))
  1378  	atomic.Xaddint64(&stats.released, -int64(scav))
  1379  	switch typ {
  1380  	case spanAllocHeap:
  1381  		atomic.Xaddint64(&stats.inHeap, int64(nbytes))
  1382  	case spanAllocStack:
  1383  		atomic.Xaddint64(&stats.inStacks, int64(nbytes))
  1384  	case spanAllocPtrScalarBits:
  1385  		atomic.Xaddint64(&stats.inPtrScalarBits, int64(nbytes))
  1386  	case spanAllocWorkBuf:
  1387  		atomic.Xaddint64(&stats.inWorkBufs, int64(nbytes))
  1388  	}
  1389  	memstats.heapStats.release()
  1390  
  1391  	// Trace the span alloc.
  1392  	if traceAllocFreeEnabled() {
  1393  		trace := traceAcquire()
  1394  		if trace.ok() {
  1395  			trace.SpanAlloc(s)
  1396  			traceRelease(trace)
  1397  		}
  1398  	}
  1399  	return s
  1400  }
  1401  
  1402  // initSpan initializes a blank span s which will represent the range
  1403  // [base, base+npages*pageSize). typ is the type of span being allocated.
  1404  func (h *mheap) initSpan(s *mspan, typ spanAllocType, spanclass spanClass, base, npages uintptr) {
  1405  	// At this point, both s != nil and base != 0, and the heap
  1406  	// lock is no longer held. Initialize the span.
  1407  	s.init(base, npages)
  1408  	if h.allocNeedsZero(base, npages) {
  1409  		s.needzero = 1
  1410  	}
  1411  	nbytes := npages * pageSize
  1412  	if typ.manual() {
  1413  		s.manualFreeList = 0
  1414  		s.nelems = 0
  1415  		s.limit = s.base() + s.npages*pageSize
  1416  		s.state.set(mSpanManual)
  1417  	} else {
  1418  		// We must set span properties before the span is published anywhere
  1419  		// since we're not holding the heap lock.
  1420  		s.spanclass = spanclass
  1421  		if sizeclass := spanclass.sizeclass(); sizeclass == 0 {
  1422  			s.elemsize = nbytes
  1423  			s.nelems = 1
  1424  			s.divMul = 0
  1425  		} else {
  1426  			s.elemsize = uintptr(class_to_size[sizeclass])
  1427  			if !s.spanclass.noscan() && heapBitsInSpan(s.elemsize) {
  1428  				// Reserve space for the pointer/scan bitmap at the end.
  1429  				s.nelems = uint16((nbytes - (nbytes / goarch.PtrSize / 8)) / s.elemsize)
  1430  			} else {
  1431  				s.nelems = uint16(nbytes / s.elemsize)
  1432  			}
  1433  			s.divMul = class_to_divmagic[sizeclass]
  1434  		}
  1435  
  1436  		// Initialize mark and allocation structures.
  1437  		s.freeindex = 0
  1438  		s.freeIndexForScan = 0
  1439  		s.allocCache = ^uint64(0) // all 1s indicating all free.
  1440  		s.gcmarkBits = newMarkBits(uintptr(s.nelems))
  1441  		s.allocBits = newAllocBits(uintptr(s.nelems))
  1442  
  1443  		// It's safe to access h.sweepgen without the heap lock because it's
  1444  		// only ever updated with the world stopped and we run on the
  1445  		// systemstack which blocks a STW transition.
  1446  		atomic.Store(&s.sweepgen, h.sweepgen)
  1447  
  1448  		// Now that the span is filled in, set its state. This
  1449  		// is a publication barrier for the other fields in
  1450  		// the span. While valid pointers into this span
  1451  		// should never be visible until the span is returned,
  1452  		// if the garbage collector finds an invalid pointer,
  1453  		// access to the span may race with initialization of
  1454  		// the span. We resolve this race by atomically
  1455  		// setting the state after the span is fully
  1456  		// initialized, and atomically checking the state in
  1457  		// any situation where a pointer is suspect.
  1458  		s.state.set(mSpanInUse)
  1459  	}
  1460  
  1461  	// Publish the span in various locations.
  1462  
  1463  	// This is safe to call without the lock held because the slots
  1464  	// related to this span will only ever be read or modified by
  1465  	// this thread until pointers into the span are published (and
  1466  	// we execute a publication barrier at the end of this function
  1467  	// before that happens) or pageInUse is updated.
  1468  	h.setSpans(s.base(), npages, s)
  1469  
  1470  	if !typ.manual() {
  1471  		// Mark in-use span in arena page bitmap.
  1472  		//
  1473  		// This publishes the span to the page sweeper, so
  1474  		// it's imperative that the span be completely initialized
  1475  		// prior to this line.
  1476  		arena, pageIdx, pageMask := pageIndexOf(s.base())
  1477  		atomic.Or8(&arena.pageInUse[pageIdx], pageMask)
  1478  
  1479  		// Update related page sweeper stats.
  1480  		h.pagesInUse.Add(npages)
  1481  	}
  1482  
  1483  	// Make sure the newly allocated span will be observed
  1484  	// by the GC before pointers into the span are published.
  1485  	publicationBarrier()
  1486  }
  1487  
  1488  // Try to add at least npage pages of memory to the heap,
  1489  // returning how much the heap grew by and whether it worked.
  1490  //
  1491  // h.lock must be held.
  1492  func (h *mheap) grow(npage uintptr) (uintptr, bool) {
  1493  	assertLockHeld(&h.lock)
  1494  
  1495  	// We must grow the heap in whole palloc chunks.
  1496  	// We call sysMap below but note that because we
  1497  	// round up to pallocChunkPages which is on the order
  1498  	// of MiB (generally >= to the huge page size) we
  1499  	// won't be calling it too much.
  1500  	ask := alignUp(npage, pallocChunkPages) * pageSize
  1501  
  1502  	totalGrowth := uintptr(0)
  1503  	// This may overflow because ask could be very large
  1504  	// and is otherwise unrelated to h.curArena.base.
  1505  	end := h.curArena.base + ask
  1506  	nBase := alignUp(end, physPageSize)
  1507  	if nBase > h.curArena.end || /* overflow */ end < h.curArena.base {
  1508  		// Not enough room in the current arena. Allocate more
  1509  		// arena space. This may not be contiguous with the
  1510  		// current arena, so we have to request the full ask.
  1511  		av, asize := h.sysAlloc(ask, &h.arenaHints, &h.heapArenas)
  1512  		if av == nil {
  1513  			inUse := gcController.heapFree.load() + gcController.heapReleased.load() + gcController.heapInUse.load()
  1514  			print("runtime: out of memory: cannot allocate ", ask, "-byte block (", inUse, " in use)\n")
  1515  			return 0, false
  1516  		}
  1517  
  1518  		if uintptr(av) == h.curArena.end {
  1519  			// The new space is contiguous with the old
  1520  			// space, so just extend the current space.
  1521  			h.curArena.end = uintptr(av) + asize
  1522  		} else {
  1523  			// The new space is discontiguous. Track what
  1524  			// remains of the current space and switch to
  1525  			// the new space. This should be rare.
  1526  			if size := h.curArena.end - h.curArena.base; size != 0 {
  1527  				// Transition this space from Reserved to Prepared and mark it
  1528  				// as released since we'll be able to start using it after updating
  1529  				// the page allocator and releasing the lock at any time.
  1530  				sysMap(unsafe.Pointer(h.curArena.base), size, &gcController.heapReleased, "heap")
  1531  				// Update stats.
  1532  				stats := memstats.heapStats.acquire()
  1533  				atomic.Xaddint64(&stats.released, int64(size))
  1534  				memstats.heapStats.release()
  1535  				// Update the page allocator's structures to make this
  1536  				// space ready for allocation.
  1537  				h.pages.grow(h.curArena.base, size)
  1538  				totalGrowth += size
  1539  			}
  1540  			// Switch to the new space.
  1541  			h.curArena.base = uintptr(av)
  1542  			h.curArena.end = uintptr(av) + asize
  1543  		}
  1544  
  1545  		// Recalculate nBase.
  1546  		// We know this won't overflow, because sysAlloc returned
  1547  		// a valid region starting at h.curArena.base which is at
  1548  		// least ask bytes in size.
  1549  		nBase = alignUp(h.curArena.base+ask, physPageSize)
  1550  	}
  1551  
  1552  	// Grow into the current arena.
  1553  	v := h.curArena.base
  1554  	h.curArena.base = nBase
  1555  
  1556  	// Transition the space we're going to use from Reserved to Prepared.
  1557  	//
  1558  	// The allocation is always aligned to the heap arena
  1559  	// size which is always > physPageSize, so its safe to
  1560  	// just add directly to heapReleased.
  1561  	sysMap(unsafe.Pointer(v), nBase-v, &gcController.heapReleased, "heap")
  1562  
  1563  	// The memory just allocated counts as both released
  1564  	// and idle, even though it's not yet backed by spans.
  1565  	stats := memstats.heapStats.acquire()
  1566  	atomic.Xaddint64(&stats.released, int64(nBase-v))
  1567  	memstats.heapStats.release()
  1568  
  1569  	// Update the page allocator's structures to make this
  1570  	// space ready for allocation.
  1571  	h.pages.grow(v, nBase-v)
  1572  	totalGrowth += nBase - v
  1573  	return totalGrowth, true
  1574  }
  1575  
  1576  // Free the span back into the heap.
  1577  func (h *mheap) freeSpan(s *mspan) {
  1578  	systemstack(func() {
  1579  		// Trace the span free.
  1580  		if traceAllocFreeEnabled() {
  1581  			trace := traceAcquire()
  1582  			if trace.ok() {
  1583  				trace.SpanFree(s)
  1584  				traceRelease(trace)
  1585  			}
  1586  		}
  1587  
  1588  		lock(&h.lock)
  1589  		if msanenabled {
  1590  			// Tell msan that this entire span is no longer in use.
  1591  			base := unsafe.Pointer(s.base())
  1592  			bytes := s.npages << _PageShift
  1593  			msanfree(base, bytes)
  1594  		}
  1595  		if asanenabled {
  1596  			// Tell asan that this entire span is no longer in use.
  1597  			base := unsafe.Pointer(s.base())
  1598  			bytes := s.npages << _PageShift
  1599  			asanpoison(base, bytes)
  1600  		}
  1601  		h.freeSpanLocked(s, spanAllocHeap)
  1602  		unlock(&h.lock)
  1603  	})
  1604  }
  1605  
  1606  // freeManual frees a manually-managed span returned by allocManual.
  1607  // typ must be the same as the spanAllocType passed to the allocManual that
  1608  // allocated s.
  1609  //
  1610  // This must only be called when gcphase == _GCoff. See mSpanState for
  1611  // an explanation.
  1612  //
  1613  // freeManual must be called on the system stack because it acquires
  1614  // the heap lock. See mheap for details.
  1615  //
  1616  //go:systemstack
  1617  func (h *mheap) freeManual(s *mspan, typ spanAllocType) {
  1618  	// Trace the span free.
  1619  	if traceAllocFreeEnabled() {
  1620  		trace := traceAcquire()
  1621  		if trace.ok() {
  1622  			trace.SpanFree(s)
  1623  			traceRelease(trace)
  1624  		}
  1625  	}
  1626  
  1627  	s.needzero = 1
  1628  	lock(&h.lock)
  1629  	h.freeSpanLocked(s, typ)
  1630  	unlock(&h.lock)
  1631  }
  1632  
  1633  func (h *mheap) freeSpanLocked(s *mspan, typ spanAllocType) {
  1634  	assertLockHeld(&h.lock)
  1635  
  1636  	switch s.state.get() {
  1637  	case mSpanManual:
  1638  		if s.allocCount != 0 {
  1639  			throw("mheap.freeSpanLocked - invalid stack free")
  1640  		}
  1641  	case mSpanInUse:
  1642  		if s.isUserArenaChunk {
  1643  			throw("mheap.freeSpanLocked - invalid free of user arena chunk")
  1644  		}
  1645  		if s.allocCount != 0 || s.sweepgen != h.sweepgen {
  1646  			print("mheap.freeSpanLocked - span ", s, " ptr ", hex(s.base()), " allocCount ", s.allocCount, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n")
  1647  			throw("mheap.freeSpanLocked - invalid free")
  1648  		}
  1649  		h.pagesInUse.Add(-s.npages)
  1650  
  1651  		// Clear in-use bit in arena page bitmap.
  1652  		arena, pageIdx, pageMask := pageIndexOf(s.base())
  1653  		atomic.And8(&arena.pageInUse[pageIdx], ^pageMask)
  1654  	default:
  1655  		throw("mheap.freeSpanLocked - invalid span state")
  1656  	}
  1657  
  1658  	// Update stats.
  1659  	//
  1660  	// Mirrors the code in allocSpan.
  1661  	nbytes := s.npages * pageSize
  1662  	gcController.heapFree.add(int64(nbytes))
  1663  	if typ == spanAllocHeap {
  1664  		gcController.heapInUse.add(-int64(nbytes))
  1665  	}
  1666  	// Update consistent stats.
  1667  	stats := memstats.heapStats.acquire()
  1668  	switch typ {
  1669  	case spanAllocHeap:
  1670  		atomic.Xaddint64(&stats.inHeap, -int64(nbytes))
  1671  	case spanAllocStack:
  1672  		atomic.Xaddint64(&stats.inStacks, -int64(nbytes))
  1673  	case spanAllocPtrScalarBits:
  1674  		atomic.Xaddint64(&stats.inPtrScalarBits, -int64(nbytes))
  1675  	case spanAllocWorkBuf:
  1676  		atomic.Xaddint64(&stats.inWorkBufs, -int64(nbytes))
  1677  	}
  1678  	memstats.heapStats.release()
  1679  
  1680  	// Mark the space as free.
  1681  	h.pages.free(s.base(), s.npages)
  1682  
  1683  	// Free the span structure. We no longer have a use for it.
  1684  	s.state.set(mSpanDead)
  1685  	h.freeMSpanLocked(s)
  1686  }
  1687  
  1688  // scavengeAll acquires the heap lock (blocking any additional
  1689  // manipulation of the page allocator) and iterates over the whole
  1690  // heap, scavenging every free page available.
  1691  //
  1692  // Must run on the system stack because it acquires the heap lock.
  1693  //
  1694  //go:systemstack
  1695  func (h *mheap) scavengeAll() {
  1696  	// Disallow malloc or panic while holding the heap lock. We do
  1697  	// this here because this is a non-mallocgc entry-point to
  1698  	// the mheap API.
  1699  	gp := getg()
  1700  	gp.m.mallocing++
  1701  
  1702  	// Force scavenge everything.
  1703  	released := h.pages.scavenge(^uintptr(0), nil, true)
  1704  
  1705  	gp.m.mallocing--
  1706  
  1707  	if debug.scavtrace > 0 {
  1708  		printScavTrace(0, released, true)
  1709  	}
  1710  }
  1711  
  1712  //go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory
  1713  func runtime_debug_freeOSMemory() {
  1714  	GC()
  1715  	systemstack(func() { mheap_.scavengeAll() })
  1716  }
  1717  
  1718  // Initialize a new span with the given start and npages.
  1719  func (span *mspan) init(base uintptr, npages uintptr) {
  1720  	// span is *not* zeroed.
  1721  	span.next = nil
  1722  	span.prev = nil
  1723  	span.list = nil
  1724  	span.startAddr = base
  1725  	span.npages = npages
  1726  	span.allocCount = 0
  1727  	span.spanclass = 0
  1728  	span.elemsize = 0
  1729  	span.speciallock.key = 0
  1730  	span.specials = nil
  1731  	span.needzero = 0
  1732  	span.freeindex = 0
  1733  	span.freeIndexForScan = 0
  1734  	span.allocBits = nil
  1735  	span.gcmarkBits = nil
  1736  	span.pinnerBits = nil
  1737  	span.state.set(mSpanDead)
  1738  	lockInit(&span.speciallock, lockRankMspanSpecial)
  1739  }
  1740  
  1741  func (span *mspan) inList() bool {
  1742  	return span.list != nil
  1743  }
  1744  
  1745  // Initialize an empty doubly-linked list.
  1746  func (list *mSpanList) init() {
  1747  	list.first = nil
  1748  	list.last = nil
  1749  }
  1750  
  1751  func (list *mSpanList) remove(span *mspan) {
  1752  	if span.list != list {
  1753  		print("runtime: failed mSpanList.remove span.npages=", span.npages,
  1754  			" span=", span, " prev=", span.prev, " span.list=", span.list, " list=", list, "\n")
  1755  		throw("mSpanList.remove")
  1756  	}
  1757  	if list.first == span {
  1758  		list.first = span.next
  1759  	} else {
  1760  		span.prev.next = span.next
  1761  	}
  1762  	if list.last == span {
  1763  		list.last = span.prev
  1764  	} else {
  1765  		span.next.prev = span.prev
  1766  	}
  1767  	span.next = nil
  1768  	span.prev = nil
  1769  	span.list = nil
  1770  }
  1771  
  1772  func (list *mSpanList) isEmpty() bool {
  1773  	return list.first == nil
  1774  }
  1775  
  1776  func (list *mSpanList) insert(span *mspan) {
  1777  	if span.next != nil || span.prev != nil || span.list != nil {
  1778  		println("runtime: failed mSpanList.insert", span, span.next, span.prev, span.list)
  1779  		throw("mSpanList.insert")
  1780  	}
  1781  	span.next = list.first
  1782  	if list.first != nil {
  1783  		// The list contains at least one span; link it in.
  1784  		// The last span in the list doesn't change.
  1785  		list.first.prev = span
  1786  	} else {
  1787  		// The list contains no spans, so this is also the last span.
  1788  		list.last = span
  1789  	}
  1790  	list.first = span
  1791  	span.list = list
  1792  }
  1793  
  1794  func (list *mSpanList) insertBack(span *mspan) {
  1795  	if span.next != nil || span.prev != nil || span.list != nil {
  1796  		println("runtime: failed mSpanList.insertBack", span, span.next, span.prev, span.list)
  1797  		throw("mSpanList.insertBack")
  1798  	}
  1799  	span.prev = list.last
  1800  	if list.last != nil {
  1801  		// The list contains at least one span.
  1802  		list.last.next = span
  1803  	} else {
  1804  		// The list contains no spans, so this is also the first span.
  1805  		list.first = span
  1806  	}
  1807  	list.last = span
  1808  	span.list = list
  1809  }
  1810  
  1811  // takeAll removes all spans from other and inserts them at the front
  1812  // of list.
  1813  func (list *mSpanList) takeAll(other *mSpanList) {
  1814  	if other.isEmpty() {
  1815  		return
  1816  	}
  1817  
  1818  	// Reparent everything in other to list.
  1819  	for s := other.first; s != nil; s = s.next {
  1820  		s.list = list
  1821  	}
  1822  
  1823  	// Concatenate the lists.
  1824  	if list.isEmpty() {
  1825  		*list = *other
  1826  	} else {
  1827  		// Neither list is empty. Put other before list.
  1828  		other.last.next = list.first
  1829  		list.first.prev = other.last
  1830  		list.first = other.first
  1831  	}
  1832  
  1833  	other.first, other.last = nil, nil
  1834  }
  1835  
  1836  const (
  1837  	// _KindSpecialFinalizer is for tracking finalizers.
  1838  	_KindSpecialFinalizer = 1
  1839  	// _KindSpecialWeakHandle is used for creating weak pointers.
  1840  	_KindSpecialWeakHandle = 2
  1841  	// _KindSpecialProfile is for memory profiling.
  1842  	_KindSpecialProfile = 3
  1843  	// _KindSpecialReachable is a special used for tracking
  1844  	// reachability during testing.
  1845  	_KindSpecialReachable = 4
  1846  	// _KindSpecialPinCounter is a special used for objects that are pinned
  1847  	// multiple times
  1848  	_KindSpecialPinCounter = 5
  1849  	// _KindSpecialCleanup is for tracking cleanups.
  1850  	_KindSpecialCleanup = 6
  1851  )
  1852  
  1853  type special struct {
  1854  	_      sys.NotInHeap
  1855  	next   *special // linked list in span
  1856  	offset uintptr  // span offset of object
  1857  	kind   byte     // kind of special
  1858  }
  1859  
  1860  // spanHasSpecials marks a span as having specials in the arena bitmap.
  1861  func spanHasSpecials(s *mspan) {
  1862  	arenaPage := (s.base() / pageSize) % pagesPerArena
  1863  	ai := arenaIndex(s.base())
  1864  	ha := mheap_.arenas[ai.l1()][ai.l2()]
  1865  	atomic.Or8(&ha.pageSpecials[arenaPage/8], uint8(1)<<(arenaPage%8))
  1866  }
  1867  
  1868  // spanHasNoSpecials marks a span as having no specials in the arena bitmap.
  1869  func spanHasNoSpecials(s *mspan) {
  1870  	arenaPage := (s.base() / pageSize) % pagesPerArena
  1871  	ai := arenaIndex(s.base())
  1872  	ha := mheap_.arenas[ai.l1()][ai.l2()]
  1873  	atomic.And8(&ha.pageSpecials[arenaPage/8], ^(uint8(1) << (arenaPage % 8)))
  1874  }
  1875  
  1876  // addspecial adds the special record s to the list of special records for
  1877  // the object p. All fields of s should be filled in except for
  1878  // offset & next, which this routine will fill in.
  1879  // Returns true if the special was successfully added, false otherwise.
  1880  // (The add will fail only if a record with the same p and s->kind
  1881  // already exists unless force is set to true.)
  1882  func addspecial(p unsafe.Pointer, s *special, force bool) bool {
  1883  	span := spanOfHeap(uintptr(p))
  1884  	if span == nil {
  1885  		throw("addspecial on invalid pointer")
  1886  	}
  1887  
  1888  	// Ensure that the span is swept.
  1889  	// Sweeping accesses the specials list w/o locks, so we have
  1890  	// to synchronize with it. And it's just much safer.
  1891  	mp := acquirem()
  1892  	span.ensureSwept()
  1893  
  1894  	offset := uintptr(p) - span.base()
  1895  	kind := s.kind
  1896  
  1897  	lock(&span.speciallock)
  1898  
  1899  	// Find splice point, check for existing record.
  1900  	iter, exists := span.specialFindSplicePoint(offset, kind)
  1901  	if !exists || force {
  1902  		// Splice in record, fill in offset.
  1903  		s.offset = offset
  1904  		s.next = *iter
  1905  		*iter = s
  1906  		spanHasSpecials(span)
  1907  	}
  1908  
  1909  	unlock(&span.speciallock)
  1910  	releasem(mp)
  1911  	// We're converting p to a uintptr and looking it up, and we
  1912  	// don't want it to die and get swept while we're doing so.
  1913  	KeepAlive(p)
  1914  	return !exists || force // already exists or addition was forced
  1915  }
  1916  
  1917  // Removes the Special record of the given kind for the object p.
  1918  // Returns the record if the record existed, nil otherwise.
  1919  // The caller must FixAlloc_Free the result.
  1920  func removespecial(p unsafe.Pointer, kind uint8) *special {
  1921  	span := spanOfHeap(uintptr(p))
  1922  	if span == nil {
  1923  		throw("removespecial on invalid pointer")
  1924  	}
  1925  
  1926  	// Ensure that the span is swept.
  1927  	// Sweeping accesses the specials list w/o locks, so we have
  1928  	// to synchronize with it. And it's just much safer.
  1929  	mp := acquirem()
  1930  	span.ensureSwept()
  1931  
  1932  	offset := uintptr(p) - span.base()
  1933  
  1934  	var result *special
  1935  	lock(&span.speciallock)
  1936  
  1937  	iter, exists := span.specialFindSplicePoint(offset, kind)
  1938  	if exists {
  1939  		s := *iter
  1940  		*iter = s.next
  1941  		result = s
  1942  	}
  1943  	if span.specials == nil {
  1944  		spanHasNoSpecials(span)
  1945  	}
  1946  	unlock(&span.speciallock)
  1947  	releasem(mp)
  1948  	return result
  1949  }
  1950  
  1951  // Find a splice point in the sorted list and check for an already existing
  1952  // record. Returns a pointer to the next-reference in the list predecessor.
  1953  // Returns true, if the referenced item is an exact match.
  1954  func (span *mspan) specialFindSplicePoint(offset uintptr, kind byte) (**special, bool) {
  1955  	// Find splice point, check for existing record.
  1956  	iter := &span.specials
  1957  	found := false
  1958  	for {
  1959  		s := *iter
  1960  		if s == nil {
  1961  			break
  1962  		}
  1963  		if offset == uintptr(s.offset) && kind == s.kind {
  1964  			found = true
  1965  			break
  1966  		}
  1967  		if offset < uintptr(s.offset) || (offset == uintptr(s.offset) && kind < s.kind) {
  1968  			break
  1969  		}
  1970  		iter = &s.next
  1971  	}
  1972  	return iter, found
  1973  }
  1974  
  1975  // The described object has a finalizer set for it.
  1976  //
  1977  // specialfinalizer is allocated from non-GC'd memory, so any heap
  1978  // pointers must be specially handled.
  1979  type specialfinalizer struct {
  1980  	_       sys.NotInHeap
  1981  	special special
  1982  	fn      *funcval // May be a heap pointer.
  1983  	nret    uintptr
  1984  	fint    *_type   // May be a heap pointer, but always live.
  1985  	ot      *ptrtype // May be a heap pointer, but always live.
  1986  }
  1987  
  1988  // Adds a finalizer to the object p. Returns true if it succeeded.
  1989  func addfinalizer(p unsafe.Pointer, f *funcval, nret uintptr, fint *_type, ot *ptrtype) bool {
  1990  	lock(&mheap_.speciallock)
  1991  	s := (*specialfinalizer)(mheap_.specialfinalizeralloc.alloc())
  1992  	unlock(&mheap_.speciallock)
  1993  	s.special.kind = _KindSpecialFinalizer
  1994  	s.fn = f
  1995  	s.nret = nret
  1996  	s.fint = fint
  1997  	s.ot = ot
  1998  	if addspecial(p, &s.special, false) {
  1999  		// This is responsible for maintaining the same
  2000  		// GC-related invariants as markrootSpans in any
  2001  		// situation where it's possible that markrootSpans
  2002  		// has already run but mark termination hasn't yet.
  2003  		if gcphase != _GCoff {
  2004  			base, span, _ := findObject(uintptr(p), 0, 0)
  2005  			mp := acquirem()
  2006  			gcw := &mp.p.ptr().gcw
  2007  			// Mark everything reachable from the object
  2008  			// so it's retained for the finalizer.
  2009  			if !span.spanclass.noscan() {
  2010  				scanobject(base, gcw)
  2011  			}
  2012  			// Mark the finalizer itself, since the
  2013  			// special isn't part of the GC'd heap.
  2014  			scanblock(uintptr(unsafe.Pointer(&s.fn)), goarch.PtrSize, &oneptrmask[0], gcw, nil)
  2015  			releasem(mp)
  2016  		}
  2017  		return true
  2018  	}
  2019  
  2020  	// There was an old finalizer
  2021  	lock(&mheap_.speciallock)
  2022  	mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
  2023  	unlock(&mheap_.speciallock)
  2024  	return false
  2025  }
  2026  
  2027  // Removes the finalizer (if any) from the object p.
  2028  func removefinalizer(p unsafe.Pointer) {
  2029  	s := (*specialfinalizer)(unsafe.Pointer(removespecial(p, _KindSpecialFinalizer)))
  2030  	if s == nil {
  2031  		return // there wasn't a finalizer to remove
  2032  	}
  2033  	lock(&mheap_.speciallock)
  2034  	mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
  2035  	unlock(&mheap_.speciallock)
  2036  }
  2037  
  2038  // The described object has a cleanup set for it.
  2039  type specialCleanup struct {
  2040  	_       sys.NotInHeap
  2041  	special special
  2042  	fn      *funcval
  2043  	// Globally unique ID for the cleanup, obtained from mheap_.cleanupID.
  2044  	id uint64
  2045  }
  2046  
  2047  // addCleanup attaches a cleanup function to the object. Multiple
  2048  // cleanups are allowed on an object, and even the same pointer.
  2049  // A cleanup id is returned which can be used to uniquely identify
  2050  // the cleanup.
  2051  func addCleanup(p unsafe.Pointer, f *funcval) uint64 {
  2052  	lock(&mheap_.speciallock)
  2053  	s := (*specialCleanup)(mheap_.specialCleanupAlloc.alloc())
  2054  	mheap_.cleanupID++
  2055  	id := mheap_.cleanupID
  2056  	unlock(&mheap_.speciallock)
  2057  	s.special.kind = _KindSpecialCleanup
  2058  	s.fn = f
  2059  	s.id = id
  2060  
  2061  	mp := acquirem()
  2062  	addspecial(p, &s.special, true)
  2063  	// This is responsible for maintaining the same
  2064  	// GC-related invariants as markrootSpans in any
  2065  	// situation where it's possible that markrootSpans
  2066  	// has already run but mark termination hasn't yet.
  2067  	if gcphase != _GCoff {
  2068  		gcw := &mp.p.ptr().gcw
  2069  		// Mark the cleanup itself, since the
  2070  		// special isn't part of the GC'd heap.
  2071  		scanblock(uintptr(unsafe.Pointer(&s.fn)), goarch.PtrSize, &oneptrmask[0], gcw, nil)
  2072  	}
  2073  	releasem(mp)
  2074  	// Keep f alive. There's a window in this function where it's
  2075  	// only reachable via the special while the special hasn't been
  2076  	// added to the specials list yet. This is similar to a bug
  2077  	// discovered for weak handles, see #70455.
  2078  	KeepAlive(f)
  2079  	return id
  2080  }
  2081  
  2082  // The described object has a weak pointer.
  2083  //
  2084  // Weak pointers in the GC have the following invariants:
  2085  //
  2086  //   - Strong-to-weak conversions must ensure the strong pointer
  2087  //     remains live until the weak handle is installed. This ensures
  2088  //     that creating a weak pointer cannot fail.
  2089  //
  2090  //   - Weak-to-strong conversions require the weakly-referenced
  2091  //     object to be swept before the conversion may proceed. This
  2092  //     ensures that weak-to-strong conversions cannot resurrect
  2093  //     dead objects by sweeping them before that happens.
  2094  //
  2095  //   - Weak handles are unique and canonical for each byte offset into
  2096  //     an object that a strong pointer may point to, until an object
  2097  //     becomes unreachable.
  2098  //
  2099  //   - Weak handles contain nil as soon as an object becomes unreachable
  2100  //     the first time, before a finalizer makes it reachable again. New
  2101  //     weak handles created after resurrection are newly unique.
  2102  //
  2103  // specialWeakHandle is allocated from non-GC'd memory, so any heap
  2104  // pointers must be specially handled.
  2105  type specialWeakHandle struct {
  2106  	_       sys.NotInHeap
  2107  	special special
  2108  	// handle is a reference to the actual weak pointer.
  2109  	// It is always heap-allocated and must be explicitly kept
  2110  	// live so long as this special exists.
  2111  	handle *atomic.Uintptr
  2112  }
  2113  
  2114  //go:linkname internal_weak_runtime_registerWeakPointer weak.runtime_registerWeakPointer
  2115  func internal_weak_runtime_registerWeakPointer(p unsafe.Pointer) unsafe.Pointer {
  2116  	return unsafe.Pointer(getOrAddWeakHandle(unsafe.Pointer(p)))
  2117  }
  2118  
  2119  //go:linkname internal_weak_runtime_makeStrongFromWeak weak.runtime_makeStrongFromWeak
  2120  func internal_weak_runtime_makeStrongFromWeak(u unsafe.Pointer) unsafe.Pointer {
  2121  	handle := (*atomic.Uintptr)(u)
  2122  
  2123  	// Prevent preemption. We want to make sure that another GC cycle can't start
  2124  	// and that work.strongFromWeak.block can't change out from under us.
  2125  	mp := acquirem()
  2126  
  2127  	// Yield to the GC if necessary.
  2128  	if work.strongFromWeak.block {
  2129  		releasem(mp)
  2130  
  2131  		// Try to park and wait for mark termination.
  2132  		// N.B. gcParkStrongFromWeak calls acquirem before returning.
  2133  		mp = gcParkStrongFromWeak()
  2134  	}
  2135  
  2136  	p := handle.Load()
  2137  	if p == 0 {
  2138  		releasem(mp)
  2139  		return nil
  2140  	}
  2141  	// Be careful. p may or may not refer to valid memory anymore, as it could've been
  2142  	// swept and released already. It's always safe to ensure a span is swept, though,
  2143  	// even if it's just some random span.
  2144  	span := spanOfHeap(p)
  2145  	if span == nil {
  2146  		// If it's immortal, then just return the pointer.
  2147  		//
  2148  		// Stay non-preemptible so the GC can't see us convert this potentially
  2149  		// completely bogus value to an unsafe.Pointer.
  2150  		if isGoPointerWithoutSpan(unsafe.Pointer(p)) {
  2151  			releasem(mp)
  2152  			return unsafe.Pointer(p)
  2153  		}
  2154  		// It's heap-allocated, so the span probably just got swept and released.
  2155  		releasem(mp)
  2156  		return nil
  2157  	}
  2158  	// Ensure the span is swept.
  2159  	span.ensureSwept()
  2160  
  2161  	// Now we can trust whatever we get from handle, so make a strong pointer.
  2162  	//
  2163  	// Even if we just swept some random span that doesn't contain this object, because
  2164  	// this object is long dead and its memory has since been reused, we'll just observe nil.
  2165  	ptr := unsafe.Pointer(handle.Load())
  2166  
  2167  	// This is responsible for maintaining the same GC-related
  2168  	// invariants as the Yuasa part of the write barrier. During
  2169  	// the mark phase, it's possible that we just created the only
  2170  	// valid pointer to the object pointed to by ptr. If it's only
  2171  	// ever referenced from our stack, and our stack is blackened
  2172  	// already, we could fail to mark it. So, mark it now.
  2173  	if gcphase != _GCoff {
  2174  		shade(uintptr(ptr))
  2175  	}
  2176  	releasem(mp)
  2177  
  2178  	// Explicitly keep ptr alive. This seems unnecessary since we return ptr,
  2179  	// but let's be explicit since it's important we keep ptr alive across the
  2180  	// call to shade.
  2181  	KeepAlive(ptr)
  2182  	return ptr
  2183  }
  2184  
  2185  // gcParkStrongFromWeak puts the current goroutine on the weak->strong queue and parks.
  2186  func gcParkStrongFromWeak() *m {
  2187  	// Prevent preemption as we check strongFromWeak, so it can't change out from under us.
  2188  	mp := acquirem()
  2189  
  2190  	for work.strongFromWeak.block {
  2191  		lock(&work.strongFromWeak.lock)
  2192  		releasem(mp) // N.B. Holding the lock prevents preemption.
  2193  
  2194  		// Queue ourselves up.
  2195  		work.strongFromWeak.q.pushBack(getg())
  2196  
  2197  		// Park.
  2198  		goparkunlock(&work.strongFromWeak.lock, waitReasonGCWeakToStrongWait, traceBlockGCWeakToStrongWait, 2)
  2199  
  2200  		// Re-acquire the current M since we're going to check the condition again.
  2201  		mp = acquirem()
  2202  
  2203  		// Re-check condition. We may have awoken in the next GC's mark termination phase.
  2204  	}
  2205  	return mp
  2206  }
  2207  
  2208  // gcWakeAllStrongFromWeak wakes all currently blocked weak->strong
  2209  // conversions. This is used at the end of a GC cycle.
  2210  //
  2211  // work.strongFromWeak.block must be false to prevent woken goroutines
  2212  // from immediately going back to sleep.
  2213  func gcWakeAllStrongFromWeak() {
  2214  	lock(&work.strongFromWeak.lock)
  2215  	list := work.strongFromWeak.q.popList()
  2216  	injectglist(&list)
  2217  	unlock(&work.strongFromWeak.lock)
  2218  }
  2219  
  2220  // Retrieves or creates a weak pointer handle for the object p.
  2221  func getOrAddWeakHandle(p unsafe.Pointer) *atomic.Uintptr {
  2222  	// First try to retrieve without allocating.
  2223  	if handle := getWeakHandle(p); handle != nil {
  2224  		// Keep p alive for the duration of the function to ensure
  2225  		// that it cannot die while we're trying to do this.
  2226  		KeepAlive(p)
  2227  		return handle
  2228  	}
  2229  
  2230  	lock(&mheap_.speciallock)
  2231  	s := (*specialWeakHandle)(mheap_.specialWeakHandleAlloc.alloc())
  2232  	unlock(&mheap_.speciallock)
  2233  
  2234  	handle := new(atomic.Uintptr)
  2235  	s.special.kind = _KindSpecialWeakHandle
  2236  	s.handle = handle
  2237  	handle.Store(uintptr(p))
  2238  	if addspecial(p, &s.special, false) {
  2239  		// This is responsible for maintaining the same
  2240  		// GC-related invariants as markrootSpans in any
  2241  		// situation where it's possible that markrootSpans
  2242  		// has already run but mark termination hasn't yet.
  2243  		if gcphase != _GCoff {
  2244  			mp := acquirem()
  2245  			gcw := &mp.p.ptr().gcw
  2246  			// Mark the weak handle itself, since the
  2247  			// special isn't part of the GC'd heap.
  2248  			scanblock(uintptr(unsafe.Pointer(&s.handle)), goarch.PtrSize, &oneptrmask[0], gcw, nil)
  2249  			releasem(mp)
  2250  		}
  2251  
  2252  		// Keep p alive for the duration of the function to ensure
  2253  		// that it cannot die while we're trying to do this.
  2254  		//
  2255  		// Same for handle, which is only stored in the special.
  2256  		// There's a window where it might die if we don't keep it
  2257  		// alive explicitly. Returning it here is probably good enough,
  2258  		// but let's be defensive and explicit. See #70455.
  2259  		KeepAlive(p)
  2260  		KeepAlive(handle)
  2261  		return handle
  2262  	}
  2263  
  2264  	// There was an existing handle. Free the special
  2265  	// and try again. We must succeed because we're explicitly
  2266  	// keeping p live until the end of this function. Either
  2267  	// we, or someone else, must have succeeded, because we can
  2268  	// only fail in the event of a race, and p will still be
  2269  	// be valid no matter how much time we spend here.
  2270  	lock(&mheap_.speciallock)
  2271  	mheap_.specialWeakHandleAlloc.free(unsafe.Pointer(s))
  2272  	unlock(&mheap_.speciallock)
  2273  
  2274  	handle = getWeakHandle(p)
  2275  	if handle == nil {
  2276  		throw("failed to get or create weak handle")
  2277  	}
  2278  
  2279  	// Keep p alive for the duration of the function to ensure
  2280  	// that it cannot die while we're trying to do this.
  2281  	//
  2282  	// Same for handle, just to be defensive.
  2283  	KeepAlive(p)
  2284  	KeepAlive(handle)
  2285  	return handle
  2286  }
  2287  
  2288  func getWeakHandle(p unsafe.Pointer) *atomic.Uintptr {
  2289  	span := spanOfHeap(uintptr(p))
  2290  	if span == nil {
  2291  		if isGoPointerWithoutSpan(p) {
  2292  			return mheap_.immortalWeakHandles.getOrAdd(uintptr(p))
  2293  		}
  2294  		throw("getWeakHandle on invalid pointer")
  2295  	}
  2296  
  2297  	// Ensure that the span is swept.
  2298  	// Sweeping accesses the specials list w/o locks, so we have
  2299  	// to synchronize with it. And it's just much safer.
  2300  	mp := acquirem()
  2301  	span.ensureSwept()
  2302  
  2303  	offset := uintptr(p) - span.base()
  2304  
  2305  	lock(&span.speciallock)
  2306  
  2307  	// Find the existing record and return the handle if one exists.
  2308  	var handle *atomic.Uintptr
  2309  	iter, exists := span.specialFindSplicePoint(offset, _KindSpecialWeakHandle)
  2310  	if exists {
  2311  		handle = ((*specialWeakHandle)(unsafe.Pointer(*iter))).handle
  2312  	}
  2313  	unlock(&span.speciallock)
  2314  	releasem(mp)
  2315  
  2316  	// Keep p alive for the duration of the function to ensure
  2317  	// that it cannot die while we're trying to do this.
  2318  	KeepAlive(p)
  2319  	return handle
  2320  }
  2321  
  2322  type immortalWeakHandleMap struct {
  2323  	root atomic.UnsafePointer // *immortalWeakHandle (can't use generics because it's notinheap)
  2324  }
  2325  
  2326  // immortalWeakHandle is a lock-free append-only hash-trie.
  2327  //
  2328  // Key features:
  2329  //   - 2-ary trie. Child nodes are indexed by the highest bit (remaining) of the hash of the address.
  2330  //   - New nodes are placed at the first empty level encountered.
  2331  //   - When the first child is added to a node, the existing value is not moved into a child.
  2332  //     This means that we must check the value at each level, not just at the leaf.
  2333  //   - No deletion or rebalancing.
  2334  //   - Intentionally devolves into a linked list on hash collisions (the hash bits will all
  2335  //     get shifted out during iteration, and new nodes will just be appended to the 0th child).
  2336  type immortalWeakHandle struct {
  2337  	_ sys.NotInHeap
  2338  
  2339  	children [2]atomic.UnsafePointer // *immortalObjectMapNode (can't use generics because it's notinheap)
  2340  	ptr      uintptr                 // &ptr is the weak handle
  2341  }
  2342  
  2343  // handle returns a canonical weak handle.
  2344  func (h *immortalWeakHandle) handle() *atomic.Uintptr {
  2345  	// N.B. Since we just need an *atomic.Uintptr that never changes, we can trivially
  2346  	// reference ptr to save on some memory in immortalWeakHandle and avoid extra atomics
  2347  	// in getOrAdd.
  2348  	return (*atomic.Uintptr)(unsafe.Pointer(&h.ptr))
  2349  }
  2350  
  2351  // getOrAdd introduces p, which must be a pointer to immortal memory (for example, a linker-allocated
  2352  // object) and returns a weak handle. The weak handle will never become nil.
  2353  func (tab *immortalWeakHandleMap) getOrAdd(p uintptr) *atomic.Uintptr {
  2354  	var newNode *immortalWeakHandle
  2355  	m := &tab.root
  2356  	hash := memhash(abi.NoEscape(unsafe.Pointer(&p)), 0, goarch.PtrSize)
  2357  	hashIter := hash
  2358  	for {
  2359  		n := (*immortalWeakHandle)(m.Load())
  2360  		if n == nil {
  2361  			// Try to insert a new map node. We may end up discarding
  2362  			// this node if we fail to insert because it turns out the
  2363  			// value is already in the map.
  2364  			//
  2365  			// The discard will only happen if two threads race on inserting
  2366  			// the same value. Both might create nodes, but only one will
  2367  			// succeed on insertion. If two threads race to insert two
  2368  			// different values, then both nodes will *always* get inserted,
  2369  			// because the equality checking below will always fail.
  2370  			//
  2371  			// Performance note: contention on insertion is likely to be
  2372  			// higher for small maps, but since this data structure is
  2373  			// append-only, either the map stays small because there isn't
  2374  			// much activity, or the map gets big and races to insert on
  2375  			// the same node are much less likely.
  2376  			if newNode == nil {
  2377  				newNode = (*immortalWeakHandle)(persistentalloc(unsafe.Sizeof(immortalWeakHandle{}), goarch.PtrSize, &memstats.gcMiscSys))
  2378  				newNode.ptr = p
  2379  			}
  2380  			if m.CompareAndSwapNoWB(nil, unsafe.Pointer(newNode)) {
  2381  				return newNode.handle()
  2382  			}
  2383  			// Reload n. Because pointers are only stored once,
  2384  			// we must have lost the race, and therefore n is not nil
  2385  			// anymore.
  2386  			n = (*immortalWeakHandle)(m.Load())
  2387  		}
  2388  		if n.ptr == p {
  2389  			return n.handle()
  2390  		}
  2391  		m = &n.children[hashIter>>(8*goarch.PtrSize-1)]
  2392  		hashIter <<= 1
  2393  	}
  2394  }
  2395  
  2396  // The described object is being heap profiled.
  2397  type specialprofile struct {
  2398  	_       sys.NotInHeap
  2399  	special special
  2400  	b       *bucket
  2401  }
  2402  
  2403  // Set the heap profile bucket associated with addr to b.
  2404  func setprofilebucket(p unsafe.Pointer, b *bucket) {
  2405  	lock(&mheap_.speciallock)
  2406  	s := (*specialprofile)(mheap_.specialprofilealloc.alloc())
  2407  	unlock(&mheap_.speciallock)
  2408  	s.special.kind = _KindSpecialProfile
  2409  	s.b = b
  2410  	if !addspecial(p, &s.special, false) {
  2411  		throw("setprofilebucket: profile already set")
  2412  	}
  2413  }
  2414  
  2415  // specialReachable tracks whether an object is reachable on the next
  2416  // GC cycle. This is used by testing.
  2417  type specialReachable struct {
  2418  	special   special
  2419  	done      bool
  2420  	reachable bool
  2421  }
  2422  
  2423  // specialPinCounter tracks whether an object is pinned multiple times.
  2424  type specialPinCounter struct {
  2425  	special special
  2426  	counter uintptr
  2427  }
  2428  
  2429  // specialsIter helps iterate over specials lists.
  2430  type specialsIter struct {
  2431  	pprev **special
  2432  	s     *special
  2433  }
  2434  
  2435  func newSpecialsIter(span *mspan) specialsIter {
  2436  	return specialsIter{&span.specials, span.specials}
  2437  }
  2438  
  2439  func (i *specialsIter) valid() bool {
  2440  	return i.s != nil
  2441  }
  2442  
  2443  func (i *specialsIter) next() {
  2444  	i.pprev = &i.s.next
  2445  	i.s = *i.pprev
  2446  }
  2447  
  2448  // unlinkAndNext removes the current special from the list and moves
  2449  // the iterator to the next special. It returns the unlinked special.
  2450  func (i *specialsIter) unlinkAndNext() *special {
  2451  	cur := i.s
  2452  	i.s = cur.next
  2453  	*i.pprev = i.s
  2454  	return cur
  2455  }
  2456  
  2457  // freeSpecial performs any cleanup on special s and deallocates it.
  2458  // s must already be unlinked from the specials list.
  2459  func freeSpecial(s *special, p unsafe.Pointer, size uintptr) {
  2460  	switch s.kind {
  2461  	case _KindSpecialFinalizer:
  2462  		sf := (*specialfinalizer)(unsafe.Pointer(s))
  2463  		queuefinalizer(p, sf.fn, sf.nret, sf.fint, sf.ot)
  2464  		lock(&mheap_.speciallock)
  2465  		mheap_.specialfinalizeralloc.free(unsafe.Pointer(sf))
  2466  		unlock(&mheap_.speciallock)
  2467  	case _KindSpecialWeakHandle:
  2468  		sw := (*specialWeakHandle)(unsafe.Pointer(s))
  2469  		sw.handle.Store(0)
  2470  		lock(&mheap_.speciallock)
  2471  		mheap_.specialWeakHandleAlloc.free(unsafe.Pointer(s))
  2472  		unlock(&mheap_.speciallock)
  2473  	case _KindSpecialProfile:
  2474  		sp := (*specialprofile)(unsafe.Pointer(s))
  2475  		mProf_Free(sp.b, size)
  2476  		lock(&mheap_.speciallock)
  2477  		mheap_.specialprofilealloc.free(unsafe.Pointer(sp))
  2478  		unlock(&mheap_.speciallock)
  2479  	case _KindSpecialReachable:
  2480  		sp := (*specialReachable)(unsafe.Pointer(s))
  2481  		sp.done = true
  2482  		// The creator frees these.
  2483  	case _KindSpecialPinCounter:
  2484  		lock(&mheap_.speciallock)
  2485  		mheap_.specialPinCounterAlloc.free(unsafe.Pointer(s))
  2486  		unlock(&mheap_.speciallock)
  2487  	case _KindSpecialCleanup:
  2488  		sc := (*specialCleanup)(unsafe.Pointer(s))
  2489  		// Cleanups, unlike finalizers, do not resurrect the objects
  2490  		// they're attached to, so we only need to pass the cleanup
  2491  		// function, not the object.
  2492  		queuefinalizer(nil, sc.fn, 0, nil, nil)
  2493  		lock(&mheap_.speciallock)
  2494  		mheap_.specialCleanupAlloc.free(unsafe.Pointer(sc))
  2495  		unlock(&mheap_.speciallock)
  2496  	default:
  2497  		throw("bad special kind")
  2498  		panic("not reached")
  2499  	}
  2500  }
  2501  
  2502  // gcBits is an alloc/mark bitmap. This is always used as gcBits.x.
  2503  type gcBits struct {
  2504  	_ sys.NotInHeap
  2505  	x uint8
  2506  }
  2507  
  2508  // bytep returns a pointer to the n'th byte of b.
  2509  func (b *gcBits) bytep(n uintptr) *uint8 {
  2510  	return addb(&b.x, n)
  2511  }
  2512  
  2513  // bitp returns a pointer to the byte containing bit n and a mask for
  2514  // selecting that bit from *bytep.
  2515  func (b *gcBits) bitp(n uintptr) (bytep *uint8, mask uint8) {
  2516  	return b.bytep(n / 8), 1 << (n % 8)
  2517  }
  2518  
  2519  const gcBitsChunkBytes = uintptr(64 << 10)
  2520  const gcBitsHeaderBytes = unsafe.Sizeof(gcBitsHeader{})
  2521  
  2522  type gcBitsHeader struct {
  2523  	free uintptr // free is the index into bits of the next free byte.
  2524  	next uintptr // *gcBits triggers recursive type bug. (issue 14620)
  2525  }
  2526  
  2527  type gcBitsArena struct {
  2528  	_ sys.NotInHeap
  2529  	// gcBitsHeader // side step recursive type bug (issue 14620) by including fields by hand.
  2530  	free uintptr // free is the index into bits of the next free byte; read/write atomically
  2531  	next *gcBitsArena
  2532  	bits [gcBitsChunkBytes - gcBitsHeaderBytes]gcBits
  2533  }
  2534  
  2535  var gcBitsArenas struct {
  2536  	lock     mutex
  2537  	free     *gcBitsArena
  2538  	next     *gcBitsArena // Read atomically. Write atomically under lock.
  2539  	current  *gcBitsArena
  2540  	previous *gcBitsArena
  2541  }
  2542  
  2543  // tryAlloc allocates from b or returns nil if b does not have enough room.
  2544  // This is safe to call concurrently.
  2545  func (b *gcBitsArena) tryAlloc(bytes uintptr) *gcBits {
  2546  	if b == nil || atomic.Loaduintptr(&b.free)+bytes > uintptr(len(b.bits)) {
  2547  		return nil
  2548  	}
  2549  	// Try to allocate from this block.
  2550  	end := atomic.Xadduintptr(&b.free, bytes)
  2551  	if end > uintptr(len(b.bits)) {
  2552  		return nil
  2553  	}
  2554  	// There was enough room.
  2555  	start := end - bytes
  2556  	return &b.bits[start]
  2557  }
  2558  
  2559  // newMarkBits returns a pointer to 8 byte aligned bytes
  2560  // to be used for a span's mark bits.
  2561  func newMarkBits(nelems uintptr) *gcBits {
  2562  	blocksNeeded := (nelems + 63) / 64
  2563  	bytesNeeded := blocksNeeded * 8
  2564  
  2565  	// Try directly allocating from the current head arena.
  2566  	head := (*gcBitsArena)(atomic.Loadp(unsafe.Pointer(&gcBitsArenas.next)))
  2567  	if p := head.tryAlloc(bytesNeeded); p != nil {
  2568  		return p
  2569  	}
  2570  
  2571  	// There's not enough room in the head arena. We may need to
  2572  	// allocate a new arena.
  2573  	lock(&gcBitsArenas.lock)
  2574  	// Try the head arena again, since it may have changed. Now
  2575  	// that we hold the lock, the list head can't change, but its
  2576  	// free position still can.
  2577  	if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
  2578  		unlock(&gcBitsArenas.lock)
  2579  		return p
  2580  	}
  2581  
  2582  	// Allocate a new arena. This may temporarily drop the lock.
  2583  	fresh := newArenaMayUnlock()
  2584  	// If newArenaMayUnlock dropped the lock, another thread may
  2585  	// have put a fresh arena on the "next" list. Try allocating
  2586  	// from next again.
  2587  	if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
  2588  		// Put fresh back on the free list.
  2589  		// TODO: Mark it "already zeroed"
  2590  		fresh.next = gcBitsArenas.free
  2591  		gcBitsArenas.free = fresh
  2592  		unlock(&gcBitsArenas.lock)
  2593  		return p
  2594  	}
  2595  
  2596  	// Allocate from the fresh arena. We haven't linked it in yet, so
  2597  	// this cannot race and is guaranteed to succeed.
  2598  	p := fresh.tryAlloc(bytesNeeded)
  2599  	if p == nil {
  2600  		throw("markBits overflow")
  2601  	}
  2602  
  2603  	// Add the fresh arena to the "next" list.
  2604  	fresh.next = gcBitsArenas.next
  2605  	atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), unsafe.Pointer(fresh))
  2606  
  2607  	unlock(&gcBitsArenas.lock)
  2608  	return p
  2609  }
  2610  
  2611  // newAllocBits returns a pointer to 8 byte aligned bytes
  2612  // to be used for this span's alloc bits.
  2613  // newAllocBits is used to provide newly initialized spans
  2614  // allocation bits. For spans not being initialized the
  2615  // mark bits are repurposed as allocation bits when
  2616  // the span is swept.
  2617  func newAllocBits(nelems uintptr) *gcBits {
  2618  	return newMarkBits(nelems)
  2619  }
  2620  
  2621  // nextMarkBitArenaEpoch establishes a new epoch for the arenas
  2622  // holding the mark bits. The arenas are named relative to the
  2623  // current GC cycle which is demarcated by the call to finishweep_m.
  2624  //
  2625  // All current spans have been swept.
  2626  // During that sweep each span allocated room for its gcmarkBits in
  2627  // gcBitsArenas.next block. gcBitsArenas.next becomes the gcBitsArenas.current
  2628  // where the GC will mark objects and after each span is swept these bits
  2629  // will be used to allocate objects.
  2630  // gcBitsArenas.current becomes gcBitsArenas.previous where the span's
  2631  // gcAllocBits live until all the spans have been swept during this GC cycle.
  2632  // The span's sweep extinguishes all the references to gcBitsArenas.previous
  2633  // by pointing gcAllocBits into the gcBitsArenas.current.
  2634  // The gcBitsArenas.previous is released to the gcBitsArenas.free list.
  2635  func nextMarkBitArenaEpoch() {
  2636  	lock(&gcBitsArenas.lock)
  2637  	if gcBitsArenas.previous != nil {
  2638  		if gcBitsArenas.free == nil {
  2639  			gcBitsArenas.free = gcBitsArenas.previous
  2640  		} else {
  2641  			// Find end of previous arenas.
  2642  			last := gcBitsArenas.previous
  2643  			for last = gcBitsArenas.previous; last.next != nil; last = last.next {
  2644  			}
  2645  			last.next = gcBitsArenas.free
  2646  			gcBitsArenas.free = gcBitsArenas.previous
  2647  		}
  2648  	}
  2649  	gcBitsArenas.previous = gcBitsArenas.current
  2650  	gcBitsArenas.current = gcBitsArenas.next
  2651  	atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), nil) // newMarkBits calls newArena when needed
  2652  	unlock(&gcBitsArenas.lock)
  2653  }
  2654  
  2655  // newArenaMayUnlock allocates and zeroes a gcBits arena.
  2656  // The caller must hold gcBitsArena.lock. This may temporarily release it.
  2657  func newArenaMayUnlock() *gcBitsArena {
  2658  	var result *gcBitsArena
  2659  	if gcBitsArenas.free == nil {
  2660  		unlock(&gcBitsArenas.lock)
  2661  		result = (*gcBitsArena)(sysAlloc(gcBitsChunkBytes, &memstats.gcMiscSys, "gc bits"))
  2662  		if result == nil {
  2663  			throw("runtime: cannot allocate memory")
  2664  		}
  2665  		lock(&gcBitsArenas.lock)
  2666  	} else {
  2667  		result = gcBitsArenas.free
  2668  		gcBitsArenas.free = gcBitsArenas.free.next
  2669  		memclrNoHeapPointers(unsafe.Pointer(result), gcBitsChunkBytes)
  2670  	}
  2671  	result.next = nil
  2672  	// If result.bits is not 8 byte aligned adjust index so
  2673  	// that &result.bits[result.free] is 8 byte aligned.
  2674  	if unsafe.Offsetof(gcBitsArena{}.bits)&7 == 0 {
  2675  		result.free = 0
  2676  	} else {
  2677  		result.free = 8 - (uintptr(unsafe.Pointer(&result.bits[0])) & 7)
  2678  	}
  2679  	return result
  2680  }
  2681  

View as plain text