Source file src/runtime/mgc.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector (GC).
     6  //
     7  // The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple
     8  // GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
     9  // non-generational and non-compacting. Allocation is done using size segregated per P allocation
    10  // areas to minimize fragmentation while eliminating locks in the common case.
    11  //
    12  // The algorithm decomposes into several steps.
    13  // This is a high level description of the algorithm being used. For an overview of GC a good
    14  // place to start is Richard Jones' gchandbook.org.
    15  //
    16  // The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
    17  // Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
    18  // On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978),
    19  // 966-975.
    20  // For journal quality proofs that these steps are complete, correct, and terminate see
    21  // Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
    22  // Concurrency and Computation: Practice and Experience 15(3-5), 2003.
    23  //
    24  // 1. GC performs sweep termination.
    25  //
    26  //    a. Stop the world. This causes all Ps to reach a GC safe-point.
    27  //
    28  //    b. Sweep any unswept spans. There will only be unswept spans if
    29  //    this GC cycle was forced before the expected time.
    30  //
    31  // 2. GC performs the mark phase.
    32  //
    33  //    a. Prepare for the mark phase by setting gcphase to _GCmark
    34  //    (from _GCoff), enabling the write barrier, enabling mutator
    35  //    assists, and enqueueing root mark jobs. No objects may be
    36  //    scanned until all Ps have enabled the write barrier, which is
    37  //    accomplished using STW.
    38  //
    39  //    b. Start the world. From this point, GC work is done by mark
    40  //    workers started by the scheduler and by assists performed as
    41  //    part of allocation. The write barrier shades both the
    42  //    overwritten pointer and the new pointer value for any pointer
    43  //    writes (see mbarrier.go for details). Newly allocated objects
    44  //    are immediately marked black.
    45  //
    46  //    c. GC performs root marking jobs. This includes scanning all
    47  //    stacks, shading all globals, and shading any heap pointers in
    48  //    off-heap runtime data structures. Scanning a stack stops a
    49  //    goroutine, shades any pointers found on its stack, and then
    50  //    resumes the goroutine.
    51  //
    52  //    d. GC drains the work queue of grey objects, scanning each grey
    53  //    object to black and shading all pointers found in the object
    54  //    (which in turn may add those pointers to the work queue).
    55  //
    56  //    e. Because GC work is spread across local caches, GC uses a
    57  //    distributed termination algorithm to detect when there are no
    58  //    more root marking jobs or grey objects (see gcMarkDone). At this
    59  //    point, GC transitions to mark termination.
    60  //
    61  // 3. GC performs mark termination.
    62  //
    63  //    a. Stop the world.
    64  //
    65  //    b. Set gcphase to _GCmarktermination, and disable workers and
    66  //    assists.
    67  //
    68  //    c. Perform housekeeping like flushing mcaches.
    69  //
    70  // 4. GC performs the sweep phase.
    71  //
    72  //    a. Prepare for the sweep phase by setting gcphase to _GCoff,
    73  //    setting up sweep state and disabling the write barrier.
    74  //
    75  //    b. Start the world. From this point on, newly allocated objects
    76  //    are white, and allocating sweeps spans before use if necessary.
    77  //
    78  //    c. GC does concurrent sweeping in the background and in response
    79  //    to allocation. See description below.
    80  //
    81  // 5. When sufficient allocation has taken place, replay the sequence
    82  // starting with 1 above. See discussion of GC rate below.
    83  
    84  // Concurrent sweep.
    85  //
    86  // The sweep phase proceeds concurrently with normal program execution.
    87  // The heap is swept span-by-span both lazily (when a goroutine needs another span)
    88  // and concurrently in a background goroutine (this helps programs that are not CPU bound).
    89  // At the end of STW mark termination all spans are marked as "needs sweeping".
    90  //
    91  // The background sweeper goroutine simply sweeps spans one-by-one.
    92  //
    93  // To avoid requesting more OS memory while there are unswept spans, when a
    94  // goroutine needs another span, it first attempts to reclaim that much memory
    95  // by sweeping. When a goroutine needs to allocate a new small-object span, it
    96  // sweeps small-object spans for the same object size until it frees at least
    97  // one object. When a goroutine needs to allocate large-object span from heap,
    98  // it sweeps spans until it frees at least that many pages into heap. There is
    99  // one case where this may not suffice: if a goroutine sweeps and frees two
   100  // nonadjacent one-page spans to the heap, it will allocate a new two-page
   101  // span, but there can still be other one-page unswept spans which could be
   102  // combined into a two-page span.
   103  //
   104  // It's critical to ensure that no operations proceed on unswept spans (that would corrupt
   105  // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
   106  // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
   107  // When a goroutine explicitly frees an object or sets a finalizer, it ensures that
   108  // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
   109  // The finalizer goroutine is kicked off only when all spans are swept.
   110  // When the next GC starts, it sweeps all not-yet-swept spans (if any).
   111  
   112  // GC rate.
   113  // Next GC is after we've allocated an extra amount of memory proportional to
   114  // the amount already in use. The proportion is controlled by GOGC environment variable
   115  // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
   116  // (this mark is computed by the gcController.heapGoal method). This keeps the GC cost in
   117  // linear proportion to the allocation cost. Adjusting GOGC just changes the linear constant
   118  // (and also the amount of extra memory used).
   119  
   120  // Oblets
   121  //
   122  // In order to prevent long pauses while scanning large objects and to
   123  // improve parallelism, the garbage collector breaks up scan jobs for
   124  // objects larger than maxObletBytes into "oblets" of at most
   125  // maxObletBytes. When scanning encounters the beginning of a large
   126  // object, it scans only the first oblet and enqueues the remaining
   127  // oblets as new scan jobs.
   128  
   129  package runtime
   130  
   131  import (
   132  	"internal/cpu"
   133  	"internal/goarch"
   134  	"internal/goexperiment"
   135  	"internal/runtime/atomic"
   136  	"internal/runtime/gc"
   137  	"unsafe"
   138  )
   139  
   140  const (
   141  	_DebugGC = 0
   142  
   143  	// concurrentSweep is a debug flag. Disabling this flag
   144  	// ensures all spans are swept while the world is stopped.
   145  	concurrentSweep = true
   146  
   147  	// debugScanConservative enables debug logging for stack
   148  	// frames that are scanned conservatively.
   149  	debugScanConservative = false
   150  
   151  	// sweepMinHeapDistance is a lower bound on the heap distance
   152  	// (in bytes) reserved for concurrent sweeping between GC
   153  	// cycles.
   154  	sweepMinHeapDistance = 1024 * 1024
   155  )
   156  
   157  // heapObjectsCanMove always returns false in the current garbage collector.
   158  // It exists for go4.org/unsafe/assume-no-moving-gc, which is an
   159  // unfortunate idea that had an even more unfortunate implementation.
   160  // Every time a new Go release happened, the package stopped building,
   161  // and the authors had to add a new file with a new //go:build line, and
   162  // then the entire ecosystem of packages with that as a dependency had to
   163  // explicitly update to the new version. Many packages depend on
   164  // assume-no-moving-gc transitively, through paths like
   165  // inet.af/netaddr -> go4.org/intern -> assume-no-moving-gc.
   166  // This was causing a significant amount of friction around each new
   167  // release, so we added this bool for the package to //go:linkname
   168  // instead. The bool is still unfortunate, but it's not as bad as
   169  // breaking the ecosystem on every new release.
   170  //
   171  // If the Go garbage collector ever does move heap objects, we can set
   172  // this to true to break all the programs using assume-no-moving-gc.
   173  //
   174  //go:linkname heapObjectsCanMove
   175  func heapObjectsCanMove() bool {
   176  	return false
   177  }
   178  
   179  func gcinit() {
   180  	if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
   181  		throw("size of Workbuf is suboptimal")
   182  	}
   183  	// No sweep on the first cycle.
   184  	sweep.active.state.Store(sweepDrainedMask)
   185  
   186  	// Initialize GC pacer state.
   187  	// Use the environment variable GOGC for the initial gcPercent value.
   188  	// Use the environment variable GOMEMLIMIT for the initial memoryLimit value.
   189  	gcController.init(readGOGC(), readGOMEMLIMIT())
   190  
   191  	// Set up the cleanup block ptr mask.
   192  	for i := range cleanupBlockPtrMask {
   193  		cleanupBlockPtrMask[i] = 0xff
   194  	}
   195  
   196  	work.startSema = 1
   197  	work.markDoneSema = 1
   198  	lockInit(&work.sweepWaiters.lock, lockRankSweepWaiters)
   199  	lockInit(&work.assistQueue.lock, lockRankAssistQueue)
   200  	lockInit(&work.strongFromWeak.lock, lockRankStrongFromWeakQueue)
   201  	lockInit(&work.wbufSpans.lock, lockRankWbufSpans)
   202  	lockInit(&gcCleanups.lock, lockRankCleanupQueue)
   203  }
   204  
   205  // gcenable is called after the bulk of the runtime initialization,
   206  // just before we're about to start letting user code run.
   207  // It kicks off the background sweeper goroutine, the background
   208  // scavenger goroutine, and enables GC.
   209  func gcenable() {
   210  	// Kick off sweeping and scavenging.
   211  	c := make(chan int, 2)
   212  	go bgsweep(c)
   213  	go bgscavenge(c)
   214  	<-c
   215  	<-c
   216  	memstats.enablegc = true // now that runtime is initialized, GC is okay
   217  }
   218  
   219  // Garbage collector phase.
   220  // Indicates to write barrier and synchronization task to perform.
   221  var gcphase uint32
   222  
   223  // The compiler knows about this variable.
   224  // If you change it, you must change builtin/runtime.go, too.
   225  // If you change the first four bytes, you must also change the write
   226  // barrier insertion code.
   227  //
   228  // writeBarrier should be an internal detail,
   229  // but widely used packages access it using linkname.
   230  // Notable members of the hall of shame include:
   231  //   - github.com/bytedance/sonic
   232  //
   233  // Do not remove or change the type signature.
   234  // See go.dev/issue/67401.
   235  //
   236  //go:linkname writeBarrier
   237  var writeBarrier struct {
   238  	enabled bool    // compiler emits a check of this before calling write barrier
   239  	pad     [3]byte // compiler uses 32-bit load for "enabled" field
   240  	alignme uint64  // guarantee alignment so that compiler can use a 32 or 64-bit load
   241  }
   242  
   243  // gcBlackenEnabled is 1 if mutator assists and background mark
   244  // workers are allowed to blacken objects. This must only be set when
   245  // gcphase == _GCmark.
   246  var gcBlackenEnabled uint32
   247  
   248  const (
   249  	_GCoff             = iota // GC not running; sweeping in background, write barrier disabled
   250  	_GCmark                   // GC marking roots and workbufs: allocate black, write barrier ENABLED
   251  	_GCmarktermination        // GC mark termination: allocate black, P's help GC, write barrier ENABLED
   252  )
   253  
   254  //go:nosplit
   255  func setGCPhase(x uint32) {
   256  	atomic.Store(&gcphase, x)
   257  	writeBarrier.enabled = gcphase == _GCmark || gcphase == _GCmarktermination
   258  }
   259  
   260  // gcMarkWorkerMode represents the mode that a concurrent mark worker
   261  // should operate in.
   262  //
   263  // Concurrent marking happens through four different mechanisms. One
   264  // is mutator assists, which happen in response to allocations and are
   265  // not scheduled. The other three are variations in the per-P mark
   266  // workers and are distinguished by gcMarkWorkerMode.
   267  type gcMarkWorkerMode int
   268  
   269  const (
   270  	// gcMarkWorkerNotWorker indicates that the next scheduled G is not
   271  	// starting work and the mode should be ignored.
   272  	gcMarkWorkerNotWorker gcMarkWorkerMode = iota
   273  
   274  	// gcMarkWorkerDedicatedMode indicates that the P of a mark
   275  	// worker is dedicated to running that mark worker. The mark
   276  	// worker should run without preemption.
   277  	gcMarkWorkerDedicatedMode
   278  
   279  	// gcMarkWorkerFractionalMode indicates that a P is currently
   280  	// running the "fractional" mark worker. The fractional worker
   281  	// is necessary when GOMAXPROCS*gcBackgroundUtilization is not
   282  	// an integer and using only dedicated workers would result in
   283  	// utilization too far from the target of gcBackgroundUtilization.
   284  	// The fractional worker should run until it is preempted and
   285  	// will be scheduled to pick up the fractional part of
   286  	// GOMAXPROCS*gcBackgroundUtilization.
   287  	gcMarkWorkerFractionalMode
   288  
   289  	// gcMarkWorkerIdleMode indicates that a P is running the mark
   290  	// worker because it has nothing else to do. The idle worker
   291  	// should run until it is preempted and account its time
   292  	// against gcController.idleMarkTime.
   293  	gcMarkWorkerIdleMode
   294  )
   295  
   296  // gcMarkWorkerModeStrings are the strings labels of gcMarkWorkerModes
   297  // to use in execution traces.
   298  var gcMarkWorkerModeStrings = [...]string{
   299  	"Not worker",
   300  	"GC (dedicated)",
   301  	"GC (fractional)",
   302  	"GC (idle)",
   303  }
   304  
   305  // pollFractionalWorkerExit reports whether a fractional mark worker
   306  // should self-preempt. It assumes it is called from the fractional
   307  // worker.
   308  func pollFractionalWorkerExit() bool {
   309  	// This should be kept in sync with the fractional worker
   310  	// scheduler logic in findRunnableGCWorker.
   311  	now := nanotime()
   312  	delta := now - gcController.markStartTime
   313  	if delta <= 0 {
   314  		return true
   315  	}
   316  	p := getg().m.p.ptr()
   317  	selfTime := p.gcFractionalMarkTime + (now - p.gcMarkWorkerStartTime)
   318  	// Add some slack to the utilization goal so that the
   319  	// fractional worker isn't behind again the instant it exits.
   320  	return float64(selfTime)/float64(delta) > 1.2*gcController.fractionalUtilizationGoal
   321  }
   322  
   323  var work workType
   324  
   325  type workType struct {
   326  	full  lfstack          // lock-free list of full blocks workbuf
   327  	_     cpu.CacheLinePad // prevents false-sharing between full and empty
   328  	empty lfstack          // lock-free list of empty blocks workbuf
   329  	_     cpu.CacheLinePad // prevents false-sharing between empty and wbufSpans
   330  
   331  	wbufSpans struct {
   332  		lock mutex
   333  		// free is a list of spans dedicated to workbufs, but
   334  		// that don't currently contain any workbufs.
   335  		free mSpanList
   336  		// busy is a list of all spans containing workbufs on
   337  		// one of the workbuf lists.
   338  		busy mSpanList
   339  	}
   340  	_ cpu.CacheLinePad // prevents false-sharing between wbufSpans and spanWorkMask
   341  
   342  	// spanqMask is a bitmap indicating which Ps have local work worth stealing.
   343  	// Set or cleared by the owning P, cleared by stealing Ps.
   344  	//
   345  	// spanqMask is like a proxy for a global queue. An important invariant is that
   346  	// forced flushing like gcw.dispose must set this bit on any P that has local
   347  	// span work.
   348  	spanqMask pMask
   349  	_         cpu.CacheLinePad // prevents false-sharing between spanqMask and everything else
   350  
   351  	// List of all spanSPMCs.
   352  	//
   353  	// Only used if goexperiment.GreenTeaGC.
   354  	spanSPMCs struct {
   355  		lock mutex // no lock rank because it's a leaf lock (see mklockrank.go).
   356  		all  *spanSPMC
   357  	}
   358  
   359  	// Restore 64-bit alignment on 32-bit.
   360  	// _ uint32
   361  
   362  	// bytesMarked is the number of bytes marked this cycle. This
   363  	// includes bytes blackened in scanned objects, noscan objects
   364  	// that go straight to black, objects allocated as black during
   365  	// the cycle, and permagrey objects scanned by markroot during
   366  	// the concurrent scan phase.
   367  	//
   368  	// This is updated atomically during the cycle. Updates may be batched
   369  	// arbitrarily, since the value is only read at the end of the cycle.
   370  	//
   371  	// Because of benign races during marking, this number may not
   372  	// be the exact number of marked bytes, but it should be very
   373  	// close.
   374  	//
   375  	// Put this field here because it needs 64-bit atomic access
   376  	// (and thus 8-byte alignment even on 32-bit architectures).
   377  	bytesMarked uint64
   378  
   379  	markrootNext atomic.Uint32 // next markroot job
   380  	markrootJobs atomic.Uint32 // number of markroot jobs
   381  
   382  	nproc  uint32
   383  	tstart int64
   384  	nwait  uint32
   385  
   386  	// Number of roots of various root types. Set by gcPrepareMarkRoots.
   387  	//
   388  	// During normal GC cycle, nStackRoots == nMaybeRunnableStackRoots == len(stackRoots);
   389  	// during goroutine leak detection, nMaybeRunnableStackRoots is the number of stackRoots
   390  	// scheduled for marking.
   391  	// In both variants, nStackRoots == len(stackRoots).
   392  	nDataRoots, nBSSRoots, nSpanRoots, nStackRoots, nMaybeRunnableStackRoots int
   393  
   394  	// The following fields monitor the GC phase of the current cycle during
   395  	// goroutine leak detection.
   396  	goroutineLeak struct {
   397  		// Once set, it indicates that the GC will perform goroutine leak detection during
   398  		// the next GC cycle; it is set by goroutineLeakGC and unset during gcStart.
   399  		pending atomic.Bool
   400  		// Once set, it indicates that the GC has started a goroutine leak detection run;
   401  		// it is set during gcStart and unset during gcMarkTermination;
   402  		//
   403  		// Protected by STW.
   404  		enabled bool
   405  		// Once set, it indicates that the GC has performed goroutine leak detection during
   406  		// the current GC cycle; it is set during gcMarkDone, right after goroutine leak detection,
   407  		// and unset during gcMarkTermination;
   408  		//
   409  		// Protected by STW.
   410  		done bool
   411  		// The number of leaked goroutines during the last leak detection GC cycle.
   412  		//
   413  		// Write-protected by STW in findGoroutineLeaks.
   414  		count int
   415  	}
   416  
   417  	// Base indexes of each root type. Set by gcPrepareMarkRoots.
   418  	baseData, baseBSS, baseSpans, baseStacks, baseEnd uint32
   419  
   420  	// stackRoots is a snapshot of all of the Gs that existed before the
   421  	// beginning of concurrent marking.  During goroutine leak detection, stackRoots
   422  	// is partitioned into two sets; to the left of nMaybeRunnableStackRoots are stackRoots
   423  	// of running / runnable goroutines and to the right of nMaybeRunnableStackRoots are
   424  	// stackRoots of unmarked / not runnable goroutines
   425  	// The stackRoots array is re-partitioned after each marking phase iteration.
   426  	stackRoots []*g
   427  
   428  	// Each type of GC state transition is protected by a lock.
   429  	// Since multiple threads can simultaneously detect the state
   430  	// transition condition, any thread that detects a transition
   431  	// condition must acquire the appropriate transition lock,
   432  	// re-check the transition condition and return if it no
   433  	// longer holds or perform the transition if it does.
   434  	// Likewise, any transition must invalidate the transition
   435  	// condition before releasing the lock. This ensures that each
   436  	// transition is performed by exactly one thread and threads
   437  	// that need the transition to happen block until it has
   438  	// happened.
   439  	//
   440  	// startSema protects the transition from "off" to mark or
   441  	// mark termination.
   442  	startSema uint32
   443  	// markDoneSema protects transitions from mark to mark termination.
   444  	markDoneSema uint32
   445  
   446  	bgMarkDone uint32 // cas to 1 when at a background mark completion point
   447  	// Background mark completion signaling
   448  
   449  	// mode is the concurrency mode of the current GC cycle.
   450  	mode gcMode
   451  
   452  	// userForced indicates the current GC cycle was forced by an
   453  	// explicit user call.
   454  	userForced bool
   455  
   456  	// initialHeapLive is the value of gcController.heapLive at the
   457  	// beginning of this GC cycle.
   458  	initialHeapLive uint64
   459  
   460  	// assistQueue is a queue of assists that are blocked because
   461  	// there was neither enough credit to steal or enough work to
   462  	// do.
   463  	assistQueue struct {
   464  		lock mutex
   465  		q    gQueue
   466  	}
   467  
   468  	// sweepWaiters is a list of blocked goroutines to wake when
   469  	// we transition from mark termination to sweep.
   470  	sweepWaiters struct {
   471  		lock mutex
   472  		list gList
   473  	}
   474  
   475  	// strongFromWeak controls how the GC interacts with weak->strong
   476  	// pointer conversions.
   477  	strongFromWeak struct {
   478  		// block is a flag set during mark termination that prevents
   479  		// new weak->strong conversions from executing by blocking the
   480  		// goroutine and enqueuing it onto q.
   481  		//
   482  		// Mutated only by one goroutine at a time in gcMarkDone,
   483  		// with globally-synchronizing events like forEachP and
   484  		// stopTheWorld.
   485  		block bool
   486  
   487  		// q is a queue of goroutines that attempted to perform a
   488  		// weak->strong conversion during mark termination.
   489  		//
   490  		// Protected by lock.
   491  		lock mutex
   492  		q    gQueue
   493  	}
   494  
   495  	// cycles is the number of completed GC cycles, where a GC
   496  	// cycle is sweep termination, mark, mark termination, and
   497  	// sweep. This differs from memstats.numgc, which is
   498  	// incremented at mark termination.
   499  	cycles atomic.Uint32
   500  
   501  	// Timing/utilization stats for this cycle.
   502  	stwprocs, maxprocs                 int32
   503  	tSweepTerm, tMark, tMarkTerm, tEnd int64 // nanotime() of phase start
   504  
   505  	// pauseNS is the total STW time this cycle, measured as the time between
   506  	// when stopping began (just before trying to stop Ps) and just after the
   507  	// world started again.
   508  	pauseNS int64
   509  
   510  	// debug.gctrace heap sizes for this cycle.
   511  	heap0, heap1, heap2 uint64
   512  
   513  	// Cumulative estimated CPU usage.
   514  	cpuStats
   515  }
   516  
   517  // GC runs a garbage collection and blocks the caller until the
   518  // garbage collection is complete. It may also block the entire
   519  // program.
   520  func GC() {
   521  	// We consider a cycle to be: sweep termination, mark, mark
   522  	// termination, and sweep. This function shouldn't return
   523  	// until a full cycle has been completed, from beginning to
   524  	// end. Hence, we always want to finish up the current cycle
   525  	// and start a new one. That means:
   526  	//
   527  	// 1. In sweep termination, mark, or mark termination of cycle
   528  	// N, wait until mark termination N completes and transitions
   529  	// to sweep N.
   530  	//
   531  	// 2. In sweep N, help with sweep N.
   532  	//
   533  	// At this point we can begin a full cycle N+1.
   534  	//
   535  	// 3. Trigger cycle N+1 by starting sweep termination N+1.
   536  	//
   537  	// 4. Wait for mark termination N+1 to complete.
   538  	//
   539  	// 5. Help with sweep N+1 until it's done.
   540  	//
   541  	// This all has to be written to deal with the fact that the
   542  	// GC may move ahead on its own. For example, when we block
   543  	// until mark termination N, we may wake up in cycle N+2.
   544  
   545  	// Wait until the current sweep termination, mark, and mark
   546  	// termination complete.
   547  	n := work.cycles.Load()
   548  	gcWaitOnMark(n)
   549  
   550  	// We're now in sweep N or later. Trigger GC cycle N+1, which
   551  	// will first finish sweep N if necessary and then enter sweep
   552  	// termination N+1.
   553  	gcStart(gcTrigger{kind: gcTriggerCycle, n: n + 1})
   554  
   555  	// Wait for mark termination N+1 to complete.
   556  	gcWaitOnMark(n + 1)
   557  
   558  	// Finish sweep N+1 before returning. We do this both to
   559  	// complete the cycle and because runtime.GC() is often used
   560  	// as part of tests and benchmarks to get the system into a
   561  	// relatively stable and isolated state.
   562  	for work.cycles.Load() == n+1 && sweepone() != ^uintptr(0) {
   563  		Gosched()
   564  	}
   565  
   566  	// Callers may assume that the heap profile reflects the
   567  	// just-completed cycle when this returns (historically this
   568  	// happened because this was a STW GC), but right now the
   569  	// profile still reflects mark termination N, not N+1.
   570  	//
   571  	// As soon as all of the sweep frees from cycle N+1 are done,
   572  	// we can go ahead and publish the heap profile.
   573  	//
   574  	// First, wait for sweeping to finish. (We know there are no
   575  	// more spans on the sweep queue, but we may be concurrently
   576  	// sweeping spans, so we have to wait.)
   577  	for work.cycles.Load() == n+1 && !isSweepDone() {
   578  		Gosched()
   579  	}
   580  
   581  	// Now we're really done with sweeping, so we can publish the
   582  	// stable heap profile. Only do this if we haven't already hit
   583  	// another mark termination.
   584  	mp := acquirem()
   585  	cycle := work.cycles.Load()
   586  	if cycle == n+1 || (gcphase == _GCmark && cycle == n+2) {
   587  		mProf_PostSweep()
   588  	}
   589  	releasem(mp)
   590  }
   591  
   592  // goroutineLeakGC runs a GC cycle that performs goroutine leak detection.
   593  //
   594  //go:linkname goroutineLeakGC runtime/pprof.runtime_goroutineLeakGC
   595  func goroutineLeakGC() {
   596  	// Set the pending flag to true, instructing the next GC cycle to
   597  	// perform goroutine leak detection.
   598  	work.goroutineLeak.pending.Store(true)
   599  
   600  	// Spin GC cycles until the pending flag is unset.
   601  	// This ensures that goroutineLeakGC waits for a GC cycle that
   602  	// actually performs goroutine leak detection.
   603  	//
   604  	// This is needed in case multiple concurrent calls to GC
   605  	// are simultaneously fired by the system, wherein some
   606  	// of them are dropped.
   607  	//
   608  	// In the vast majority of cases, only one loop iteration is needed;
   609  	// however, multiple concurrent calls to goroutineLeakGC could lead to
   610  	// the execution of additional GC cycles.
   611  	//
   612  	// Examples:
   613  	//
   614  	// pending? |   G1                    | G2
   615  	// ---------|-------------------------|-----------------------
   616  	//     -    | goroutineLeakGC()       | goroutineLeakGC()
   617  	//     -    | pending.Store(true)     | .
   618  	//     X    | for pending.Load()      | .
   619  	//     X    | GC()                    | .
   620  	//     X    | > gcStart()             | .
   621  	//     X    |   pending.Store(false)  | .
   622  	// ...
   623  	//     -    | > gcMarkDone()          | .
   624  	//     -    |   .                     | pending.Store(true)
   625  	// ...
   626  	//     X    | > gcMarkTermination()   | .
   627  	//     X    |   ...
   628  	//     X    | < GC returns            | .
   629  	//     X    | for pending.Load        | .
   630  	//     X    | GC()                    | .
   631  	//     X    | .                       | for pending.Load()
   632  	//     X    | .                       | GC()
   633  	// ...
   634  	// The first to pick up the pending flag will start a
   635  	// leak detection cycle.
   636  	for work.goroutineLeak.pending.Load() {
   637  		GC()
   638  	}
   639  }
   640  
   641  // gcWaitOnMark blocks until GC finishes the Nth mark phase. If GC has
   642  // already completed this mark phase, it returns immediately.
   643  func gcWaitOnMark(n uint32) {
   644  	for {
   645  		// Disable phase transitions.
   646  		lock(&work.sweepWaiters.lock)
   647  		nMarks := work.cycles.Load()
   648  		if gcphase != _GCmark {
   649  			// We've already completed this cycle's mark.
   650  			nMarks++
   651  		}
   652  		if nMarks > n {
   653  			// We're done.
   654  			unlock(&work.sweepWaiters.lock)
   655  			return
   656  		}
   657  
   658  		// Wait until sweep termination, mark, and mark
   659  		// termination of cycle N complete.
   660  		work.sweepWaiters.list.push(getg())
   661  		goparkunlock(&work.sweepWaiters.lock, waitReasonWaitForGCCycle, traceBlockUntilGCEnds, 1)
   662  	}
   663  }
   664  
   665  // gcMode indicates how concurrent a GC cycle should be.
   666  type gcMode int
   667  
   668  const (
   669  	gcBackgroundMode gcMode = iota // concurrent GC and sweep
   670  	gcForceMode                    // stop-the-world GC now, concurrent sweep
   671  	gcForceBlockMode               // stop-the-world GC now and STW sweep (forced by user)
   672  )
   673  
   674  // A gcTrigger is a predicate for starting a GC cycle. Specifically,
   675  // it is an exit condition for the _GCoff phase.
   676  type gcTrigger struct {
   677  	kind gcTriggerKind
   678  	now  int64  // gcTriggerTime: current time
   679  	n    uint32 // gcTriggerCycle: cycle number to start
   680  }
   681  
   682  type gcTriggerKind int
   683  
   684  const (
   685  	// gcTriggerHeap indicates that a cycle should be started when
   686  	// the heap size reaches the trigger heap size computed by the
   687  	// controller.
   688  	gcTriggerHeap gcTriggerKind = iota
   689  
   690  	// gcTriggerTime indicates that a cycle should be started when
   691  	// it's been more than forcegcperiod nanoseconds since the
   692  	// previous GC cycle.
   693  	gcTriggerTime
   694  
   695  	// gcTriggerCycle indicates that a cycle should be started if
   696  	// we have not yet started cycle number gcTrigger.n (relative
   697  	// to work.cycles).
   698  	gcTriggerCycle
   699  )
   700  
   701  // test reports whether the trigger condition is satisfied, meaning
   702  // that the exit condition for the _GCoff phase has been met. The exit
   703  // condition should be tested when allocating.
   704  func (t gcTrigger) test() bool {
   705  	if !memstats.enablegc || panicking.Load() != 0 || gcphase != _GCoff {
   706  		return false
   707  	}
   708  	switch t.kind {
   709  	case gcTriggerHeap:
   710  		trigger, _ := gcController.trigger()
   711  		return gcController.heapLive.Load() >= trigger
   712  	case gcTriggerTime:
   713  		if gcController.gcPercent.Load() < 0 {
   714  			return false
   715  		}
   716  		lastgc := int64(atomic.Load64(&memstats.last_gc_nanotime))
   717  		return lastgc != 0 && t.now-lastgc > forcegcperiod
   718  	case gcTriggerCycle:
   719  		// t.n > work.cycles, but accounting for wraparound.
   720  		return int32(t.n-work.cycles.Load()) > 0
   721  	}
   722  	return true
   723  }
   724  
   725  // gcStart starts the GC. It transitions from _GCoff to _GCmark (if
   726  // debug.gcstoptheworld == 0) or performs all of GC (if
   727  // debug.gcstoptheworld != 0).
   728  //
   729  // This may return without performing this transition in some cases,
   730  // such as when called on a system stack or with locks held.
   731  func gcStart(trigger gcTrigger) {
   732  	// Since this is called from malloc and malloc is called in
   733  	// the guts of a number of libraries that might be holding
   734  	// locks, don't attempt to start GC in non-preemptible or
   735  	// potentially unstable situations.
   736  	mp := acquirem()
   737  	if gp := getg(); gp == mp.g0 || mp.locks > 1 || mp.preemptoff != "" {
   738  		releasem(mp)
   739  		return
   740  	}
   741  	releasem(mp)
   742  	mp = nil
   743  
   744  	if gp := getg(); gp.bubble != nil {
   745  		// Disassociate the G from its synctest bubble while allocating.
   746  		// This is less elegant than incrementing the group's active count,
   747  		// but avoids any contamination between GC and synctest.
   748  		bubble := gp.bubble
   749  		gp.bubble = nil
   750  		defer func() {
   751  			gp.bubble = bubble
   752  		}()
   753  	}
   754  
   755  	// Pick up the remaining unswept/not being swept spans concurrently
   756  	//
   757  	// This shouldn't happen if we're being invoked in background
   758  	// mode since proportional sweep should have just finished
   759  	// sweeping everything, but rounding errors, etc, may leave a
   760  	// few spans unswept. In forced mode, this is necessary since
   761  	// GC can be forced at any point in the sweeping cycle.
   762  	//
   763  	// We check the transition condition continuously here in case
   764  	// this G gets delayed in to the next GC cycle.
   765  	for trigger.test() && sweepone() != ^uintptr(0) {
   766  	}
   767  
   768  	// Perform GC initialization and the sweep termination
   769  	// transition.
   770  	semacquire(&work.startSema)
   771  	// Re-check transition condition under transition lock.
   772  	if !trigger.test() {
   773  		semrelease(&work.startSema)
   774  		return
   775  	}
   776  
   777  	// In gcstoptheworld debug mode, upgrade the mode accordingly.
   778  	// We do this after re-checking the transition condition so
   779  	// that multiple goroutines that detect the heap trigger don't
   780  	// start multiple STW GCs.
   781  	mode := gcBackgroundMode
   782  	if debug.gcstoptheworld == 1 {
   783  		mode = gcForceMode
   784  	} else if debug.gcstoptheworld == 2 {
   785  		mode = gcForceBlockMode
   786  	}
   787  
   788  	// Ok, we're doing it! Stop everybody else
   789  	semacquire(&gcsema)
   790  	semacquire(&worldsema)
   791  
   792  	// For stats, check if this GC was forced by the user.
   793  	// Update it under gcsema to avoid gctrace getting wrong values.
   794  	work.userForced = trigger.kind == gcTriggerCycle
   795  
   796  	trace := traceAcquire()
   797  	if trace.ok() {
   798  		trace.GCStart()
   799  		traceRelease(trace)
   800  	}
   801  
   802  	// Check and setup per-P state.
   803  	for _, p := range allp {
   804  		// Check that all Ps have finished deferred mcache flushes.
   805  		if fg := p.mcache.flushGen.Load(); fg != mheap_.sweepgen {
   806  			println("runtime: p", p.id, "flushGen", fg, "!= sweepgen", mheap_.sweepgen)
   807  			throw("p mcache not flushed")
   808  		}
   809  		// Initialize ptrBuf if necessary.
   810  		if goexperiment.GreenTeaGC && p.gcw.ptrBuf == nil {
   811  			p.gcw.ptrBuf = (*[gc.PageSize / goarch.PtrSize]uintptr)(persistentalloc(gc.PageSize, goarch.PtrSize, &memstats.gcMiscSys))
   812  		}
   813  	}
   814  
   815  	gcBgMarkStartWorkers()
   816  
   817  	systemstack(gcResetMarkState)
   818  
   819  	work.stwprocs, work.maxprocs = gomaxprocs, gomaxprocs
   820  	if work.stwprocs > numCPUStartup {
   821  		// This is used to compute CPU time of the STW phases, so it
   822  		// can't be more than the CPU count, even if GOMAXPROCS is.
   823  		work.stwprocs = numCPUStartup
   824  	}
   825  	work.heap0 = gcController.heapLive.Load()
   826  	work.pauseNS = 0
   827  	work.mode = mode
   828  
   829  	now := nanotime()
   830  	work.tSweepTerm = now
   831  	var stw worldStop
   832  	systemstack(func() {
   833  		stw = stopTheWorldWithSema(stwGCSweepTerm)
   834  	})
   835  
   836  	// Accumulate fine-grained stopping time.
   837  	work.cpuStats.accumulateGCPauseTime(stw.stoppingCPUTime, 1)
   838  
   839  	// Finish sweep before we start concurrent scan.
   840  	systemstack(func() {
   841  		finishsweep_m()
   842  	})
   843  
   844  	// clearpools before we start the GC. If we wait the memory will not be
   845  	// reclaimed until the next GC cycle.
   846  	clearpools()
   847  
   848  	work.cycles.Add(1)
   849  
   850  	// Assists and workers can start the moment we start
   851  	// the world.
   852  	gcController.startCycle(now, int(gomaxprocs), trigger)
   853  
   854  	// Notify the CPU limiter that assists may begin.
   855  	gcCPULimiter.startGCTransition(true, now)
   856  
   857  	// In STW mode, disable scheduling of user Gs. This may also
   858  	// disable scheduling of this goroutine, so it may block as
   859  	// soon as we start the world again.
   860  	if mode != gcBackgroundMode {
   861  		schedEnableUser(false)
   862  	}
   863  
   864  	// If goroutine leak detection is pending, enable it for this GC cycle.
   865  	if work.goroutineLeak.pending.Load() {
   866  		work.goroutineLeak.enabled = true
   867  		work.goroutineLeak.pending.Store(false)
   868  		// Set all sync objects of blocked goroutines as untraceable
   869  		// by the GC. Only set as traceable at the end of the GC cycle.
   870  		setSyncObjectsUntraceable()
   871  	}
   872  
   873  	// Enter concurrent mark phase and enable
   874  	// write barriers.
   875  	//
   876  	// Because the world is stopped, all Ps will
   877  	// observe that write barriers are enabled by
   878  	// the time we start the world and begin
   879  	// scanning.
   880  	//
   881  	// Write barriers must be enabled before assists are
   882  	// enabled because they must be enabled before
   883  	// any non-leaf heap objects are marked. Since
   884  	// allocations are blocked until assists can
   885  	// happen, we want to enable assists as early as
   886  	// possible.
   887  	setGCPhase(_GCmark)
   888  
   889  	gcBgMarkPrepare() // Must happen before assists are enabled.
   890  	gcPrepareMarkRoots()
   891  
   892  	// Mark all active tinyalloc blocks. Since we're
   893  	// allocating from these, they need to be black like
   894  	// other allocations. The alternative is to blacken
   895  	// the tiny block on every allocation from it, which
   896  	// would slow down the tiny allocator.
   897  	gcMarkTinyAllocs()
   898  
   899  	// At this point all Ps have enabled the write
   900  	// barrier, thus maintaining the no white to
   901  	// black invariant. Enable mutator assists to
   902  	// put back-pressure on fast allocating
   903  	// mutators.
   904  	atomic.Store(&gcBlackenEnabled, 1)
   905  
   906  	// In STW mode, we could block the instant systemstack
   907  	// returns, so make sure we're not preemptible.
   908  	mp = acquirem()
   909  
   910  	// Update the CPU stats pause time.
   911  	//
   912  	// Use maxprocs instead of stwprocs here because the total time
   913  	// computed in the CPU stats is based on maxprocs, and we want them
   914  	// to be comparable.
   915  	work.cpuStats.accumulateGCPauseTime(nanotime()-stw.finishedStopping, work.maxprocs)
   916  
   917  	// Concurrent mark.
   918  	systemstack(func() {
   919  		now = startTheWorldWithSema(0, stw)
   920  		work.pauseNS += now - stw.startedStopping
   921  		work.tMark = now
   922  
   923  		// Release the CPU limiter.
   924  		gcCPULimiter.finishGCTransition(now)
   925  	})
   926  
   927  	// Release the world sema before Gosched() in STW mode
   928  	// because we will need to reacquire it later but before
   929  	// this goroutine becomes runnable again, and we could
   930  	// self-deadlock otherwise.
   931  	semrelease(&worldsema)
   932  	releasem(mp)
   933  
   934  	// Make sure we block instead of returning to user code
   935  	// in STW mode.
   936  	if mode != gcBackgroundMode {
   937  		Gosched()
   938  	}
   939  
   940  	semrelease(&work.startSema)
   941  }
   942  
   943  // gcMarkDoneFlushed counts the number of P's with flushed work.
   944  //
   945  // Ideally this would be a captured local in gcMarkDone, but forEachP
   946  // escapes its callback closure, so it can't capture anything.
   947  //
   948  // This is protected by markDoneSema.
   949  var gcMarkDoneFlushed uint32
   950  
   951  // gcDebugMarkDone contains fields used to debug/test mark termination.
   952  var gcDebugMarkDone struct {
   953  	// spinAfterRaggedBarrier forces gcMarkDone to spin after it executes
   954  	// the ragged barrier.
   955  	spinAfterRaggedBarrier atomic.Bool
   956  
   957  	// restartedDueTo27993 indicates that we restarted mark termination
   958  	// due to the bug described in issue #27993.
   959  	//
   960  	// Protected by worldsema.
   961  	restartedDueTo27993 bool
   962  }
   963  
   964  // gcMarkDone transitions the GC from mark to mark termination if all
   965  // reachable objects have been marked (that is, there are no grey
   966  // objects and can be no more in the future). Otherwise, it flushes
   967  // all local work to the global queues where it can be discovered by
   968  // other workers.
   969  //
   970  // All goroutines performing GC work must call gcBeginWork to signal
   971  // that they're executing GC work. They must call gcEndWork when done.
   972  // This should be called when all local mark work has been drained and
   973  // there are no remaining workers. Specifically, when gcEndWork returns
   974  // true.
   975  //
   976  // The calling context must be preemptible.
   977  //
   978  // Flushing local work is important because idle Ps may have local
   979  // work queued. This is the only way to make that work visible and
   980  // drive GC to completion.
   981  //
   982  // It is explicitly okay to have write barriers in this function. If
   983  // it does transition to mark termination, then all reachable objects
   984  // have been marked, so the write barrier cannot shade any more
   985  // objects.
   986  func gcMarkDone() {
   987  	// Ensure only one thread is running the ragged barrier at a
   988  	// time.
   989  	semacquire(&work.markDoneSema)
   990  
   991  top:
   992  	// Re-check transition condition under transition lock.
   993  	//
   994  	// It's critical that this checks the global work queues are
   995  	// empty before performing the ragged barrier. Otherwise,
   996  	// there could be global work that a P could take after the P
   997  	// has passed the ragged barrier.
   998  	if !(gcphase == _GCmark && gcIsMarkDone()) {
   999  		semrelease(&work.markDoneSema)
  1000  		return
  1001  	}
  1002  
  1003  	// forEachP needs worldsema to execute, and we'll need it to
  1004  	// stop the world later, so acquire worldsema now.
  1005  	semacquire(&worldsema)
  1006  
  1007  	// Prevent weak->strong conversions from generating additional
  1008  	// GC work. forEachP will guarantee that it is observed globally.
  1009  	work.strongFromWeak.block = true
  1010  
  1011  	// Flush all local buffers and collect flushedWork flags.
  1012  	gcMarkDoneFlushed = 0
  1013  	forEachP(waitReasonGCMarkTermination, func(pp *p) {
  1014  		// Flush the write barrier buffer, since this may add
  1015  		// work to the gcWork.
  1016  		wbBufFlush1(pp)
  1017  
  1018  		// Flush the gcWork, since this may create global work
  1019  		// and set the flushedWork flag.
  1020  		//
  1021  		// TODO(austin): Break up these workbufs to
  1022  		// better distribute work.
  1023  		pp.gcw.dispose()
  1024  
  1025  		// Collect the flushedWork flag.
  1026  		if pp.gcw.flushedWork {
  1027  			atomic.Xadd(&gcMarkDoneFlushed, 1)
  1028  			pp.gcw.flushedWork = false
  1029  		}
  1030  	})
  1031  
  1032  	if gcMarkDoneFlushed != 0 {
  1033  		// More grey objects were discovered since the
  1034  		// previous termination check, so there may be more
  1035  		// work to do. Keep going. It's possible the
  1036  		// transition condition became true again during the
  1037  		// ragged barrier, so re-check it.
  1038  		semrelease(&worldsema)
  1039  		goto top
  1040  	}
  1041  
  1042  	// For debugging/testing.
  1043  	for gcDebugMarkDone.spinAfterRaggedBarrier.Load() {
  1044  	}
  1045  
  1046  	// There was no global work, no local work, and no Ps
  1047  	// communicated work since we took markDoneSema. Therefore
  1048  	// there are no grey objects and no more objects can be
  1049  	// shaded. Transition to mark termination.
  1050  	now := nanotime()
  1051  	work.tMarkTerm = now
  1052  	getg().m.preemptoff = "gcing"
  1053  	var stw worldStop
  1054  	systemstack(func() {
  1055  		stw = stopTheWorldWithSema(stwGCMarkTerm)
  1056  	})
  1057  	// The gcphase is _GCmark, it will transition to _GCmarktermination
  1058  	// below. The important thing is that the wb remains active until
  1059  	// all marking is complete. This includes writes made by the GC.
  1060  
  1061  	// Accumulate fine-grained stopping time.
  1062  	work.cpuStats.accumulateGCPauseTime(stw.stoppingCPUTime, 1)
  1063  
  1064  	// There is sometimes work left over when we enter mark termination due
  1065  	// to write barriers performed after the completion barrier above.
  1066  	// Detect this and resume concurrent mark. This is obviously
  1067  	// unfortunate.
  1068  	//
  1069  	// See issue #27993 for details.
  1070  	//
  1071  	// Switch to the system stack to call wbBufFlush1, though in this case
  1072  	// it doesn't matter because we're non-preemptible anyway.
  1073  	restart := false
  1074  	systemstack(func() {
  1075  		for _, p := range allp {
  1076  			wbBufFlush1(p)
  1077  			if !p.gcw.empty() {
  1078  				restart = true
  1079  				break
  1080  			}
  1081  		}
  1082  	})
  1083  
  1084  	// Check whether we need to resume the marking phase because of issue #27993
  1085  	// or because of goroutine leak detection.
  1086  	if restart || (work.goroutineLeak.enabled && !work.goroutineLeak.done) {
  1087  		if restart {
  1088  			// Restart because of issue #27993.
  1089  			gcDebugMarkDone.restartedDueTo27993 = true
  1090  		} else {
  1091  			// Marking has reached a fixed-point. Attempt to detect goroutine leaks.
  1092  			//
  1093  			// If the returned value is true, then detection already concluded for this cycle.
  1094  			// Otherwise, more runnable goroutines were discovered, requiring additional mark work.
  1095  			work.goroutineLeak.done = findGoroutineLeaks()
  1096  		}
  1097  
  1098  		getg().m.preemptoff = ""
  1099  		systemstack(func() {
  1100  			// Accumulate the time we were stopped before we had to start again.
  1101  			work.cpuStats.accumulateGCPauseTime(nanotime()-stw.finishedStopping, work.maxprocs)
  1102  
  1103  			// Start the world again.
  1104  			now := startTheWorldWithSema(0, stw)
  1105  			work.pauseNS += now - stw.startedStopping
  1106  		})
  1107  		semrelease(&worldsema)
  1108  		goto top
  1109  	}
  1110  
  1111  	gcComputeStartingStackSize()
  1112  
  1113  	// Disable assists and background workers. We must do
  1114  	// this before waking blocked assists.
  1115  	atomic.Store(&gcBlackenEnabled, 0)
  1116  
  1117  	// Notify the CPU limiter that GC assists will now cease.
  1118  	gcCPULimiter.startGCTransition(false, now)
  1119  
  1120  	// Wake all blocked assists. These will run when we
  1121  	// start the world again.
  1122  	gcWakeAllAssists()
  1123  
  1124  	// Wake all blocked weak->strong conversions. These will run
  1125  	// when we start the world again.
  1126  	work.strongFromWeak.block = false
  1127  	gcWakeAllStrongFromWeak()
  1128  
  1129  	// Likewise, release the transition lock. Blocked
  1130  	// workers and assists will run when we start the
  1131  	// world again.
  1132  	semrelease(&work.markDoneSema)
  1133  
  1134  	// In STW mode, re-enable user goroutines. These will be
  1135  	// queued to run after we start the world.
  1136  	schedEnableUser(true)
  1137  
  1138  	// endCycle depends on all gcWork cache stats being flushed.
  1139  	// The termination algorithm above ensured that up to
  1140  	// allocations since the ragged barrier.
  1141  	gcController.endCycle(now, int(gomaxprocs), work.userForced)
  1142  
  1143  	// Perform mark termination. This will restart the world.
  1144  	gcMarkTermination(stw)
  1145  }
  1146  
  1147  // isMaybeRunnable checks whether a goroutine may still be semantically runnable.
  1148  // For goroutines which are semantically runnable, this will eventually return true
  1149  // as the GC marking phase progresses. It returns false for leaked goroutines, or for
  1150  // goroutines which are not yet computed as possibly runnable by the GC.
  1151  func (gp *g) isMaybeRunnable() bool {
  1152  	// Check whether the goroutine is actually in a waiting state first.
  1153  	if readgstatus(gp) != _Gwaiting {
  1154  		// If the goroutine is not waiting, then clearly it is maybe runnable.
  1155  		return true
  1156  	}
  1157  
  1158  	switch gp.waitreason {
  1159  	case waitReasonSelectNoCases,
  1160  		waitReasonChanSendNilChan,
  1161  		waitReasonChanReceiveNilChan:
  1162  		// Select with no cases or communicating on nil channels
  1163  		// make goroutines unrunnable by definition.
  1164  		return false
  1165  	case waitReasonChanReceive,
  1166  		waitReasonSelect,
  1167  		waitReasonChanSend:
  1168  		// Cycle all through all *sudog to check whether
  1169  		// the goroutine is waiting on a marked channel.
  1170  		for sg := gp.waiting; sg != nil; sg = sg.waitlink {
  1171  			if isMarkedOrNotInHeap(unsafe.Pointer(sg.c.get())) {
  1172  				return true
  1173  			}
  1174  		}
  1175  		return false
  1176  	case waitReasonSyncCondWait,
  1177  		waitReasonSyncWaitGroupWait,
  1178  		waitReasonSyncMutexLock,
  1179  		waitReasonSyncRWMutexLock,
  1180  		waitReasonSyncRWMutexRLock:
  1181  		// If waiting on mutexes, wait groups, or condition variables,
  1182  		// check if the synchronization primitive attached to the sudog is marked.
  1183  		if gp.waiting != nil {
  1184  			return isMarkedOrNotInHeap(gp.waiting.elem.get())
  1185  		}
  1186  	}
  1187  	return true
  1188  }
  1189  
  1190  // findMaybeRunnableGoroutines checks to see if more blocked but maybe-runnable goroutines exist.
  1191  // If so, it adds them into root set and increments work.markrootJobs accordingly.
  1192  // Returns true if we need to run another phase of markroots; returns false otherwise.
  1193  func findMaybeRunnableGoroutines() (moreWork bool) {
  1194  	oldRootJobs := work.markrootJobs.Load()
  1195  
  1196  	// To begin with we have a set of unchecked stackRoots between
  1197  	// vIndex and ivIndex. During the loop, anything < vIndex should be
  1198  	// valid stackRoots and anything >= ivIndex should be invalid stackRoots.
  1199  	// The loop terminates when the two indices meet.
  1200  	var vIndex, ivIndex int = work.nMaybeRunnableStackRoots, work.nStackRoots
  1201  	// Reorder goroutine list
  1202  	for vIndex < ivIndex {
  1203  		if work.stackRoots[vIndex].isMaybeRunnable() {
  1204  			vIndex = vIndex + 1
  1205  			continue
  1206  		}
  1207  		for ivIndex = ivIndex - 1; ivIndex != vIndex; ivIndex = ivIndex - 1 {
  1208  			if gp := work.stackRoots[ivIndex]; gp.isMaybeRunnable() {
  1209  				work.stackRoots[ivIndex] = work.stackRoots[vIndex]
  1210  				work.stackRoots[vIndex] = gp
  1211  				vIndex = vIndex + 1
  1212  				break
  1213  			}
  1214  		}
  1215  	}
  1216  
  1217  	newRootJobs := work.baseStacks + uint32(vIndex)
  1218  	if newRootJobs > oldRootJobs {
  1219  		work.nMaybeRunnableStackRoots = vIndex
  1220  		work.markrootJobs.Store(newRootJobs)
  1221  	}
  1222  	return newRootJobs > oldRootJobs
  1223  }
  1224  
  1225  // setSyncObjectsUntraceable scans allgs and sets the elem and c fields of all sudogs to
  1226  // an untrackable pointer. This prevents the GC from marking these objects as live in memory
  1227  // by following these pointers when runnning deadlock detection.
  1228  func setSyncObjectsUntraceable() {
  1229  	assertWorldStopped()
  1230  
  1231  	forEachGRace(func(gp *g) {
  1232  		// Set as untraceable all synchronization objects of goroutines
  1233  		// blocked at concurrency operations that could leak.
  1234  		switch {
  1235  		case gp.waitreason.isSyncWait():
  1236  			// Synchronization primitives are reachable from the *sudog via
  1237  			// via the elem field.
  1238  			for sg := gp.waiting; sg != nil; sg = sg.waitlink {
  1239  				sg.elem.setUntraceable()
  1240  			}
  1241  		case gp.waitreason.isChanWait():
  1242  			// Channels and select statements are reachable from the *sudog via the c field.
  1243  			for sg := gp.waiting; sg != nil; sg = sg.waitlink {
  1244  				sg.c.setUntraceable()
  1245  			}
  1246  		}
  1247  	})
  1248  }
  1249  
  1250  // gcRestoreSyncObjects restores the elem and c fields of all sudogs to their original values.
  1251  // Should be invoked after the goroutine leak detection phase.
  1252  func gcRestoreSyncObjects() {
  1253  	assertWorldStopped()
  1254  
  1255  	forEachGRace(func(gp *g) {
  1256  		for sg := gp.waiting; sg != nil; sg = sg.waitlink {
  1257  			sg.elem.setTraceable()
  1258  			sg.c.setTraceable()
  1259  		}
  1260  	})
  1261  }
  1262  
  1263  // findGoroutineLeaks scans the remaining stackRoots and marks any which are
  1264  // blocked over exclusively unreachable concurrency primitives as leaked (deadlocked).
  1265  // Returns true if the goroutine leak check was performed (or unnecessary).
  1266  // Returns false if the GC cycle has not yet computed all maybe-runnable goroutines.
  1267  func findGoroutineLeaks() bool {
  1268  	assertWorldStopped()
  1269  
  1270  	// Report goroutine leaks and mark them unreachable, and resume marking
  1271  	// we still need to mark these unreachable *g structs as they
  1272  	// get reused, but their stack won't get scanned
  1273  	if work.nMaybeRunnableStackRoots == work.nStackRoots {
  1274  		// nMaybeRunnableStackRoots == nStackRoots means that all goroutines are marked.
  1275  		return true
  1276  	}
  1277  
  1278  	// Check whether any more maybe-runnable goroutines can be found by the GC.
  1279  	if findMaybeRunnableGoroutines() {
  1280  		// We found more work, so we need to resume the marking phase.
  1281  		return false
  1282  	}
  1283  
  1284  	// For the remaining goroutines, mark them as unreachable and leaked.
  1285  	work.goroutineLeak.count = work.nStackRoots - work.nMaybeRunnableStackRoots
  1286  
  1287  	for i := work.nMaybeRunnableStackRoots; i < work.nStackRoots; i++ {
  1288  		gp := work.stackRoots[i]
  1289  		casgstatus(gp, _Gwaiting, _Gleaked)
  1290  
  1291  		// Add the primitives causing the goroutine leaks
  1292  		// to the GC work queue, to ensure they are marked.
  1293  		//
  1294  		// NOTE(vsaioc): these primitives should also be reachable
  1295  		// from the goroutine's stack, but let's play it safe.
  1296  		switch {
  1297  		case gp.waitreason.isChanWait():
  1298  			for sg := gp.waiting; sg != nil; sg = sg.waitlink {
  1299  				shade(sg.c.uintptr())
  1300  			}
  1301  		case gp.waitreason.isSyncWait():
  1302  			for sg := gp.waiting; sg != nil; sg = sg.waitlink {
  1303  				shade(sg.elem.uintptr())
  1304  			}
  1305  		}
  1306  	}
  1307  	// Put the remaining roots as ready for marking and drain them.
  1308  	work.markrootJobs.Add(int32(work.nStackRoots - work.nMaybeRunnableStackRoots))
  1309  	work.nMaybeRunnableStackRoots = work.nStackRoots
  1310  	return true
  1311  }
  1312  
  1313  // World must be stopped and mark assists and background workers must be
  1314  // disabled.
  1315  func gcMarkTermination(stw worldStop) {
  1316  	// Start marktermination (write barrier remains enabled for now).
  1317  	setGCPhase(_GCmarktermination)
  1318  
  1319  	work.heap1 = gcController.heapLive.Load()
  1320  	startTime := nanotime()
  1321  
  1322  	mp := acquirem()
  1323  	mp.preemptoff = "gcing"
  1324  	mp.traceback = 2
  1325  	curgp := mp.curg
  1326  	// N.B. The execution tracer is not aware of this status
  1327  	// transition and handles it specially based on the
  1328  	// wait reason.
  1329  	casGToWaitingForSuspendG(curgp, _Grunning, waitReasonGarbageCollection)
  1330  
  1331  	// Run gc on the g0 stack. We do this so that the g stack
  1332  	// we're currently running on will no longer change. Cuts
  1333  	// the root set down a bit (g0 stacks are not scanned, and
  1334  	// we don't need to scan gc's internal state).  We also
  1335  	// need to switch to g0 so we can shrink the stack.
  1336  	systemstack(func() {
  1337  		gcMark(startTime)
  1338  		// Must return immediately.
  1339  		// The outer function's stack may have moved
  1340  		// during gcMark (it shrinks stacks, including the
  1341  		// outer function's stack), so we must not refer
  1342  		// to any of its variables. Return back to the
  1343  		// non-system stack to pick up the new addresses
  1344  		// before continuing.
  1345  	})
  1346  
  1347  	var stwSwept bool
  1348  	systemstack(func() {
  1349  		work.heap2 = work.bytesMarked
  1350  		if debug.gccheckmark > 0 {
  1351  			runCheckmark(func(_ *gcWork) { gcPrepareMarkRoots() })
  1352  		}
  1353  		if debug.checkfinalizers > 0 {
  1354  			checkFinalizersAndCleanups()
  1355  		}
  1356  
  1357  		// marking is complete so we can turn the write barrier off
  1358  		setGCPhase(_GCoff)
  1359  		stwSwept = gcSweep(work.mode)
  1360  	})
  1361  
  1362  	mp.traceback = 0
  1363  	casgstatus(curgp, _Gwaiting, _Grunning)
  1364  
  1365  	trace := traceAcquire()
  1366  	if trace.ok() {
  1367  		trace.GCDone()
  1368  		traceRelease(trace)
  1369  	}
  1370  
  1371  	// all done
  1372  	mp.preemptoff = ""
  1373  
  1374  	if gcphase != _GCoff {
  1375  		throw("gc done but gcphase != _GCoff")
  1376  	}
  1377  
  1378  	// Record heapInUse for scavenger.
  1379  	memstats.lastHeapInUse = gcController.heapInUse.load()
  1380  
  1381  	// Update GC trigger and pacing, as well as downstream consumers
  1382  	// of this pacing information, for the next cycle.
  1383  	systemstack(gcControllerCommit)
  1384  
  1385  	// Update timing memstats
  1386  	now := nanotime()
  1387  	sec, nsec, _ := time_now()
  1388  	unixNow := sec*1e9 + int64(nsec)
  1389  	work.pauseNS += now - stw.startedStopping
  1390  	work.tEnd = now
  1391  	atomic.Store64(&memstats.last_gc_unix, uint64(unixNow)) // must be Unix time to make sense to user
  1392  	atomic.Store64(&memstats.last_gc_nanotime, uint64(now)) // monotonic time for us
  1393  	memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(work.pauseNS)
  1394  	memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(unixNow)
  1395  	memstats.pause_total_ns += uint64(work.pauseNS)
  1396  
  1397  	// Accumulate CPU stats.
  1398  	//
  1399  	// Use maxprocs instead of stwprocs for GC pause time because the total time
  1400  	// computed in the CPU stats is based on maxprocs, and we want them to be
  1401  	// comparable.
  1402  	//
  1403  	// Pass gcMarkPhase=true to accumulate so we can get all the latest GC CPU stats
  1404  	// in there too.
  1405  	work.cpuStats.accumulateGCPauseTime(now-stw.finishedStopping, work.maxprocs)
  1406  	work.cpuStats.accumulate(now, true)
  1407  
  1408  	// Compute overall GC CPU utilization.
  1409  	// Omit idle marking time from the overall utilization here since it's "free".
  1410  	memstats.gc_cpu_fraction = float64(work.cpuStats.GCTotalTime-work.cpuStats.GCIdleTime) / float64(work.cpuStats.TotalTime)
  1411  
  1412  	// Reset assist time and background time stats.
  1413  	//
  1414  	// Do this now, instead of at the start of the next GC cycle, because
  1415  	// these two may keep accumulating even if the GC is not active.
  1416  	scavenge.assistTime.Store(0)
  1417  	scavenge.backgroundTime.Store(0)
  1418  
  1419  	// Reset idle time stat.
  1420  	sched.idleTime.Store(0)
  1421  
  1422  	if work.userForced {
  1423  		memstats.numforcedgc++
  1424  	}
  1425  
  1426  	// Bump GC cycle count and wake goroutines waiting on sweep.
  1427  	lock(&work.sweepWaiters.lock)
  1428  	memstats.numgc++
  1429  	injectglist(&work.sweepWaiters.list)
  1430  	unlock(&work.sweepWaiters.lock)
  1431  
  1432  	// Increment the scavenge generation now.
  1433  	//
  1434  	// This moment represents peak heap in use because we're
  1435  	// about to start sweeping.
  1436  	mheap_.pages.scav.index.nextGen()
  1437  
  1438  	// Release the CPU limiter.
  1439  	gcCPULimiter.finishGCTransition(now)
  1440  
  1441  	// Finish the current heap profiling cycle and start a new
  1442  	// heap profiling cycle. We do this before starting the world
  1443  	// so events don't leak into the wrong cycle.
  1444  	mProf_NextCycle()
  1445  
  1446  	// There may be stale spans in mcaches that need to be swept.
  1447  	// Those aren't tracked in any sweep lists, so we need to
  1448  	// count them against sweep completion until we ensure all
  1449  	// those spans have been forced out.
  1450  	//
  1451  	// If gcSweep fully swept the heap (for example if the sweep
  1452  	// is not concurrent due to a GODEBUG setting), then we expect
  1453  	// the sweepLocker to be invalid, since sweeping is done.
  1454  	//
  1455  	// N.B. Below we might duplicate some work from gcSweep; this is
  1456  	// fine as all that work is idempotent within a GC cycle, and
  1457  	// we're still holding worldsema so a new cycle can't start.
  1458  	sl := sweep.active.begin()
  1459  	if !stwSwept && !sl.valid {
  1460  		throw("failed to set sweep barrier")
  1461  	} else if stwSwept && sl.valid {
  1462  		throw("non-concurrent sweep failed to drain all sweep queues")
  1463  	}
  1464  
  1465  	if work.goroutineLeak.enabled {
  1466  		// Restore the elem and c fields of all sudogs to their original values.
  1467  		gcRestoreSyncObjects()
  1468  	}
  1469  
  1470  	var goroutineLeakDone bool
  1471  	systemstack(func() {
  1472  		// Pull the GC out of goroutine leak detection mode.
  1473  		work.goroutineLeak.enabled = false
  1474  		goroutineLeakDone = work.goroutineLeak.done
  1475  		work.goroutineLeak.done = false
  1476  
  1477  		// The memstats updated above must be updated with the world
  1478  		// stopped to ensure consistency of some values, such as
  1479  		// sched.idleTime and sched.totaltime. memstats also include
  1480  		// the pause time (work,pauseNS), forcing computation of the
  1481  		// total pause time before the pause actually ends.
  1482  		//
  1483  		// Here we reuse the same now for start the world so that the
  1484  		// time added to /sched/pauses/total/gc:seconds will be
  1485  		// consistent with the value in memstats.
  1486  		startTheWorldWithSema(now, stw)
  1487  	})
  1488  
  1489  	// Flush the heap profile so we can start a new cycle next GC.
  1490  	// This is relatively expensive, so we don't do it with the
  1491  	// world stopped.
  1492  	mProf_Flush()
  1493  
  1494  	// Prepare workbufs for freeing by the sweeper. We do this
  1495  	// asynchronously because it can take non-trivial time.
  1496  	prepareFreeWorkbufs()
  1497  
  1498  	// Free stack spans. This must be done between GC cycles.
  1499  	systemstack(freeStackSpans)
  1500  
  1501  	// Ensure all mcaches are flushed. Each P will flush its own
  1502  	// mcache before allocating, but idle Ps may not. Since this
  1503  	// is necessary to sweep all spans, we need to ensure all
  1504  	// mcaches are flushed before we start the next GC cycle.
  1505  	//
  1506  	// While we're here, flush the page cache for idle Ps to avoid
  1507  	// having pages get stuck on them. These pages are hidden from
  1508  	// the scavenger, so in small idle heaps a significant amount
  1509  	// of additional memory might be held onto.
  1510  	//
  1511  	// Also, flush the pinner cache, to avoid leaking that memory
  1512  	// indefinitely.
  1513  	if debug.gctrace > 1 {
  1514  		clear(memstats.lastScanStats[:])
  1515  	}
  1516  	forEachP(waitReasonFlushProcCaches, func(pp *p) {
  1517  		pp.mcache.prepareForSweep()
  1518  		if pp.status == _Pidle {
  1519  			systemstack(func() {
  1520  				lock(&mheap_.lock)
  1521  				pp.pcache.flush(&mheap_.pages)
  1522  				unlock(&mheap_.lock)
  1523  			})
  1524  		}
  1525  		if debug.gctrace > 1 {
  1526  			pp.gcw.flushScanStats(&memstats.lastScanStats)
  1527  		}
  1528  		pp.pinnerCache = nil
  1529  	})
  1530  	if sl.valid {
  1531  		// Now that we've swept stale spans in mcaches, they don't
  1532  		// count against unswept spans.
  1533  		//
  1534  		// Note: this sweepLocker may not be valid if sweeping had
  1535  		// already completed during the STW. See the corresponding
  1536  		// begin() call that produced sl.
  1537  		sweep.active.end(sl)
  1538  	}
  1539  
  1540  	// Print gctrace before dropping worldsema. As soon as we drop
  1541  	// worldsema another cycle could start and smash the stats
  1542  	// we're trying to print.
  1543  	if debug.gctrace > 0 {
  1544  		util := int(memstats.gc_cpu_fraction * 100)
  1545  
  1546  		var sbuf [24]byte
  1547  		printlock()
  1548  		print("gc ", memstats.numgc,
  1549  			" @", string(itoaDiv(sbuf[:], uint64(work.tSweepTerm-runtimeInitTime)/1e6, 3)), "s ",
  1550  			util, "%")
  1551  		if goroutineLeakDone {
  1552  			print(" (checking for goroutine leaks)")
  1553  		}
  1554  		print(": ")
  1555  		prev := work.tSweepTerm
  1556  		for i, ns := range []int64{work.tMark, work.tMarkTerm, work.tEnd} {
  1557  			if i != 0 {
  1558  				print("+")
  1559  			}
  1560  			print(string(fmtNSAsMS(sbuf[:], uint64(ns-prev))))
  1561  			prev = ns
  1562  		}
  1563  		print(" ms clock, ")
  1564  		for i, ns := range []int64{
  1565  			int64(work.stwprocs) * (work.tMark - work.tSweepTerm),
  1566  			gcController.assistTime.Load(),
  1567  			gcController.dedicatedMarkTime.Load() + gcController.fractionalMarkTime.Load(),
  1568  			gcController.idleMarkTime.Load(),
  1569  			int64(work.stwprocs) * (work.tEnd - work.tMarkTerm),
  1570  		} {
  1571  			if i == 2 || i == 3 {
  1572  				// Separate mark time components with /.
  1573  				print("/")
  1574  			} else if i != 0 {
  1575  				print("+")
  1576  			}
  1577  			print(string(fmtNSAsMS(sbuf[:], uint64(ns))))
  1578  		}
  1579  		print(" ms cpu, ",
  1580  			work.heap0>>20, "->", work.heap1>>20, "->", work.heap2>>20, " MB, ",
  1581  			gcController.lastHeapGoal>>20, " MB goal, ",
  1582  			gcController.lastStackScan.Load()>>20, " MB stacks, ",
  1583  			gcController.globalsScan.Load()>>20, " MB globals, ",
  1584  			work.maxprocs, " P")
  1585  		if work.userForced {
  1586  			print(" (forced)")
  1587  		}
  1588  		print("\n")
  1589  
  1590  		if debug.gctrace > 1 {
  1591  			dumpScanStats()
  1592  		}
  1593  		printunlock()
  1594  	}
  1595  
  1596  	// Print finalizer/cleanup queue length. Like gctrace, do this before the next GC starts.
  1597  	// The fact that the next GC might start is not that problematic here, but acts as a convenient
  1598  	// lock on printing this information (so it cannot overlap with itself from the next GC cycle).
  1599  	if debug.checkfinalizers > 0 {
  1600  		fq, fe := finReadQueueStats()
  1601  		fn := max(int64(fq)-int64(fe), 0)
  1602  
  1603  		cq, ce := gcCleanups.readQueueStats()
  1604  		cn := max(int64(cq)-int64(ce), 0)
  1605  
  1606  		println("checkfinalizers: queue:", fn, "finalizers +", cn, "cleanups")
  1607  	}
  1608  
  1609  	// Set any arena chunks that were deferred to fault.
  1610  	lock(&userArenaState.lock)
  1611  	faultList := userArenaState.fault
  1612  	userArenaState.fault = nil
  1613  	unlock(&userArenaState.lock)
  1614  	for _, lc := range faultList {
  1615  		lc.mspan.setUserArenaChunkToFault()
  1616  	}
  1617  
  1618  	// Enable huge pages on some metadata if we cross a heap threshold.
  1619  	if gcController.heapGoal() > minHeapForMetadataHugePages {
  1620  		systemstack(func() {
  1621  			mheap_.enableMetadataHugePages()
  1622  		})
  1623  	}
  1624  
  1625  	semrelease(&worldsema)
  1626  	semrelease(&gcsema)
  1627  	// Careful: another GC cycle may start now.
  1628  
  1629  	releasem(mp)
  1630  	mp = nil
  1631  
  1632  	// now that gc is done, kick off finalizer thread if needed
  1633  	if !concurrentSweep {
  1634  		// give the queued finalizers, if any, a chance to run
  1635  		Gosched()
  1636  	}
  1637  }
  1638  
  1639  // gcBgMarkStartWorkers prepares background mark worker goroutines. These
  1640  // goroutines will not run until the mark phase, but they must be started while
  1641  // the work is not stopped and from a regular G stack. The caller must hold
  1642  // worldsema.
  1643  func gcBgMarkStartWorkers() {
  1644  	// Background marking is performed by per-P G's. Ensure that each P has
  1645  	// a background GC G.
  1646  	//
  1647  	// Worker Gs don't exit if gomaxprocs is reduced. If it is raised
  1648  	// again, we can reuse the old workers; no need to create new workers.
  1649  	if gcBgMarkWorkerCount >= gomaxprocs {
  1650  		return
  1651  	}
  1652  
  1653  	// Increment mp.locks when allocating. We are called within gcStart,
  1654  	// and thus must not trigger another gcStart via an allocation. gcStart
  1655  	// bails when allocating with locks held, so simulate that for these
  1656  	// allocations.
  1657  	//
  1658  	// TODO(prattmic): cleanup gcStart to use a more explicit "in gcStart"
  1659  	// check for bailing.
  1660  	mp := acquirem()
  1661  	ready := make(chan struct{}, 1)
  1662  	releasem(mp)
  1663  
  1664  	for gcBgMarkWorkerCount < gomaxprocs {
  1665  		mp := acquirem() // See above, we allocate a closure here.
  1666  		go gcBgMarkWorker(ready)
  1667  		releasem(mp)
  1668  
  1669  		// N.B. we intentionally wait on each goroutine individually
  1670  		// rather than starting all in a batch and then waiting once
  1671  		// afterwards. By running one goroutine at a time, we can take
  1672  		// advantage of runnext to bounce back and forth between
  1673  		// workers and this goroutine. In an overloaded application,
  1674  		// this can reduce GC start latency by prioritizing these
  1675  		// goroutines rather than waiting on the end of the run queue.
  1676  		<-ready
  1677  		// The worker is now guaranteed to be added to the pool before
  1678  		// its P's next findRunnableGCWorker.
  1679  
  1680  		gcBgMarkWorkerCount++
  1681  	}
  1682  }
  1683  
  1684  // gcBgMarkPrepare sets up state for background marking.
  1685  // Mutator assists must not yet be enabled.
  1686  func gcBgMarkPrepare() {
  1687  	// Background marking will stop when the work queues are empty
  1688  	// and there are no more workers (note that, since this is
  1689  	// concurrent, this may be a transient state, but mark
  1690  	// termination will clean it up). Between background workers
  1691  	// and assists, we don't really know how many workers there
  1692  	// will be, so we pretend to have an arbitrarily large number
  1693  	// of workers, almost all of which are "waiting". While a
  1694  	// worker is working it decrements nwait. If nproc == nwait,
  1695  	// there are no workers.
  1696  	work.nproc = ^uint32(0)
  1697  	work.nwait = ^uint32(0)
  1698  }
  1699  
  1700  // gcBgMarkWorkerNode is an entry in the gcBgMarkWorkerPool. It points to a single
  1701  // gcBgMarkWorker goroutine.
  1702  type gcBgMarkWorkerNode struct {
  1703  	// Unused workers are managed in a lock-free stack. This field must be first.
  1704  	node lfnode
  1705  
  1706  	// The g of this worker.
  1707  	gp guintptr
  1708  
  1709  	// Release this m on park. This is used to communicate with the unlock
  1710  	// function, which cannot access the G's stack. It is unused outside of
  1711  	// gcBgMarkWorker().
  1712  	m muintptr
  1713  }
  1714  type gcBgMarkWorkerNodePadded struct {
  1715  	gcBgMarkWorkerNode
  1716  	pad [tagAlign - unsafe.Sizeof(gcBgMarkWorkerNode{}) - gcBgMarkWorkerNodeRedZoneSize]byte
  1717  }
  1718  
  1719  const gcBgMarkWorkerNodeRedZoneSize = (16 << 2) * asanenabledBit // redZoneSize(512)
  1720  
  1721  func gcBgMarkWorker(ready chan struct{}) {
  1722  	gp := getg()
  1723  
  1724  	// We pass node to a gopark unlock function, so it can't be on
  1725  	// the stack (see gopark). Prevent deadlock from recursively
  1726  	// starting GC by disabling preemption.
  1727  	gp.m.preemptoff = "GC worker init"
  1728  	node := &new(gcBgMarkWorkerNodePadded).gcBgMarkWorkerNode // TODO: technically not allowed in the heap. See comment in tagptr.go.
  1729  	gp.m.preemptoff = ""
  1730  
  1731  	node.gp.set(gp)
  1732  
  1733  	node.m.set(acquirem())
  1734  
  1735  	ready <- struct{}{}
  1736  	// After this point, the background mark worker is generally scheduled
  1737  	// cooperatively by gcController.findRunnableGCWorker. While performing
  1738  	// work on the P, preemption is disabled because we are working on
  1739  	// P-local work buffers. When the preempt flag is set, this puts itself
  1740  	// into _Gwaiting to be woken up by gcController.findRunnableGCWorker
  1741  	// at the appropriate time.
  1742  	//
  1743  	// When preemption is enabled (e.g., while in gcMarkDone), this worker
  1744  	// may be preempted and schedule as a _Grunnable G from a runq. That is
  1745  	// fine; it will eventually gopark again for further scheduling via
  1746  	// findRunnableGCWorker.
  1747  	//
  1748  	// Since we disable preemption before notifying ready, we guarantee that
  1749  	// this G will be in the worker pool for the next findRunnableGCWorker.
  1750  	// This isn't strictly necessary, but it reduces latency between
  1751  	// _GCmark starting and the workers starting.
  1752  
  1753  	for {
  1754  		// Go to sleep until woken by
  1755  		// gcController.findRunnableGCWorker.
  1756  		gopark(func(g *g, nodep unsafe.Pointer) bool {
  1757  			node := (*gcBgMarkWorkerNode)(nodep)
  1758  
  1759  			if mp := node.m.ptr(); mp != nil {
  1760  				// The worker G is no longer running; release
  1761  				// the M.
  1762  				//
  1763  				// N.B. it is _safe_ to release the M as soon
  1764  				// as we are no longer performing P-local mark
  1765  				// work.
  1766  				//
  1767  				// However, since we cooperatively stop work
  1768  				// when gp.preempt is set, if we releasem in
  1769  				// the loop then the following call to gopark
  1770  				// would immediately preempt the G. This is
  1771  				// also safe, but inefficient: the G must
  1772  				// schedule again only to enter gopark and park
  1773  				// again. Thus, we defer the release until
  1774  				// after parking the G.
  1775  				releasem(mp)
  1776  			}
  1777  
  1778  			// Release this G to the pool.
  1779  			gcBgMarkWorkerPool.push(&node.node)
  1780  			// Note that at this point, the G may immediately be
  1781  			// rescheduled and may be running.
  1782  			return true
  1783  		}, unsafe.Pointer(node), waitReasonGCWorkerIdle, traceBlockSystemGoroutine, 0)
  1784  
  1785  		// Preemption must not occur here, or another G might see
  1786  		// p.gcMarkWorkerMode.
  1787  
  1788  		// Disable preemption so we can use the gcw. If the
  1789  		// scheduler wants to preempt us, we'll stop draining,
  1790  		// dispose the gcw, and then preempt.
  1791  		node.m.set(acquirem())
  1792  		pp := gp.m.p.ptr() // P can't change with preemption disabled.
  1793  
  1794  		if gcBlackenEnabled == 0 {
  1795  			println("worker mode", pp.gcMarkWorkerMode)
  1796  			throw("gcBgMarkWorker: blackening not enabled")
  1797  		}
  1798  
  1799  		if pp.gcMarkWorkerMode == gcMarkWorkerNotWorker {
  1800  			throw("gcBgMarkWorker: mode not set")
  1801  		}
  1802  
  1803  		startTime := nanotime()
  1804  		pp.gcMarkWorkerStartTime = startTime
  1805  		var trackLimiterEvent bool
  1806  		if pp.gcMarkWorkerMode == gcMarkWorkerIdleMode {
  1807  			trackLimiterEvent = pp.limiterEvent.start(limiterEventIdleMarkWork, startTime)
  1808  		}
  1809  
  1810  		gcBeginWork()
  1811  
  1812  		systemstack(func() {
  1813  			// Mark our goroutine preemptible so its stack can be scanned or observed
  1814  			// by the execution tracer. This, for example, lets two mark workers scan
  1815  			// each other (otherwise, they would deadlock).
  1816  			//
  1817  			// casGToWaitingForSuspendG marks the goroutine as ineligible for a
  1818  			// stack shrink, effectively pinning the stack in memory for the duration.
  1819  			//
  1820  			// N.B. The execution tracer is not aware of this status transition and
  1821  			// handles it specially based on the wait reason.
  1822  			casGToWaitingForSuspendG(gp, _Grunning, waitReasonGCWorkerActive)
  1823  			switch pp.gcMarkWorkerMode {
  1824  			default:
  1825  				throw("gcBgMarkWorker: unexpected gcMarkWorkerMode")
  1826  			case gcMarkWorkerDedicatedMode:
  1827  				gcDrainMarkWorkerDedicated(&pp.gcw, true)
  1828  				if gp.preempt {
  1829  					// We were preempted. This is
  1830  					// a useful signal to kick
  1831  					// everything out of the run
  1832  					// queue so it can run
  1833  					// somewhere else.
  1834  					if drainQ := runqdrain(pp); !drainQ.empty() {
  1835  						lock(&sched.lock)
  1836  						globrunqputbatch(&drainQ)
  1837  						unlock(&sched.lock)
  1838  					}
  1839  				}
  1840  				// Go back to draining, this time
  1841  				// without preemption.
  1842  				gcDrainMarkWorkerDedicated(&pp.gcw, false)
  1843  			case gcMarkWorkerFractionalMode:
  1844  				gcDrainMarkWorkerFractional(&pp.gcw)
  1845  			case gcMarkWorkerIdleMode:
  1846  				gcDrainMarkWorkerIdle(&pp.gcw)
  1847  			}
  1848  			casgstatus(gp, _Gwaiting, _Grunning)
  1849  		})
  1850  
  1851  		// Account for time and mark us as stopped.
  1852  		now := nanotime()
  1853  		duration := now - startTime
  1854  		gcController.markWorkerStop(pp.gcMarkWorkerMode, duration)
  1855  		if trackLimiterEvent {
  1856  			pp.limiterEvent.stop(limiterEventIdleMarkWork, now)
  1857  		}
  1858  		if pp.gcMarkWorkerMode == gcMarkWorkerFractionalMode {
  1859  			atomic.Xaddint64(&pp.gcFractionalMarkTime, duration)
  1860  		}
  1861  
  1862  		// We'll releasem after this point and thus this P may run
  1863  		// something else. We must clear the worker mode to avoid
  1864  		// attributing the mode to a different (non-worker) G in
  1865  		// tracev2.GoStart.
  1866  		pp.gcMarkWorkerMode = gcMarkWorkerNotWorker
  1867  
  1868  		// If this worker reached a background mark completion
  1869  		// point, signal the main GC goroutine.
  1870  		if gcEndWork() {
  1871  			// We don't need the P-local buffers here, allow
  1872  			// preemption because we may schedule like a regular
  1873  			// goroutine in gcMarkDone (block on locks, etc).
  1874  			releasem(node.m.ptr())
  1875  			node.m.set(nil)
  1876  
  1877  			gcMarkDone()
  1878  		}
  1879  	}
  1880  }
  1881  
  1882  // gcShouldScheduleWorker reports whether executing a mark worker
  1883  // on p is potentially useful. p may be nil.
  1884  func gcShouldScheduleWorker(p *p) bool {
  1885  	if p != nil && !p.gcw.empty() {
  1886  		return true
  1887  	}
  1888  	return gcMarkWorkAvailable()
  1889  }
  1890  
  1891  // gcIsMarkDone reports whether the mark phase is (probably) done.
  1892  func gcIsMarkDone() bool {
  1893  	return work.nwait == work.nproc && !gcMarkWorkAvailable()
  1894  }
  1895  
  1896  // gcBeginWork signals to the garbage collector that a new worker is
  1897  // about to process GC work.
  1898  func gcBeginWork() {
  1899  	decnwait := atomic.Xadd(&work.nwait, -1)
  1900  	if decnwait == work.nproc {
  1901  		println("runtime: work.nwait=", decnwait, "work.nproc=", work.nproc)
  1902  		throw("work.nwait was > work.nproc")
  1903  	}
  1904  }
  1905  
  1906  // gcEndWork signals to the garbage collector that a new worker has just finished
  1907  // its work. It reports whether it was the last worker and there's no more work
  1908  // to do. If it returns true, the caller must call gcMarkDone.
  1909  func gcEndWork() (last bool) {
  1910  	incnwait := atomic.Xadd(&work.nwait, +1)
  1911  	if incnwait > work.nproc {
  1912  		println("runtime: work.nwait=", incnwait, "work.nproc=", work.nproc)
  1913  		throw("work.nwait > work.nproc")
  1914  	}
  1915  	return incnwait == work.nproc && !gcMarkWorkAvailable()
  1916  }
  1917  
  1918  // gcMark runs the mark (or, for concurrent GC, mark termination)
  1919  // All gcWork caches must be empty.
  1920  // STW is in effect at this point.
  1921  func gcMark(startTime int64) {
  1922  	if gcphase != _GCmarktermination {
  1923  		throw("in gcMark expecting to see gcphase as _GCmarktermination")
  1924  	}
  1925  	work.tstart = startTime
  1926  
  1927  	// Check that there's no marking work remaining.
  1928  	if next, jobs := work.markrootNext.Load(), work.markrootJobs.Load(); work.full != 0 || next < jobs {
  1929  		print("runtime: full=", hex(work.full), " next=", next, " jobs=", jobs, " nDataRoots=", work.nDataRoots, " nBSSRoots=", work.nBSSRoots, " nSpanRoots=", work.nSpanRoots, " nStackRoots=", work.nStackRoots, "\n")
  1930  		panic("non-empty mark queue after concurrent mark")
  1931  	}
  1932  
  1933  	if debug.gccheckmark > 0 {
  1934  		// This is expensive when there's a large number of
  1935  		// Gs, so only do it if checkmark is also enabled.
  1936  		gcMarkRootCheck()
  1937  	}
  1938  
  1939  	// Drop allg snapshot. allgs may have grown, in which case
  1940  	// this is the only reference to the old backing store and
  1941  	// there's no need to keep it around.
  1942  	work.stackRoots = nil
  1943  
  1944  	// Clear out buffers and double-check that all gcWork caches
  1945  	// are empty. This should be ensured by gcMarkDone before we
  1946  	// enter mark termination.
  1947  	//
  1948  	// TODO: We could clear out buffers just before mark if this
  1949  	// has a non-negligible impact on STW time.
  1950  	for _, p := range allp {
  1951  		// The write barrier may have buffered pointers since
  1952  		// the gcMarkDone barrier. However, since the barrier
  1953  		// ensured all reachable objects were marked, all of
  1954  		// these must be pointers to black objects. Hence we
  1955  		// can just discard the write barrier buffer.
  1956  		if debug.gccheckmark > 0 {
  1957  			// For debugging, flush the buffer and make
  1958  			// sure it really was all marked.
  1959  			wbBufFlush1(p)
  1960  		} else {
  1961  			p.wbBuf.reset()
  1962  		}
  1963  
  1964  		gcw := &p.gcw
  1965  		if !gcw.empty() {
  1966  			printlock()
  1967  			print("runtime: P ", p.id, " flushedWork ", gcw.flushedWork)
  1968  			if gcw.wbuf1 == nil {
  1969  				print(" wbuf1=<nil>")
  1970  			} else {
  1971  				print(" wbuf1.n=", gcw.wbuf1.nobj)
  1972  			}
  1973  			if gcw.wbuf2 == nil {
  1974  				print(" wbuf2=<nil>")
  1975  			} else {
  1976  				print(" wbuf2.n=", gcw.wbuf2.nobj)
  1977  			}
  1978  			print("\n")
  1979  			throw("P has cached GC work at end of mark termination")
  1980  		}
  1981  		// There may still be cached empty buffers, which we
  1982  		// need to flush since we're going to free them. Also,
  1983  		// there may be non-zero stats because we allocated
  1984  		// black after the gcMarkDone barrier.
  1985  		gcw.dispose()
  1986  	}
  1987  
  1988  	// Flush scanAlloc from each mcache since we're about to modify
  1989  	// heapScan directly. If we were to flush this later, then scanAlloc
  1990  	// might have incorrect information.
  1991  	//
  1992  	// Note that it's not important to retain this information; we know
  1993  	// exactly what heapScan is at this point via scanWork.
  1994  	for _, p := range allp {
  1995  		c := p.mcache
  1996  		if c == nil {
  1997  			continue
  1998  		}
  1999  		c.scanAlloc = 0
  2000  	}
  2001  
  2002  	// Reset controller state.
  2003  	gcController.resetLive(work.bytesMarked)
  2004  }
  2005  
  2006  // gcSweep must be called on the system stack because it acquires the heap
  2007  // lock. See mheap for details.
  2008  //
  2009  // Returns true if the heap was fully swept by this function.
  2010  //
  2011  // The world must be stopped.
  2012  //
  2013  //go:systemstack
  2014  func gcSweep(mode gcMode) bool {
  2015  	assertWorldStopped()
  2016  
  2017  	if gcphase != _GCoff {
  2018  		throw("gcSweep being done but phase is not GCoff")
  2019  	}
  2020  
  2021  	lock(&mheap_.lock)
  2022  	mheap_.sweepgen += 2
  2023  	sweep.active.reset()
  2024  	mheap_.pagesSwept.Store(0)
  2025  	mheap_.sweepArenas = mheap_.heapArenas
  2026  	mheap_.reclaimIndex.Store(0)
  2027  	mheap_.reclaimCredit.Store(0)
  2028  	unlock(&mheap_.lock)
  2029  
  2030  	sweep.centralIndex.clear()
  2031  
  2032  	if !concurrentSweep || mode == gcForceBlockMode {
  2033  		// Special case synchronous sweep.
  2034  		// Record that no proportional sweeping has to happen.
  2035  		lock(&mheap_.lock)
  2036  		mheap_.sweepPagesPerByte = 0
  2037  		unlock(&mheap_.lock)
  2038  		// Flush all mcaches.
  2039  		for _, pp := range allp {
  2040  			pp.mcache.prepareForSweep()
  2041  		}
  2042  		// Sweep all spans eagerly.
  2043  		for sweepone() != ^uintptr(0) {
  2044  		}
  2045  		// Free workbufs and span rings eagerly.
  2046  		prepareFreeWorkbufs()
  2047  		for freeSomeWbufs(false) {
  2048  		}
  2049  		freeDeadSpanSPMCs()
  2050  		// All "free" events for this mark/sweep cycle have
  2051  		// now happened, so we can make this profile cycle
  2052  		// available immediately.
  2053  		mProf_NextCycle()
  2054  		mProf_Flush()
  2055  		return true
  2056  	}
  2057  
  2058  	// Background sweep.
  2059  	lock(&sweep.lock)
  2060  	if sweep.parked {
  2061  		sweep.parked = false
  2062  		ready(sweep.g, 0, true)
  2063  	}
  2064  	unlock(&sweep.lock)
  2065  	return false
  2066  }
  2067  
  2068  // gcResetMarkState resets global state prior to marking (concurrent
  2069  // or STW) and resets the stack scan state of all Gs.
  2070  //
  2071  // This is safe to do without the world stopped because any Gs created
  2072  // during or after this will start out in the reset state.
  2073  //
  2074  // gcResetMarkState must be called on the system stack because it acquires
  2075  // the heap lock. See mheap for details.
  2076  //
  2077  //go:systemstack
  2078  func gcResetMarkState() {
  2079  	// This may be called during a concurrent phase, so lock to make sure
  2080  	// allgs doesn't change.
  2081  	forEachG(func(gp *g) {
  2082  		gp.gcscandone = false // set to true in gcphasework
  2083  		gp.gcAssistBytes = 0
  2084  	})
  2085  
  2086  	// Clear page marks. This is just 1MB per 64GB of heap, so the
  2087  	// time here is pretty trivial.
  2088  	lock(&mheap_.lock)
  2089  	arenas := mheap_.heapArenas
  2090  	unlock(&mheap_.lock)
  2091  	for _, ai := range arenas {
  2092  		ha := mheap_.arenas[ai.l1()][ai.l2()]
  2093  		clear(ha.pageMarks[:])
  2094  	}
  2095  
  2096  	work.bytesMarked = 0
  2097  	work.initialHeapLive = gcController.heapLive.Load()
  2098  }
  2099  
  2100  // Hooks for other packages
  2101  
  2102  var poolcleanup func()
  2103  var boringCaches []unsafe.Pointer // for crypto/internal/boring
  2104  
  2105  // sync_runtime_registerPoolCleanup should be an internal detail,
  2106  // but widely used packages access it using linkname.
  2107  // Notable members of the hall of shame include:
  2108  //   - github.com/bytedance/gopkg
  2109  //   - github.com/songzhibin97/gkit
  2110  //
  2111  // Do not remove or change the type signature.
  2112  // See go.dev/issue/67401.
  2113  //
  2114  //go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
  2115  func sync_runtime_registerPoolCleanup(f func()) {
  2116  	poolcleanup = f
  2117  }
  2118  
  2119  //go:linkname boring_registerCache crypto/internal/boring/bcache.registerCache
  2120  func boring_registerCache(p unsafe.Pointer) {
  2121  	boringCaches = append(boringCaches, p)
  2122  }
  2123  
  2124  func clearpools() {
  2125  	// clear sync.Pools
  2126  	if poolcleanup != nil {
  2127  		poolcleanup()
  2128  	}
  2129  
  2130  	// clear boringcrypto caches
  2131  	for _, p := range boringCaches {
  2132  		atomicstorep(p, nil)
  2133  	}
  2134  
  2135  	// Clear central sudog cache.
  2136  	// Leave per-P caches alone, they have strictly bounded size.
  2137  	// Disconnect cached list before dropping it on the floor,
  2138  	// so that a dangling ref to one entry does not pin all of them.
  2139  	lock(&sched.sudoglock)
  2140  	var sg, sgnext *sudog
  2141  	for sg = sched.sudogcache; sg != nil; sg = sgnext {
  2142  		sgnext = sg.next
  2143  		sg.next = nil
  2144  	}
  2145  	sched.sudogcache = nil
  2146  	unlock(&sched.sudoglock)
  2147  
  2148  	// Clear central defer pool.
  2149  	// Leave per-P pools alone, they have strictly bounded size.
  2150  	lock(&sched.deferlock)
  2151  	// disconnect cached list before dropping it on the floor,
  2152  	// so that a dangling ref to one entry does not pin all of them.
  2153  	var d, dlink *_defer
  2154  	for d = sched.deferpool; d != nil; d = dlink {
  2155  		dlink = d.link
  2156  		d.link = nil
  2157  	}
  2158  	sched.deferpool = nil
  2159  	unlock(&sched.deferlock)
  2160  }
  2161  
  2162  // Timing
  2163  
  2164  // itoaDiv formats val/(10**dec) into buf.
  2165  func itoaDiv(buf []byte, val uint64, dec int) []byte {
  2166  	i := len(buf) - 1
  2167  	idec := i - dec
  2168  	for val >= 10 || i >= idec {
  2169  		buf[i] = byte(val%10 + '0')
  2170  		i--
  2171  		if i == idec {
  2172  			buf[i] = '.'
  2173  			i--
  2174  		}
  2175  		val /= 10
  2176  	}
  2177  	buf[i] = byte(val + '0')
  2178  	return buf[i:]
  2179  }
  2180  
  2181  // fmtNSAsMS nicely formats ns nanoseconds as milliseconds.
  2182  func fmtNSAsMS(buf []byte, ns uint64) []byte {
  2183  	if ns >= 10e6 {
  2184  		// Format as whole milliseconds.
  2185  		return itoaDiv(buf, ns/1e6, 0)
  2186  	}
  2187  	// Format two digits of precision, with at most three decimal places.
  2188  	x := ns / 1e3
  2189  	if x == 0 {
  2190  		buf[0] = '0'
  2191  		return buf[:1]
  2192  	}
  2193  	dec := 3
  2194  	for x >= 100 {
  2195  		x /= 10
  2196  		dec--
  2197  	}
  2198  	return itoaDiv(buf, x, dec)
  2199  }
  2200  
  2201  // Helpers for testing GC.
  2202  
  2203  // gcTestMoveStackOnNextCall causes the stack to be moved on a call
  2204  // immediately following the call to this. It may not work correctly
  2205  // if any other work appears after this call (such as returning).
  2206  // Typically the following call should be marked go:noinline so it
  2207  // performs a stack check.
  2208  //
  2209  // In rare cases this may not cause the stack to move, specifically if
  2210  // there's a preemption between this call and the next.
  2211  func gcTestMoveStackOnNextCall() {
  2212  	gp := getg()
  2213  	gp.stackguard0 = stackForceMove
  2214  }
  2215  
  2216  // gcTestIsReachable performs a GC and returns a bit set where bit i
  2217  // is set if ptrs[i] is reachable.
  2218  func gcTestIsReachable(ptrs ...unsafe.Pointer) (mask uint64) {
  2219  	// This takes the pointers as unsafe.Pointers in order to keep
  2220  	// them live long enough for us to attach specials. After
  2221  	// that, we drop our references to them.
  2222  
  2223  	if len(ptrs) > 64 {
  2224  		panic("too many pointers for uint64 mask")
  2225  	}
  2226  
  2227  	// Block GC while we attach specials and drop our references
  2228  	// to ptrs. Otherwise, if a GC is in progress, it could mark
  2229  	// them reachable via this function before we have a chance to
  2230  	// drop them.
  2231  	semacquire(&gcsema)
  2232  
  2233  	// Create reachability specials for ptrs.
  2234  	specials := make([]*specialReachable, len(ptrs))
  2235  	for i, p := range ptrs {
  2236  		lock(&mheap_.speciallock)
  2237  		s := (*specialReachable)(mheap_.specialReachableAlloc.alloc())
  2238  		unlock(&mheap_.speciallock)
  2239  		s.special.kind = _KindSpecialReachable
  2240  		if !addspecial(p, &s.special, false) {
  2241  			throw("already have a reachable special (duplicate pointer?)")
  2242  		}
  2243  		specials[i] = s
  2244  		// Make sure we don't retain ptrs.
  2245  		ptrs[i] = nil
  2246  	}
  2247  
  2248  	semrelease(&gcsema)
  2249  
  2250  	// Force a full GC and sweep.
  2251  	GC()
  2252  
  2253  	// Process specials.
  2254  	for i, s := range specials {
  2255  		if !s.done {
  2256  			printlock()
  2257  			println("runtime: object", i, "was not swept")
  2258  			throw("IsReachable failed")
  2259  		}
  2260  		if s.reachable {
  2261  			mask |= 1 << i
  2262  		}
  2263  		lock(&mheap_.speciallock)
  2264  		mheap_.specialReachableAlloc.free(unsafe.Pointer(s))
  2265  		unlock(&mheap_.speciallock)
  2266  	}
  2267  
  2268  	return mask
  2269  }
  2270  
  2271  // gcTestPointerClass returns the category of what p points to, one of:
  2272  // "heap", "stack", "data", "bss", "other". This is useful for checking
  2273  // that a test is doing what it's intended to do.
  2274  //
  2275  // This is nosplit simply to avoid extra pointer shuffling that may
  2276  // complicate a test.
  2277  //
  2278  //go:nosplit
  2279  func gcTestPointerClass(p unsafe.Pointer) string {
  2280  	p2 := uintptr(noescape(p))
  2281  	gp := getg()
  2282  	if gp.stack.lo <= p2 && p2 < gp.stack.hi {
  2283  		return "stack"
  2284  	}
  2285  	if base, _, _ := findObject(p2, 0, 0); base != 0 {
  2286  		return "heap"
  2287  	}
  2288  	for _, datap := range activeModules() {
  2289  		if datap.data <= p2 && p2 < datap.edata || datap.noptrdata <= p2 && p2 < datap.enoptrdata {
  2290  			return "data"
  2291  		}
  2292  		if datap.bss <= p2 && p2 < datap.ebss || datap.noptrbss <= p2 && p2 <= datap.enoptrbss {
  2293  			return "bss"
  2294  		}
  2295  	}
  2296  	KeepAlive(p)
  2297  	return "other"
  2298  }
  2299  

View as plain text