Source file src/runtime/mfinal.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector: finalizers and block profiling.
     6  
     7  package runtime
     8  
     9  import (
    10  	"internal/abi"
    11  	"internal/goarch"
    12  	"internal/runtime/atomic"
    13  	"internal/runtime/sys"
    14  	"unsafe"
    15  )
    16  
    17  const finBlockSize = 4 * 1024
    18  
    19  // finBlock is an block of finalizers/cleanups to be executed. finBlocks
    20  // are arranged in a linked list for the finalizer queue.
    21  //
    22  // finBlock is allocated from non-GC'd memory, so any heap pointers
    23  // must be specially handled. GC currently assumes that the finalizer
    24  // queue does not grow during marking (but it can shrink).
    25  type finBlock struct {
    26  	_       sys.NotInHeap
    27  	alllink *finBlock
    28  	next    *finBlock
    29  	cnt     uint32
    30  	_       int32
    31  	fin     [(finBlockSize - 2*goarch.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer
    32  }
    33  
    34  var fingStatus atomic.Uint32
    35  
    36  // finalizer goroutine status.
    37  const (
    38  	fingUninitialized uint32 = iota
    39  	fingCreated       uint32 = 1 << (iota - 1)
    40  	fingRunningFinalizer
    41  	fingWait
    42  	fingWake
    43  )
    44  
    45  var (
    46  	finlock    mutex     // protects the following variables
    47  	fing       *g        // goroutine that runs finalizers
    48  	finq       *finBlock // list of finalizers that are to be executed
    49  	finc       *finBlock // cache of free blocks
    50  	finptrmask [finBlockSize / goarch.PtrSize / 8]byte
    51  )
    52  
    53  var allfin *finBlock // list of all blocks
    54  
    55  // NOTE: Layout known to queuefinalizer.
    56  type finalizer struct {
    57  	fn   *funcval       // function to call (may be a heap pointer)
    58  	arg  unsafe.Pointer // ptr to object (may be a heap pointer)
    59  	nret uintptr        // bytes of return values from fn
    60  	fint *_type         // type of first argument of fn
    61  	ot   *ptrtype       // type of ptr to object (may be a heap pointer)
    62  }
    63  
    64  var finalizer1 = [...]byte{
    65  	// Each Finalizer is 5 words, ptr ptr INT ptr ptr (INT = uintptr here)
    66  	// Each byte describes 8 words.
    67  	// Need 8 Finalizers described by 5 bytes before pattern repeats:
    68  	//	ptr ptr INT ptr ptr
    69  	//	ptr ptr INT ptr ptr
    70  	//	ptr ptr INT ptr ptr
    71  	//	ptr ptr INT ptr ptr
    72  	//	ptr ptr INT ptr ptr
    73  	//	ptr ptr INT ptr ptr
    74  	//	ptr ptr INT ptr ptr
    75  	//	ptr ptr INT ptr ptr
    76  	// aka
    77  	//
    78  	//	ptr ptr INT ptr ptr ptr ptr INT
    79  	//	ptr ptr ptr ptr INT ptr ptr ptr
    80  	//	ptr INT ptr ptr ptr ptr INT ptr
    81  	//	ptr ptr ptr INT ptr ptr ptr ptr
    82  	//	INT ptr ptr ptr ptr INT ptr ptr
    83  	//
    84  	// Assumptions about Finalizer layout checked below.
    85  	1<<0 | 1<<1 | 0<<2 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 0<<7,
    86  	1<<0 | 1<<1 | 1<<2 | 1<<3 | 0<<4 | 1<<5 | 1<<6 | 1<<7,
    87  	1<<0 | 0<<1 | 1<<2 | 1<<3 | 1<<4 | 1<<5 | 0<<6 | 1<<7,
    88  	1<<0 | 1<<1 | 1<<2 | 0<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7,
    89  	0<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<4 | 0<<5 | 1<<6 | 1<<7,
    90  }
    91  
    92  // lockRankMayQueueFinalizer records the lock ranking effects of a
    93  // function that may call queuefinalizer.
    94  func lockRankMayQueueFinalizer() {
    95  	lockWithRankMayAcquire(&finlock, getLockRank(&finlock))
    96  }
    97  
    98  func queuefinalizer(p unsafe.Pointer, fn *funcval, nret uintptr, fint *_type, ot *ptrtype) {
    99  	if gcphase != _GCoff {
   100  		// Currently we assume that the finalizer queue won't
   101  		// grow during marking so we don't have to rescan it
   102  		// during mark termination. If we ever need to lift
   103  		// this assumption, we can do it by adding the
   104  		// necessary barriers to queuefinalizer (which it may
   105  		// have automatically).
   106  		throw("queuefinalizer during GC")
   107  	}
   108  
   109  	lock(&finlock)
   110  	if finq == nil || finq.cnt == uint32(len(finq.fin)) {
   111  		if finc == nil {
   112  			finc = (*finBlock)(persistentalloc(finBlockSize, 0, &memstats.gcMiscSys))
   113  			finc.alllink = allfin
   114  			allfin = finc
   115  			if finptrmask[0] == 0 {
   116  				// Build pointer mask for Finalizer array in block.
   117  				// Check assumptions made in finalizer1 array above.
   118  				if (unsafe.Sizeof(finalizer{}) != 5*goarch.PtrSize ||
   119  					unsafe.Offsetof(finalizer{}.fn) != 0 ||
   120  					unsafe.Offsetof(finalizer{}.arg) != goarch.PtrSize ||
   121  					unsafe.Offsetof(finalizer{}.nret) != 2*goarch.PtrSize ||
   122  					unsafe.Offsetof(finalizer{}.fint) != 3*goarch.PtrSize ||
   123  					unsafe.Offsetof(finalizer{}.ot) != 4*goarch.PtrSize) {
   124  					throw("finalizer out of sync")
   125  				}
   126  				for i := range finptrmask {
   127  					finptrmask[i] = finalizer1[i%len(finalizer1)]
   128  				}
   129  			}
   130  		}
   131  		block := finc
   132  		finc = block.next
   133  		block.next = finq
   134  		finq = block
   135  	}
   136  	f := &finq.fin[finq.cnt]
   137  	atomic.Xadd(&finq.cnt, +1) // Sync with markroots
   138  	f.fn = fn
   139  	f.nret = nret
   140  	f.fint = fint
   141  	f.ot = ot
   142  	f.arg = p
   143  	unlock(&finlock)
   144  	fingStatus.Or(fingWake)
   145  }
   146  
   147  //go:nowritebarrier
   148  func iterate_finq(callback func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) {
   149  	for fb := allfin; fb != nil; fb = fb.alllink {
   150  		for i := uint32(0); i < fb.cnt; i++ {
   151  			f := &fb.fin[i]
   152  			callback(f.fn, f.arg, f.nret, f.fint, f.ot)
   153  		}
   154  	}
   155  }
   156  
   157  func wakefing() *g {
   158  	if ok := fingStatus.CompareAndSwap(fingCreated|fingWait|fingWake, fingCreated); ok {
   159  		return fing
   160  	}
   161  	return nil
   162  }
   163  
   164  func createfing() {
   165  	// start the finalizer goroutine exactly once
   166  	if fingStatus.Load() == fingUninitialized && fingStatus.CompareAndSwap(fingUninitialized, fingCreated) {
   167  		go runFinalizersAndCleanups()
   168  	}
   169  }
   170  
   171  func finalizercommit(gp *g, lock unsafe.Pointer) bool {
   172  	unlock((*mutex)(lock))
   173  	// fingStatus should be modified after fing is put into a waiting state
   174  	// to avoid waking fing in running state, even if it is about to be parked.
   175  	fingStatus.Or(fingWait)
   176  	return true
   177  }
   178  
   179  // This is the goroutine that runs all of the finalizers and cleanups.
   180  func runFinalizersAndCleanups() {
   181  	var (
   182  		frame    unsafe.Pointer
   183  		framecap uintptr
   184  		argRegs  int
   185  	)
   186  
   187  	gp := getg()
   188  	lock(&finlock)
   189  	fing = gp
   190  	unlock(&finlock)
   191  
   192  	for {
   193  		lock(&finlock)
   194  		fb := finq
   195  		finq = nil
   196  		if fb == nil {
   197  			gopark(finalizercommit, unsafe.Pointer(&finlock), waitReasonFinalizerWait, traceBlockSystemGoroutine, 1)
   198  			continue
   199  		}
   200  		argRegs = intArgRegs
   201  		unlock(&finlock)
   202  		if raceenabled {
   203  			racefingo()
   204  		}
   205  		for fb != nil {
   206  			for i := fb.cnt; i > 0; i-- {
   207  				f := &fb.fin[i-1]
   208  
   209  				// arg will only be nil when a cleanup has been queued.
   210  				if f.arg == nil {
   211  					var cleanup func()
   212  					fn := unsafe.Pointer(f.fn)
   213  					cleanup = *(*func())(unsafe.Pointer(&fn))
   214  					fingStatus.Or(fingRunningFinalizer)
   215  					cleanup()
   216  					fingStatus.And(^fingRunningFinalizer)
   217  
   218  					f.fn = nil
   219  					f.arg = nil
   220  					f.ot = nil
   221  					atomic.Store(&fb.cnt, i-1)
   222  					continue
   223  				}
   224  
   225  				var regs abi.RegArgs
   226  				// The args may be passed in registers or on stack. Even for
   227  				// the register case, we still need the spill slots.
   228  				// TODO: revisit if we remove spill slots.
   229  				//
   230  				// Unfortunately because we can have an arbitrary
   231  				// amount of returns and it would be complex to try and
   232  				// figure out how many of those can get passed in registers,
   233  				// just conservatively assume none of them do.
   234  				framesz := unsafe.Sizeof((any)(nil)) + f.nret
   235  				if framecap < framesz {
   236  					// The frame does not contain pointers interesting for GC,
   237  					// all not yet finalized objects are stored in finq.
   238  					// If we do not mark it as FlagNoScan,
   239  					// the last finalized object is not collected.
   240  					frame = mallocgc(framesz, nil, true)
   241  					framecap = framesz
   242  				}
   243  				// cleanups also have a nil fint. Cleanups should have been processed before
   244  				// reaching this point.
   245  				if f.fint == nil {
   246  					throw("missing type in finalizer")
   247  				}
   248  				r := frame
   249  				if argRegs > 0 {
   250  					r = unsafe.Pointer(&regs.Ints)
   251  				} else {
   252  					// frame is effectively uninitialized
   253  					// memory. That means we have to clear
   254  					// it before writing to it to avoid
   255  					// confusing the write barrier.
   256  					*(*[2]uintptr)(frame) = [2]uintptr{}
   257  				}
   258  				switch f.fint.Kind_ & abi.KindMask {
   259  				case abi.Pointer:
   260  					// direct use of pointer
   261  					*(*unsafe.Pointer)(r) = f.arg
   262  				case abi.Interface:
   263  					ityp := (*interfacetype)(unsafe.Pointer(f.fint))
   264  					// set up with empty interface
   265  					(*eface)(r)._type = &f.ot.Type
   266  					(*eface)(r).data = f.arg
   267  					if len(ityp.Methods) != 0 {
   268  						// convert to interface with methods
   269  						// this conversion is guaranteed to succeed - we checked in SetFinalizer
   270  						(*iface)(r).tab = assertE2I(ityp, (*eface)(r)._type)
   271  					}
   272  				default:
   273  					throw("bad type kind in finalizer")
   274  				}
   275  				fingStatus.Or(fingRunningFinalizer)
   276  				reflectcall(nil, unsafe.Pointer(f.fn), frame, uint32(framesz), uint32(framesz), uint32(framesz), &regs)
   277  				fingStatus.And(^fingRunningFinalizer)
   278  
   279  				// Drop finalizer queue heap references
   280  				// before hiding them from markroot.
   281  				// This also ensures these will be
   282  				// clear if we reuse the finalizer.
   283  				f.fn = nil
   284  				f.arg = nil
   285  				f.ot = nil
   286  				atomic.Store(&fb.cnt, i-1)
   287  			}
   288  			next := fb.next
   289  			lock(&finlock)
   290  			fb.next = finc
   291  			finc = fb
   292  			unlock(&finlock)
   293  			fb = next
   294  		}
   295  	}
   296  }
   297  
   298  func isGoPointerWithoutSpan(p unsafe.Pointer) bool {
   299  	// 0-length objects are okay.
   300  	if p == unsafe.Pointer(&zerobase) {
   301  		return true
   302  	}
   303  
   304  	// Global initializers might be linker-allocated.
   305  	//	var Foo = &Object{}
   306  	//	func main() {
   307  	//		runtime.SetFinalizer(Foo, nil)
   308  	//	}
   309  	// The relevant segments are: noptrdata, data, bss, noptrbss.
   310  	// We cannot assume they are in any order or even contiguous,
   311  	// due to external linking.
   312  	for datap := &firstmoduledata; datap != nil; datap = datap.next {
   313  		if datap.noptrdata <= uintptr(p) && uintptr(p) < datap.enoptrdata ||
   314  			datap.data <= uintptr(p) && uintptr(p) < datap.edata ||
   315  			datap.bss <= uintptr(p) && uintptr(p) < datap.ebss ||
   316  			datap.noptrbss <= uintptr(p) && uintptr(p) < datap.enoptrbss {
   317  			return true
   318  		}
   319  	}
   320  	return false
   321  }
   322  
   323  // blockUntilEmptyFinalizerQueue blocks until either the finalizer
   324  // queue is emptied (and the finalizers have executed) or the timeout
   325  // is reached. Returns true if the finalizer queue was emptied.
   326  // This is used by the runtime and sync tests.
   327  func blockUntilEmptyFinalizerQueue(timeout int64) bool {
   328  	start := nanotime()
   329  	for nanotime()-start < timeout {
   330  		lock(&finlock)
   331  		// We know the queue has been drained when both finq is nil
   332  		// and the finalizer g has stopped executing.
   333  		empty := finq == nil
   334  		empty = empty && readgstatus(fing) == _Gwaiting && fing.waitreason == waitReasonFinalizerWait
   335  		unlock(&finlock)
   336  		if empty {
   337  			return true
   338  		}
   339  		Gosched()
   340  	}
   341  	return false
   342  }
   343  
   344  // SetFinalizer sets the finalizer associated with obj to the provided
   345  // finalizer function. When the garbage collector finds an unreachable block
   346  // with an associated finalizer, it clears the association and runs
   347  // finalizer(obj) in a separate goroutine. This makes obj reachable again,
   348  // but now without an associated finalizer. Assuming that SetFinalizer
   349  // is not called again, the next time the garbage collector sees
   350  // that obj is unreachable, it will free obj.
   351  //
   352  // SetFinalizer(obj, nil) clears any finalizer associated with obj.
   353  //
   354  // New Go code should consider using [AddCleanup] instead, which is much
   355  // less error-prone than SetFinalizer.
   356  //
   357  // The argument obj must be a pointer to an object allocated by calling
   358  // new, by taking the address of a composite literal, or by taking the
   359  // address of a local variable.
   360  // The argument finalizer must be a function that takes a single argument
   361  // to which obj's type can be assigned, and can have arbitrary ignored return
   362  // values. If either of these is not true, SetFinalizer may abort the
   363  // program.
   364  //
   365  // Finalizers are run in dependency order: if A points at B, both have
   366  // finalizers, and they are otherwise unreachable, only the finalizer
   367  // for A runs; once A is freed, the finalizer for B can run.
   368  // If a cyclic structure includes a block with a finalizer, that
   369  // cycle is not guaranteed to be garbage collected and the finalizer
   370  // is not guaranteed to run, because there is no ordering that
   371  // respects the dependencies.
   372  //
   373  // The finalizer is scheduled to run at some arbitrary time after the
   374  // program can no longer reach the object to which obj points.
   375  // There is no guarantee that finalizers will run before a program exits,
   376  // so typically they are useful only for releasing non-memory resources
   377  // associated with an object during a long-running program.
   378  // For example, an [os.File] object could use a finalizer to close the
   379  // associated operating system file descriptor when a program discards
   380  // an os.File without calling Close, but it would be a mistake
   381  // to depend on a finalizer to flush an in-memory I/O buffer such as a
   382  // [bufio.Writer], because the buffer would not be flushed at program exit.
   383  //
   384  // It is not guaranteed that a finalizer will run if the size of *obj is
   385  // zero bytes, because it may share same address with other zero-size
   386  // objects in memory. See https://go.dev/ref/spec#Size_and_alignment_guarantees.
   387  //
   388  // It is not guaranteed that a finalizer will run for objects allocated
   389  // in initializers for package-level variables. Such objects may be
   390  // linker-allocated, not heap-allocated.
   391  //
   392  // Note that because finalizers may execute arbitrarily far into the future
   393  // after an object is no longer referenced, the runtime is allowed to perform
   394  // a space-saving optimization that batches objects together in a single
   395  // allocation slot. The finalizer for an unreferenced object in such an
   396  // allocation may never run if it always exists in the same batch as a
   397  // referenced object. Typically, this batching only happens for tiny
   398  // (on the order of 16 bytes or less) and pointer-free objects.
   399  //
   400  // A finalizer may run as soon as an object becomes unreachable.
   401  // In order to use finalizers correctly, the program must ensure that
   402  // the object is reachable until it is no longer required.
   403  // Objects stored in global variables, or that can be found by tracing
   404  // pointers from a global variable, are reachable. A function argument or
   405  // receiver may become unreachable at the last point where the function
   406  // mentions it. To make an unreachable object reachable, pass the object
   407  // to a call of the [KeepAlive] function to mark the last point in the
   408  // function where the object must be reachable.
   409  //
   410  // For example, if p points to a struct, such as os.File, that contains
   411  // a file descriptor d, and p has a finalizer that closes that file
   412  // descriptor, and if the last use of p in a function is a call to
   413  // syscall.Write(p.d, buf, size), then p may be unreachable as soon as
   414  // the program enters [syscall.Write]. The finalizer may run at that moment,
   415  // closing p.d, causing syscall.Write to fail because it is writing to
   416  // a closed file descriptor (or, worse, to an entirely different
   417  // file descriptor opened by a different goroutine). To avoid this problem,
   418  // call KeepAlive(p) after the call to syscall.Write.
   419  //
   420  // A single goroutine runs all finalizers for a program, sequentially.
   421  // If a finalizer must run for a long time, it should do so by starting
   422  // a new goroutine.
   423  //
   424  // In the terminology of the Go memory model, a call
   425  // SetFinalizer(x, f) “synchronizes before” the finalization call f(x).
   426  // However, there is no guarantee that KeepAlive(x) or any other use of x
   427  // “synchronizes before” f(x), so in general a finalizer should use a mutex
   428  // or other synchronization mechanism if it needs to access mutable state in x.
   429  // For example, consider a finalizer that inspects a mutable field in x
   430  // that is modified from time to time in the main program before x
   431  // becomes unreachable and the finalizer is invoked.
   432  // The modifications in the main program and the inspection in the finalizer
   433  // need to use appropriate synchronization, such as mutexes or atomic updates,
   434  // to avoid read-write races.
   435  func SetFinalizer(obj any, finalizer any) {
   436  	e := efaceOf(&obj)
   437  	etyp := e._type
   438  	if etyp == nil {
   439  		throw("runtime.SetFinalizer: first argument is nil")
   440  	}
   441  	if etyp.Kind_&abi.KindMask != abi.Pointer {
   442  		throw("runtime.SetFinalizer: first argument is " + toRType(etyp).string() + ", not pointer")
   443  	}
   444  	ot := (*ptrtype)(unsafe.Pointer(etyp))
   445  	if ot.Elem == nil {
   446  		throw("nil elem type!")
   447  	}
   448  	if inUserArenaChunk(uintptr(e.data)) {
   449  		// Arena-allocated objects are not eligible for finalizers.
   450  		throw("runtime.SetFinalizer: first argument was allocated into an arena")
   451  	}
   452  	if debug.sbrk != 0 {
   453  		// debug.sbrk never frees memory, so no finalizers run
   454  		// (and we don't have the data structures to record them).
   455  		return
   456  	}
   457  
   458  	// find the containing object
   459  	base, span, _ := findObject(uintptr(e.data), 0, 0)
   460  
   461  	if base == 0 {
   462  		if isGoPointerWithoutSpan(e.data) {
   463  			return
   464  		}
   465  		throw("runtime.SetFinalizer: pointer not in allocated block")
   466  	}
   467  
   468  	// Move base forward if we've got an allocation header.
   469  	if !span.spanclass.noscan() && !heapBitsInSpan(span.elemsize) && span.spanclass.sizeclass() != 0 {
   470  		base += mallocHeaderSize
   471  	}
   472  
   473  	if uintptr(e.data) != base {
   474  		// As an implementation detail we allow to set finalizers for an inner byte
   475  		// of an object if it could come from tiny alloc (see mallocgc for details).
   476  		if ot.Elem == nil || ot.Elem.Pointers() || ot.Elem.Size_ >= maxTinySize {
   477  			throw("runtime.SetFinalizer: pointer not at beginning of allocated block")
   478  		}
   479  	}
   480  
   481  	f := efaceOf(&finalizer)
   482  	ftyp := f._type
   483  	if ftyp == nil {
   484  		// switch to system stack and remove finalizer
   485  		systemstack(func() {
   486  			removefinalizer(e.data)
   487  		})
   488  		return
   489  	}
   490  
   491  	if ftyp.Kind_&abi.KindMask != abi.Func {
   492  		throw("runtime.SetFinalizer: second argument is " + toRType(ftyp).string() + ", not a function")
   493  	}
   494  	ft := (*functype)(unsafe.Pointer(ftyp))
   495  	if ft.IsVariadic() {
   496  		throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string() + " because dotdotdot")
   497  	}
   498  	if ft.InCount != 1 {
   499  		throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string())
   500  	}
   501  	fint := ft.InSlice()[0]
   502  	switch {
   503  	case fint == etyp:
   504  		// ok - same type
   505  		goto okarg
   506  	case fint.Kind_&abi.KindMask == abi.Pointer:
   507  		if (fint.Uncommon() == nil || etyp.Uncommon() == nil) && (*ptrtype)(unsafe.Pointer(fint)).Elem == ot.Elem {
   508  			// ok - not same type, but both pointers,
   509  			// one or the other is unnamed, and same element type, so assignable.
   510  			goto okarg
   511  		}
   512  	case fint.Kind_&abi.KindMask == abi.Interface:
   513  		ityp := (*interfacetype)(unsafe.Pointer(fint))
   514  		if len(ityp.Methods) == 0 {
   515  			// ok - satisfies empty interface
   516  			goto okarg
   517  		}
   518  		if itab := assertE2I2(ityp, efaceOf(&obj)._type); itab != nil {
   519  			goto okarg
   520  		}
   521  	}
   522  	throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string())
   523  okarg:
   524  	// compute size needed for return parameters
   525  	nret := uintptr(0)
   526  	for _, t := range ft.OutSlice() {
   527  		nret = alignUp(nret, uintptr(t.Align_)) + t.Size_
   528  	}
   529  	nret = alignUp(nret, goarch.PtrSize)
   530  
   531  	// make sure we have a finalizer goroutine
   532  	createfing()
   533  
   534  	systemstack(func() {
   535  		if !addfinalizer(e.data, (*funcval)(f.data), nret, fint, ot) {
   536  			throw("runtime.SetFinalizer: finalizer already set")
   537  		}
   538  	})
   539  }
   540  
   541  // Mark KeepAlive as noinline so that it is easily detectable as an intrinsic.
   542  //
   543  //go:noinline
   544  
   545  // KeepAlive marks its argument as currently reachable.
   546  // This ensures that the object is not freed, and its finalizer is not run,
   547  // before the point in the program where KeepAlive is called.
   548  //
   549  // A very simplified example showing where KeepAlive is required:
   550  //
   551  //	type File struct { d int }
   552  //	d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0)
   553  //	// ... do something if err != nil ...
   554  //	p := &File{d}
   555  //	runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) })
   556  //	var buf [10]byte
   557  //	n, err := syscall.Read(p.d, buf[:])
   558  //	// Ensure p is not finalized until Read returns.
   559  //	runtime.KeepAlive(p)
   560  //	// No more uses of p after this point.
   561  //
   562  // Without the KeepAlive call, the finalizer could run at the start of
   563  // [syscall.Read], closing the file descriptor before syscall.Read makes
   564  // the actual system call.
   565  //
   566  // Note: KeepAlive should only be used to prevent finalizers from
   567  // running prematurely. In particular, when used with [unsafe.Pointer],
   568  // the rules for valid uses of unsafe.Pointer still apply.
   569  func KeepAlive(x any) {
   570  	// Introduce a use of x that the compiler can't eliminate.
   571  	// This makes sure x is alive on entry. We need x to be alive
   572  	// on entry for "defer runtime.KeepAlive(x)"; see issue 21402.
   573  	if cgoAlwaysFalse {
   574  		println(x)
   575  	}
   576  }
   577  

View as plain text