Source file src/runtime/malloc.go

     1  // Copyright 2014 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Memory allocator.
     6  //
     7  // This was originally based on tcmalloc, but has diverged quite a bit.
     8  // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
     9  
    10  // The main allocator works in runs of pages.
    11  // Small allocation sizes (up to and including 32 kB) are
    12  // rounded to one of about 70 size classes, each of which
    13  // has its own free set of objects of exactly that size.
    14  // Any free page of memory can be split into a set of objects
    15  // of one size class, which are then managed using a free bitmap.
    16  //
    17  // The allocator's data structures are:
    18  //
    19  //	fixalloc: a free-list allocator for fixed-size off-heap objects,
    20  //		used to manage storage used by the allocator.
    21  //	mheap: the malloc heap, managed at page (8192-byte) granularity.
    22  //	mspan: a run of in-use pages managed by the mheap.
    23  //	mcentral: collects all spans of a given size class.
    24  //	mcache: a per-P cache of mspans with free space.
    25  //	mstats: allocation statistics.
    26  //
    27  // Allocating a small object proceeds up a hierarchy of caches:
    28  //
    29  //	1. Round the size up to one of the small size classes
    30  //	   and look in the corresponding mspan in this P's mcache.
    31  //	   Scan the mspan's free bitmap to find a free slot.
    32  //	   If there is a free slot, allocate it.
    33  //	   This can all be done without acquiring a lock.
    34  //
    35  //	2. If the mspan has no free slots, obtain a new mspan
    36  //	   from the mcentral's list of mspans of the required size
    37  //	   class that have free space.
    38  //	   Obtaining a whole span amortizes the cost of locking
    39  //	   the mcentral.
    40  //
    41  //	3. If the mcentral's mspan list is empty, obtain a run
    42  //	   of pages from the mheap to use for the mspan.
    43  //
    44  //	4. If the mheap is empty or has no page runs large enough,
    45  //	   allocate a new group of pages (at least 1MB) from the
    46  //	   operating system. Allocating a large run of pages
    47  //	   amortizes the cost of talking to the operating system.
    48  //
    49  // Sweeping an mspan and freeing objects on it proceeds up a similar
    50  // hierarchy:
    51  //
    52  //	1. If the mspan is being swept in response to allocation, it
    53  //	   is returned to the mcache to satisfy the allocation.
    54  //
    55  //	2. Otherwise, if the mspan still has allocated objects in it,
    56  //	   it is placed on the mcentral free list for the mspan's size
    57  //	   class.
    58  //
    59  //	3. Otherwise, if all objects in the mspan are free, the mspan's
    60  //	   pages are returned to the mheap and the mspan is now dead.
    61  //
    62  // Allocating and freeing a large object uses the mheap
    63  // directly, bypassing the mcache and mcentral.
    64  //
    65  // If mspan.needzero is false, then free object slots in the mspan are
    66  // already zeroed. Otherwise if needzero is true, objects are zeroed as
    67  // they are allocated. There are various benefits to delaying zeroing
    68  // this way:
    69  //
    70  //	1. Stack frame allocation can avoid zeroing altogether.
    71  //
    72  //	2. It exhibits better temporal locality, since the program is
    73  //	   probably about to write to the memory.
    74  //
    75  //	3. We don't zero pages that never get reused.
    76  
    77  // Virtual memory layout
    78  //
    79  // The heap consists of a set of arenas, which are 64MB on 64-bit and
    80  // 4MB on 32-bit (heapArenaBytes). Each arena's start address is also
    81  // aligned to the arena size.
    82  //
    83  // Each arena has an associated heapArena object that stores the
    84  // metadata for that arena: the heap bitmap for all words in the arena
    85  // and the span map for all pages in the arena. heapArena objects are
    86  // themselves allocated off-heap.
    87  //
    88  // Since arenas are aligned, the address space can be viewed as a
    89  // series of arena frames. The arena map (mheap_.arenas) maps from
    90  // arena frame number to *heapArena, or nil for parts of the address
    91  // space not backed by the Go heap. The arena map is structured as a
    92  // two-level array consisting of a "L1" arena map and many "L2" arena
    93  // maps; however, since arenas are large, on many architectures, the
    94  // arena map consists of a single, large L2 map.
    95  //
    96  // The arena map covers the entire possible address space, allowing
    97  // the Go heap to use any part of the address space. The allocator
    98  // attempts to keep arenas contiguous so that large spans (and hence
    99  // large objects) can cross arenas.
   100  
   101  package runtime
   102  
   103  import (
   104  	"internal/goarch"
   105  	"internal/goos"
   106  	"internal/runtime/atomic"
   107  	"internal/runtime/math"
   108  	"internal/runtime/sys"
   109  	"unsafe"
   110  )
   111  
   112  const (
   113  	maxTinySize   = _TinySize
   114  	tinySizeClass = _TinySizeClass
   115  	maxSmallSize  = _MaxSmallSize
   116  
   117  	pageShift = _PageShift
   118  	pageSize  = _PageSize
   119  
   120  	_PageSize = 1 << _PageShift
   121  	_PageMask = _PageSize - 1
   122  
   123  	// _64bit = 1 on 64-bit systems, 0 on 32-bit systems
   124  	_64bit = 1 << (^uintptr(0) >> 63) / 2
   125  
   126  	// Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
   127  	_TinySize      = 16
   128  	_TinySizeClass = int8(2)
   129  
   130  	_FixAllocChunk = 16 << 10 // Chunk size for FixAlloc
   131  
   132  	// Per-P, per order stack segment cache size.
   133  	_StackCacheSize = 32 * 1024
   134  
   135  	// Number of orders that get caching. Order 0 is FixedStack
   136  	// and each successive order is twice as large.
   137  	// We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
   138  	// will be allocated directly.
   139  	// Since FixedStack is different on different systems, we
   140  	// must vary NumStackOrders to keep the same maximum cached size.
   141  	//   OS               | FixedStack | NumStackOrders
   142  	//   -----------------+------------+---------------
   143  	//   linux/darwin/bsd | 2KB        | 4
   144  	//   windows/32       | 4KB        | 3
   145  	//   windows/64       | 8KB        | 2
   146  	//   plan9            | 4KB        | 3
   147  	_NumStackOrders = 4 - goarch.PtrSize/4*goos.IsWindows - 1*goos.IsPlan9
   148  
   149  	// heapAddrBits is the number of bits in a heap address. On
   150  	// amd64, addresses are sign-extended beyond heapAddrBits. On
   151  	// other arches, they are zero-extended.
   152  	//
   153  	// On most 64-bit platforms, we limit this to 48 bits based on a
   154  	// combination of hardware and OS limitations.
   155  	//
   156  	// amd64 hardware limits addresses to 48 bits, sign-extended
   157  	// to 64 bits. Addresses where the top 16 bits are not either
   158  	// all 0 or all 1 are "non-canonical" and invalid. Because of
   159  	// these "negative" addresses, we offset addresses by 1<<47
   160  	// (arenaBaseOffset) on amd64 before computing indexes into
   161  	// the heap arenas index. In 2017, amd64 hardware added
   162  	// support for 57 bit addresses; however, currently only Linux
   163  	// supports this extension and the kernel will never choose an
   164  	// address above 1<<47 unless mmap is called with a hint
   165  	// address above 1<<47 (which we never do).
   166  	//
   167  	// arm64 hardware (as of ARMv8) limits user addresses to 48
   168  	// bits, in the range [0, 1<<48).
   169  	//
   170  	// ppc64, mips64, and s390x support arbitrary 64 bit addresses
   171  	// in hardware. On Linux, Go leans on stricter OS limits. Based
   172  	// on Linux's processor.h, the user address space is limited as
   173  	// follows on 64-bit architectures:
   174  	//
   175  	// Architecture  Name              Maximum Value (exclusive)
   176  	// ---------------------------------------------------------------------
   177  	// amd64         TASK_SIZE_MAX     0x007ffffffff000 (47 bit addresses)
   178  	// arm64         TASK_SIZE_64      0x01000000000000 (48 bit addresses)
   179  	// ppc64{,le}    TASK_SIZE_USER64  0x00400000000000 (46 bit addresses)
   180  	// mips64{,le}   TASK_SIZE64       0x00010000000000 (40 bit addresses)
   181  	// s390x         TASK_SIZE         1<<64 (64 bit addresses)
   182  	//
   183  	// These limits may increase over time, but are currently at
   184  	// most 48 bits except on s390x. On all architectures, Linux
   185  	// starts placing mmap'd regions at addresses that are
   186  	// significantly below 48 bits, so even if it's possible to
   187  	// exceed Go's 48 bit limit, it's extremely unlikely in
   188  	// practice.
   189  	//
   190  	// On 32-bit platforms, we accept the full 32-bit address
   191  	// space because doing so is cheap.
   192  	// mips32 only has access to the low 2GB of virtual memory, so
   193  	// we further limit it to 31 bits.
   194  	//
   195  	// On ios/arm64, although 64-bit pointers are presumably
   196  	// available, pointers are truncated to 33 bits in iOS <14.
   197  	// Furthermore, only the top 4 GiB of the address space are
   198  	// actually available to the application. In iOS >=14, more
   199  	// of the address space is available, and the OS can now
   200  	// provide addresses outside of those 33 bits. Pick 40 bits
   201  	// as a reasonable balance between address space usage by the
   202  	// page allocator, and flexibility for what mmap'd regions
   203  	// we'll accept for the heap. We can't just move to the full
   204  	// 48 bits because this uses too much address space for older
   205  	// iOS versions.
   206  	// TODO(mknyszek): Once iOS <14 is deprecated, promote ios/arm64
   207  	// to a 48-bit address space like every other arm64 platform.
   208  	//
   209  	// WebAssembly currently has a limit of 4GB linear memory.
   210  	heapAddrBits = (_64bit*(1-goarch.IsWasm)*(1-goos.IsIos*goarch.IsArm64))*48 + (1-_64bit+goarch.IsWasm)*(32-(goarch.IsMips+goarch.IsMipsle)) + 40*goos.IsIos*goarch.IsArm64
   211  
   212  	// maxAlloc is the maximum size of an allocation. On 64-bit,
   213  	// it's theoretically possible to allocate 1<<heapAddrBits bytes. On
   214  	// 32-bit, however, this is one less than 1<<32 because the
   215  	// number of bytes in the address space doesn't actually fit
   216  	// in a uintptr.
   217  	maxAlloc = (1 << heapAddrBits) - (1-_64bit)*1
   218  
   219  	// The number of bits in a heap address, the size of heap
   220  	// arenas, and the L1 and L2 arena map sizes are related by
   221  	//
   222  	//   (1 << addr bits) = arena size * L1 entries * L2 entries
   223  	//
   224  	// Currently, we balance these as follows:
   225  	//
   226  	//       Platform  Addr bits  Arena size  L1 entries   L2 entries
   227  	// --------------  ---------  ----------  ----------  -----------
   228  	//       */64-bit         48        64MB           1    4M (32MB)
   229  	// windows/64-bit         48         4MB          64    1M  (8MB)
   230  	//      ios/arm64         40         4MB           1  256K  (2MB)
   231  	//       */32-bit         32         4MB           1  1024  (4KB)
   232  	//     */mips(le)         31         4MB           1   512  (2KB)
   233  
   234  	// heapArenaBytes is the size of a heap arena. The heap
   235  	// consists of mappings of size heapArenaBytes, aligned to
   236  	// heapArenaBytes. The initial heap mapping is one arena.
   237  	//
   238  	// This is currently 64MB on 64-bit non-Windows and 4MB on
   239  	// 32-bit and on Windows. We use smaller arenas on Windows
   240  	// because all committed memory is charged to the process,
   241  	// even if it's not touched. Hence, for processes with small
   242  	// heaps, the mapped arena space needs to be commensurate.
   243  	// This is particularly important with the race detector,
   244  	// since it significantly amplifies the cost of committed
   245  	// memory.
   246  	heapArenaBytes = 1 << logHeapArenaBytes
   247  
   248  	heapArenaWords = heapArenaBytes / goarch.PtrSize
   249  
   250  	// logHeapArenaBytes is log_2 of heapArenaBytes. For clarity,
   251  	// prefer using heapArenaBytes where possible (we need the
   252  	// constant to compute some other constants).
   253  	logHeapArenaBytes = (6+20)*(_64bit*(1-goos.IsWindows)*(1-goarch.IsWasm)*(1-goos.IsIos*goarch.IsArm64)) + (2+20)*(_64bit*goos.IsWindows) + (2+20)*(1-_64bit) + (2+20)*goarch.IsWasm + (2+20)*goos.IsIos*goarch.IsArm64
   254  
   255  	// heapArenaBitmapWords is the size of each heap arena's bitmap in uintptrs.
   256  	heapArenaBitmapWords = heapArenaWords / (8 * goarch.PtrSize)
   257  
   258  	pagesPerArena = heapArenaBytes / pageSize
   259  
   260  	// arenaL1Bits is the number of bits of the arena number
   261  	// covered by the first level arena map.
   262  	//
   263  	// This number should be small, since the first level arena
   264  	// map requires PtrSize*(1<<arenaL1Bits) of space in the
   265  	// binary's BSS. It can be zero, in which case the first level
   266  	// index is effectively unused. There is a performance benefit
   267  	// to this, since the generated code can be more efficient,
   268  	// but comes at the cost of having a large L2 mapping.
   269  	//
   270  	// We use the L1 map on 64-bit Windows because the arena size
   271  	// is small, but the address space is still 48 bits, and
   272  	// there's a high cost to having a large L2.
   273  	arenaL1Bits = 6 * (_64bit * goos.IsWindows)
   274  
   275  	// arenaL2Bits is the number of bits of the arena number
   276  	// covered by the second level arena index.
   277  	//
   278  	// The size of each arena map allocation is proportional to
   279  	// 1<<arenaL2Bits, so it's important that this not be too
   280  	// large. 48 bits leads to 32MB arena index allocations, which
   281  	// is about the practical threshold.
   282  	arenaL2Bits = heapAddrBits - logHeapArenaBytes - arenaL1Bits
   283  
   284  	// arenaL1Shift is the number of bits to shift an arena frame
   285  	// number by to compute an index into the first level arena map.
   286  	arenaL1Shift = arenaL2Bits
   287  
   288  	// arenaBits is the total bits in a combined arena map index.
   289  	// This is split between the index into the L1 arena map and
   290  	// the L2 arena map.
   291  	arenaBits = arenaL1Bits + arenaL2Bits
   292  
   293  	// arenaBaseOffset is the pointer value that corresponds to
   294  	// index 0 in the heap arena map.
   295  	//
   296  	// On amd64, the address space is 48 bits, sign extended to 64
   297  	// bits. This offset lets us handle "negative" addresses (or
   298  	// high addresses if viewed as unsigned).
   299  	//
   300  	// On aix/ppc64, this offset allows to keep the heapAddrBits to
   301  	// 48. Otherwise, it would be 60 in order to handle mmap addresses
   302  	// (in range 0x0a00000000000000 - 0x0afffffffffffff). But in this
   303  	// case, the memory reserved in (s *pageAlloc).init for chunks
   304  	// is causing important slowdowns.
   305  	//
   306  	// On other platforms, the user address space is contiguous
   307  	// and starts at 0, so no offset is necessary.
   308  	arenaBaseOffset = 0xffff800000000000*goarch.IsAmd64 + 0x0a00000000000000*goos.IsAix
   309  	// A typed version of this constant that will make it into DWARF (for viewcore).
   310  	arenaBaseOffsetUintptr = uintptr(arenaBaseOffset)
   311  
   312  	// Max number of threads to run garbage collection.
   313  	// 2, 3, and 4 are all plausible maximums depending
   314  	// on the hardware details of the machine. The garbage
   315  	// collector scales well to 32 cpus.
   316  	_MaxGcproc = 32
   317  
   318  	// minLegalPointer is the smallest possible legal pointer.
   319  	// This is the smallest possible architectural page size,
   320  	// since we assume that the first page is never mapped.
   321  	//
   322  	// This should agree with minZeroPage in the compiler.
   323  	minLegalPointer uintptr = 4096
   324  
   325  	// minHeapForMetadataHugePages sets a threshold on when certain kinds of
   326  	// heap metadata, currently the arenas map L2 entries and page alloc bitmap
   327  	// mappings, are allowed to be backed by huge pages. If the heap goal ever
   328  	// exceeds this threshold, then huge pages are enabled.
   329  	//
   330  	// These numbers are chosen with the assumption that huge pages are on the
   331  	// order of a few MiB in size.
   332  	//
   333  	// The kind of metadata this applies to has a very low overhead when compared
   334  	// to address space used, but their constant overheads for small heaps would
   335  	// be very high if they were to be backed by huge pages (e.g. a few MiB makes
   336  	// a huge difference for an 8 MiB heap, but barely any difference for a 1 GiB
   337  	// heap). The benefit of huge pages is also not worth it for small heaps,
   338  	// because only a very, very small part of the metadata is used for small heaps.
   339  	//
   340  	// N.B. If the heap goal exceeds the threshold then shrinks to a very small size
   341  	// again, then huge pages will still be enabled for this mapping. The reason is that
   342  	// there's no point unless we're also returning the physical memory for these
   343  	// metadata mappings back to the OS. That would be quite complex to do in general
   344  	// as the heap is likely fragmented after a reduction in heap size.
   345  	minHeapForMetadataHugePages = 1 << 30
   346  )
   347  
   348  // physPageSize is the size in bytes of the OS's physical pages.
   349  // Mapping and unmapping operations must be done at multiples of
   350  // physPageSize.
   351  //
   352  // This must be set by the OS init code (typically in osinit) before
   353  // mallocinit.
   354  var physPageSize uintptr
   355  
   356  // physHugePageSize is the size in bytes of the OS's default physical huge
   357  // page size whose allocation is opaque to the application. It is assumed
   358  // and verified to be a power of two.
   359  //
   360  // If set, this must be set by the OS init code (typically in osinit) before
   361  // mallocinit. However, setting it at all is optional, and leaving the default
   362  // value is always safe (though potentially less efficient).
   363  //
   364  // Since physHugePageSize is always assumed to be a power of two,
   365  // physHugePageShift is defined as physHugePageSize == 1 << physHugePageShift.
   366  // The purpose of physHugePageShift is to avoid doing divisions in
   367  // performance critical functions.
   368  var (
   369  	physHugePageSize  uintptr
   370  	physHugePageShift uint
   371  )
   372  
   373  func mallocinit() {
   374  	if class_to_size[_TinySizeClass] != _TinySize {
   375  		throw("bad TinySizeClass")
   376  	}
   377  
   378  	if heapArenaBitmapWords&(heapArenaBitmapWords-1) != 0 {
   379  		// heapBits expects modular arithmetic on bitmap
   380  		// addresses to work.
   381  		throw("heapArenaBitmapWords not a power of 2")
   382  	}
   383  
   384  	// Check physPageSize.
   385  	if physPageSize == 0 {
   386  		// The OS init code failed to fetch the physical page size.
   387  		throw("failed to get system page size")
   388  	}
   389  	if physPageSize > maxPhysPageSize {
   390  		print("system page size (", physPageSize, ") is larger than maximum page size (", maxPhysPageSize, ")\n")
   391  		throw("bad system page size")
   392  	}
   393  	if physPageSize < minPhysPageSize {
   394  		print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
   395  		throw("bad system page size")
   396  	}
   397  	if physPageSize&(physPageSize-1) != 0 {
   398  		print("system page size (", physPageSize, ") must be a power of 2\n")
   399  		throw("bad system page size")
   400  	}
   401  	if physHugePageSize&(physHugePageSize-1) != 0 {
   402  		print("system huge page size (", physHugePageSize, ") must be a power of 2\n")
   403  		throw("bad system huge page size")
   404  	}
   405  	if physHugePageSize > maxPhysHugePageSize {
   406  		// physHugePageSize is greater than the maximum supported huge page size.
   407  		// Don't throw here, like in the other cases, since a system configured
   408  		// in this way isn't wrong, we just don't have the code to support them.
   409  		// Instead, silently set the huge page size to zero.
   410  		physHugePageSize = 0
   411  	}
   412  	if physHugePageSize != 0 {
   413  		// Since physHugePageSize is a power of 2, it suffices to increase
   414  		// physHugePageShift until 1<<physHugePageShift == physHugePageSize.
   415  		for 1<<physHugePageShift != physHugePageSize {
   416  			physHugePageShift++
   417  		}
   418  	}
   419  	if pagesPerArena%pagesPerSpanRoot != 0 {
   420  		print("pagesPerArena (", pagesPerArena, ") is not divisible by pagesPerSpanRoot (", pagesPerSpanRoot, ")\n")
   421  		throw("bad pagesPerSpanRoot")
   422  	}
   423  	if pagesPerArena%pagesPerReclaimerChunk != 0 {
   424  		print("pagesPerArena (", pagesPerArena, ") is not divisible by pagesPerReclaimerChunk (", pagesPerReclaimerChunk, ")\n")
   425  		throw("bad pagesPerReclaimerChunk")
   426  	}
   427  	// Check that the minimum size (exclusive) for a malloc header is also
   428  	// a size class boundary. This is important to making sure checks align
   429  	// across different parts of the runtime.
   430  	//
   431  	// While we're here, also check to make sure all these size classes'
   432  	// span sizes are one page. Some code relies on this.
   433  	minSizeForMallocHeaderIsSizeClass := false
   434  	sizeClassesUpToMinSizeForMallocHeaderAreOnePage := true
   435  	for i := 0; i < len(class_to_size); i++ {
   436  		if class_to_allocnpages[i] > 1 {
   437  			sizeClassesUpToMinSizeForMallocHeaderAreOnePage = false
   438  		}
   439  		if minSizeForMallocHeader == uintptr(class_to_size[i]) {
   440  			minSizeForMallocHeaderIsSizeClass = true
   441  			break
   442  		}
   443  	}
   444  	if !minSizeForMallocHeaderIsSizeClass {
   445  		throw("min size of malloc header is not a size class boundary")
   446  	}
   447  	if !sizeClassesUpToMinSizeForMallocHeaderAreOnePage {
   448  		throw("expected all size classes up to min size for malloc header to fit in one-page spans")
   449  	}
   450  	// Check that the pointer bitmap for all small sizes without a malloc header
   451  	// fits in a word.
   452  	if minSizeForMallocHeader/goarch.PtrSize > 8*goarch.PtrSize {
   453  		throw("max pointer/scan bitmap size for headerless objects is too large")
   454  	}
   455  
   456  	if minTagBits > taggedPointerBits {
   457  		throw("taggedPointerBits too small")
   458  	}
   459  
   460  	// Initialize the heap.
   461  	mheap_.init()
   462  	mcache0 = allocmcache()
   463  	lockInit(&gcBitsArenas.lock, lockRankGcBitsArenas)
   464  	lockInit(&profInsertLock, lockRankProfInsert)
   465  	lockInit(&profBlockLock, lockRankProfBlock)
   466  	lockInit(&profMemActiveLock, lockRankProfMemActive)
   467  	for i := range profMemFutureLock {
   468  		lockInit(&profMemFutureLock[i], lockRankProfMemFuture)
   469  	}
   470  	lockInit(&globalAlloc.mutex, lockRankGlobalAlloc)
   471  
   472  	// Create initial arena growth hints.
   473  	if isSbrkPlatform {
   474  		// Don't generate hints on sbrk platforms. We can
   475  		// only grow the break sequentially.
   476  	} else if goarch.PtrSize == 8 {
   477  		// On a 64-bit machine, we pick the following hints
   478  		// because:
   479  		//
   480  		// 1. Starting from the middle of the address space
   481  		// makes it easier to grow out a contiguous range
   482  		// without running in to some other mapping.
   483  		//
   484  		// 2. This makes Go heap addresses more easily
   485  		// recognizable when debugging.
   486  		//
   487  		// 3. Stack scanning in gccgo is still conservative,
   488  		// so it's important that addresses be distinguishable
   489  		// from other data.
   490  		//
   491  		// Starting at 0x00c0 means that the valid memory addresses
   492  		// will begin 0x00c0, 0x00c1, ...
   493  		// In little-endian, that's c0 00, c1 00, ... None of those are valid
   494  		// UTF-8 sequences, and they are otherwise as far away from
   495  		// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
   496  		// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
   497  		// on OS X during thread allocations.  0x00c0 causes conflicts with
   498  		// AddressSanitizer which reserves all memory up to 0x0100.
   499  		// These choices reduce the odds of a conservative garbage collector
   500  		// not collecting memory because some non-pointer block of memory
   501  		// had a bit pattern that matched a memory address.
   502  		//
   503  		// However, on arm64, we ignore all this advice above and slam the
   504  		// allocation at 0x40 << 32 because when using 4k pages with 3-level
   505  		// translation buffers, the user address space is limited to 39 bits
   506  		// On ios/arm64, the address space is even smaller.
   507  		//
   508  		// On AIX, mmaps starts at 0x0A00000000000000 for 64-bit.
   509  		// processes.
   510  		//
   511  		// Space mapped for user arenas comes immediately after the range
   512  		// originally reserved for the regular heap when race mode is not
   513  		// enabled because user arena chunks can never be used for regular heap
   514  		// allocations and we want to avoid fragmenting the address space.
   515  		//
   516  		// In race mode we have no choice but to just use the same hints because
   517  		// the race detector requires that the heap be mapped contiguously.
   518  		for i := 0x7f; i >= 0; i-- {
   519  			var p uintptr
   520  			switch {
   521  			case raceenabled:
   522  				// The TSAN runtime requires the heap
   523  				// to be in the range [0x00c000000000,
   524  				// 0x00e000000000).
   525  				p = uintptr(i)<<32 | uintptrMask&(0x00c0<<32)
   526  				if p >= uintptrMask&0x00e000000000 {
   527  					continue
   528  				}
   529  			case GOARCH == "arm64" && GOOS == "ios":
   530  				p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
   531  			case GOARCH == "arm64":
   532  				p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
   533  			case GOOS == "aix":
   534  				if i == 0 {
   535  					// We don't use addresses directly after 0x0A00000000000000
   536  					// to avoid collisions with others mmaps done by non-go programs.
   537  					continue
   538  				}
   539  				p = uintptr(i)<<40 | uintptrMask&(0xa0<<52)
   540  			default:
   541  				p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
   542  			}
   543  			// Switch to generating hints for user arenas if we've gone
   544  			// through about half the hints. In race mode, take only about
   545  			// a quarter; we don't have very much space to work with.
   546  			hintList := &mheap_.arenaHints
   547  			if (!raceenabled && i > 0x3f) || (raceenabled && i > 0x5f) {
   548  				hintList = &mheap_.userArena.arenaHints
   549  			}
   550  			hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc())
   551  			hint.addr = p
   552  			hint.next, *hintList = *hintList, hint
   553  		}
   554  	} else {
   555  		// On a 32-bit machine, we're much more concerned
   556  		// about keeping the usable heap contiguous.
   557  		// Hence:
   558  		//
   559  		// 1. We reserve space for all heapArenas up front so
   560  		// they don't get interleaved with the heap. They're
   561  		// ~258MB, so this isn't too bad. (We could reserve a
   562  		// smaller amount of space up front if this is a
   563  		// problem.)
   564  		//
   565  		// 2. We hint the heap to start right above the end of
   566  		// the binary so we have the best chance of keeping it
   567  		// contiguous.
   568  		//
   569  		// 3. We try to stake out a reasonably large initial
   570  		// heap reservation.
   571  
   572  		const arenaMetaSize = (1 << arenaBits) * unsafe.Sizeof(heapArena{})
   573  		meta := uintptr(sysReserve(nil, arenaMetaSize, "heap reservation"))
   574  		if meta != 0 {
   575  			mheap_.heapArenaAlloc.init(meta, arenaMetaSize, true)
   576  		}
   577  
   578  		// We want to start the arena low, but if we're linked
   579  		// against C code, it's possible global constructors
   580  		// have called malloc and adjusted the process' brk.
   581  		// Query the brk so we can avoid trying to map the
   582  		// region over it (which will cause the kernel to put
   583  		// the region somewhere else, likely at a high
   584  		// address).
   585  		procBrk := sbrk0()
   586  
   587  		// If we ask for the end of the data segment but the
   588  		// operating system requires a little more space
   589  		// before we can start allocating, it will give out a
   590  		// slightly higher pointer. Except QEMU, which is
   591  		// buggy, as usual: it won't adjust the pointer
   592  		// upward. So adjust it upward a little bit ourselves:
   593  		// 1/4 MB to get away from the running binary image.
   594  		p := firstmoduledata.end
   595  		if p < procBrk {
   596  			p = procBrk
   597  		}
   598  		if mheap_.heapArenaAlloc.next <= p && p < mheap_.heapArenaAlloc.end {
   599  			p = mheap_.heapArenaAlloc.end
   600  		}
   601  		p = alignUp(p+(256<<10), heapArenaBytes)
   602  		// Because we're worried about fragmentation on
   603  		// 32-bit, we try to make a large initial reservation.
   604  		arenaSizes := []uintptr{
   605  			512 << 20,
   606  			256 << 20,
   607  			128 << 20,
   608  		}
   609  		for _, arenaSize := range arenaSizes {
   610  			a, size := sysReserveAligned(unsafe.Pointer(p), arenaSize, heapArenaBytes, "heap reservation")
   611  			if a != nil {
   612  				mheap_.arena.init(uintptr(a), size, false)
   613  				p = mheap_.arena.end // For hint below
   614  				break
   615  			}
   616  		}
   617  		hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc())
   618  		hint.addr = p
   619  		hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
   620  
   621  		// Place the hint for user arenas just after the large reservation.
   622  		//
   623  		// While this potentially competes with the hint above, in practice we probably
   624  		// aren't going to be getting this far anyway on 32-bit platforms.
   625  		userArenaHint := (*arenaHint)(mheap_.arenaHintAlloc.alloc())
   626  		userArenaHint.addr = p
   627  		userArenaHint.next, mheap_.userArena.arenaHints = mheap_.userArena.arenaHints, userArenaHint
   628  	}
   629  	// Initialize the memory limit here because the allocator is going to look at it
   630  	// but we haven't called gcinit yet and we're definitely going to allocate memory before then.
   631  	gcController.memoryLimit.Store(maxInt64)
   632  }
   633  
   634  // sysAlloc allocates heap arena space for at least n bytes. The
   635  // returned pointer is always heapArenaBytes-aligned and backed by
   636  // h.arenas metadata. The returned size is always a multiple of
   637  // heapArenaBytes. sysAlloc returns nil on failure.
   638  // There is no corresponding free function.
   639  //
   640  // hintList is a list of hint addresses for where to allocate new
   641  // heap arenas. It must be non-nil.
   642  //
   643  // sysAlloc returns a memory region in the Reserved state. This region must
   644  // be transitioned to Prepared and then Ready before use.
   645  //
   646  // arenaList is the list the arena should be added to.
   647  //
   648  // h must be locked.
   649  func (h *mheap) sysAlloc(n uintptr, hintList **arenaHint, arenaList *[]arenaIdx) (v unsafe.Pointer, size uintptr) {
   650  	assertLockHeld(&h.lock)
   651  
   652  	n = alignUp(n, heapArenaBytes)
   653  
   654  	if hintList == &h.arenaHints {
   655  		// First, try the arena pre-reservation.
   656  		// Newly-used mappings are considered released.
   657  		//
   658  		// Only do this if we're using the regular heap arena hints.
   659  		// This behavior is only for the heap.
   660  		v = h.arena.alloc(n, heapArenaBytes, &gcController.heapReleased, "heap")
   661  		if v != nil {
   662  			size = n
   663  			goto mapped
   664  		}
   665  	}
   666  
   667  	// Try to grow the heap at a hint address.
   668  	for *hintList != nil {
   669  		hint := *hintList
   670  		p := hint.addr
   671  		if hint.down {
   672  			p -= n
   673  		}
   674  		if p+n < p {
   675  			// We can't use this, so don't ask.
   676  			v = nil
   677  		} else if arenaIndex(p+n-1) >= 1<<arenaBits {
   678  			// Outside addressable heap. Can't use.
   679  			v = nil
   680  		} else {
   681  			v = sysReserve(unsafe.Pointer(p), n, "heap reservation")
   682  		}
   683  		if p == uintptr(v) {
   684  			// Success. Update the hint.
   685  			if !hint.down {
   686  				p += n
   687  			}
   688  			hint.addr = p
   689  			size = n
   690  			break
   691  		}
   692  		// Failed. Discard this hint and try the next.
   693  		//
   694  		// TODO: This would be cleaner if sysReserve could be
   695  		// told to only return the requested address. In
   696  		// particular, this is already how Windows behaves, so
   697  		// it would simplify things there.
   698  		if v != nil {
   699  			sysFreeOS(v, n)
   700  		}
   701  		*hintList = hint.next
   702  		h.arenaHintAlloc.free(unsafe.Pointer(hint))
   703  	}
   704  
   705  	if size == 0 {
   706  		if raceenabled {
   707  			// The race detector assumes the heap lives in
   708  			// [0x00c000000000, 0x00e000000000), but we
   709  			// just ran out of hints in this region. Give
   710  			// a nice failure.
   711  			throw("too many address space collisions for -race mode")
   712  		}
   713  
   714  		// All of the hints failed, so we'll take any
   715  		// (sufficiently aligned) address the kernel will give
   716  		// us.
   717  		v, size = sysReserveAligned(nil, n, heapArenaBytes, "heap")
   718  		if v == nil {
   719  			return nil, 0
   720  		}
   721  
   722  		// Create new hints for extending this region.
   723  		hint := (*arenaHint)(h.arenaHintAlloc.alloc())
   724  		hint.addr, hint.down = uintptr(v), true
   725  		hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
   726  		hint = (*arenaHint)(h.arenaHintAlloc.alloc())
   727  		hint.addr = uintptr(v) + size
   728  		hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
   729  	}
   730  
   731  	// Check for bad pointers or pointers we can't use.
   732  	{
   733  		var bad string
   734  		p := uintptr(v)
   735  		if p+size < p {
   736  			bad = "region exceeds uintptr range"
   737  		} else if arenaIndex(p) >= 1<<arenaBits {
   738  			bad = "base outside usable address space"
   739  		} else if arenaIndex(p+size-1) >= 1<<arenaBits {
   740  			bad = "end outside usable address space"
   741  		}
   742  		if bad != "" {
   743  			// This should be impossible on most architectures,
   744  			// but it would be really confusing to debug.
   745  			print("runtime: memory allocated by OS [", hex(p), ", ", hex(p+size), ") not in usable address space: ", bad, "\n")
   746  			throw("memory reservation exceeds address space limit")
   747  		}
   748  	}
   749  
   750  	if uintptr(v)&(heapArenaBytes-1) != 0 {
   751  		throw("misrounded allocation in sysAlloc")
   752  	}
   753  
   754  mapped:
   755  	// Create arena metadata.
   756  	for ri := arenaIndex(uintptr(v)); ri <= arenaIndex(uintptr(v)+size-1); ri++ {
   757  		l2 := h.arenas[ri.l1()]
   758  		if l2 == nil {
   759  			// Allocate an L2 arena map.
   760  			//
   761  			// Use sysAllocOS instead of sysAlloc or persistentalloc because there's no
   762  			// statistic we can comfortably account for this space in. With this structure,
   763  			// we rely on demand paging to avoid large overheads, but tracking which memory
   764  			// is paged in is too expensive. Trying to account for the whole region means
   765  			// that it will appear like an enormous memory overhead in statistics, even though
   766  			// it is not.
   767  			l2 = (*[1 << arenaL2Bits]*heapArena)(sysAllocOS(unsafe.Sizeof(*l2), "heap index"))
   768  			if l2 == nil {
   769  				throw("out of memory allocating heap arena map")
   770  			}
   771  			if h.arenasHugePages {
   772  				sysHugePage(unsafe.Pointer(l2), unsafe.Sizeof(*l2))
   773  			} else {
   774  				sysNoHugePage(unsafe.Pointer(l2), unsafe.Sizeof(*l2))
   775  			}
   776  			atomic.StorepNoWB(unsafe.Pointer(&h.arenas[ri.l1()]), unsafe.Pointer(l2))
   777  		}
   778  
   779  		if l2[ri.l2()] != nil {
   780  			throw("arena already initialized")
   781  		}
   782  		var r *heapArena
   783  		r = (*heapArena)(h.heapArenaAlloc.alloc(unsafe.Sizeof(*r), goarch.PtrSize, &memstats.gcMiscSys, "heap metadata"))
   784  		if r == nil {
   785  			r = (*heapArena)(persistentalloc(unsafe.Sizeof(*r), goarch.PtrSize, &memstats.gcMiscSys))
   786  			if r == nil {
   787  				throw("out of memory allocating heap arena metadata")
   788  			}
   789  		}
   790  
   791  		// Register the arena in allArenas if requested.
   792  		if len((*arenaList)) == cap((*arenaList)) {
   793  			size := 2 * uintptr(cap((*arenaList))) * goarch.PtrSize
   794  			if size == 0 {
   795  				size = physPageSize
   796  			}
   797  			newArray := (*notInHeap)(persistentalloc(size, goarch.PtrSize, &memstats.gcMiscSys))
   798  			if newArray == nil {
   799  				throw("out of memory allocating allArenas")
   800  			}
   801  			oldSlice := (*arenaList)
   802  			*(*notInHeapSlice)(unsafe.Pointer(&(*arenaList))) = notInHeapSlice{newArray, len((*arenaList)), int(size / goarch.PtrSize)}
   803  			copy((*arenaList), oldSlice)
   804  			// Do not free the old backing array because
   805  			// there may be concurrent readers. Since we
   806  			// double the array each time, this can lead
   807  			// to at most 2x waste.
   808  		}
   809  		(*arenaList) = (*arenaList)[:len((*arenaList))+1]
   810  		(*arenaList)[len((*arenaList))-1] = ri
   811  
   812  		// Store atomically just in case an object from the
   813  		// new heap arena becomes visible before the heap lock
   814  		// is released (which shouldn't happen, but there's
   815  		// little downside to this).
   816  		atomic.StorepNoWB(unsafe.Pointer(&l2[ri.l2()]), unsafe.Pointer(r))
   817  	}
   818  
   819  	// Tell the race detector about the new heap memory.
   820  	if raceenabled {
   821  		racemapshadow(v, size)
   822  	}
   823  
   824  	return
   825  }
   826  
   827  // sysReserveAligned is like sysReserve, but the returned pointer is
   828  // aligned to align bytes. It may reserve either n or n+align bytes,
   829  // so it returns the size that was reserved.
   830  func sysReserveAligned(v unsafe.Pointer, size, align uintptr, vmaName string) (unsafe.Pointer, uintptr) {
   831  	if isSbrkPlatform {
   832  		if v != nil {
   833  			throw("unexpected heap arena hint on sbrk platform")
   834  		}
   835  		return sysReserveAlignedSbrk(size, align)
   836  	}
   837  	// Since the alignment is rather large in uses of this
   838  	// function, we're not likely to get it by chance, so we ask
   839  	// for a larger region and remove the parts we don't need.
   840  	retries := 0
   841  retry:
   842  	p := uintptr(sysReserve(v, size+align, vmaName))
   843  	switch {
   844  	case p == 0:
   845  		return nil, 0
   846  	case p&(align-1) == 0:
   847  		return unsafe.Pointer(p), size + align
   848  	case GOOS == "windows":
   849  		// On Windows we can't release pieces of a
   850  		// reservation, so we release the whole thing and
   851  		// re-reserve the aligned sub-region. This may race,
   852  		// so we may have to try again.
   853  		sysFreeOS(unsafe.Pointer(p), size+align)
   854  		p = alignUp(p, align)
   855  		p2 := sysReserve(unsafe.Pointer(p), size, vmaName)
   856  		if p != uintptr(p2) {
   857  			// Must have raced. Try again.
   858  			sysFreeOS(p2, size)
   859  			if retries++; retries == 100 {
   860  				throw("failed to allocate aligned heap memory; too many retries")
   861  			}
   862  			goto retry
   863  		}
   864  		// Success.
   865  		return p2, size
   866  	default:
   867  		// Trim off the unaligned parts.
   868  		pAligned := alignUp(p, align)
   869  		sysFreeOS(unsafe.Pointer(p), pAligned-p)
   870  		end := pAligned + size
   871  		endLen := (p + size + align) - end
   872  		if endLen > 0 {
   873  			sysFreeOS(unsafe.Pointer(end), endLen)
   874  		}
   875  		return unsafe.Pointer(pAligned), size
   876  	}
   877  }
   878  
   879  // enableMetadataHugePages enables huge pages for various sources of heap metadata.
   880  //
   881  // A note on latency: for sufficiently small heaps (<10s of GiB) this function will take constant
   882  // time, but may take time proportional to the size of the mapped heap beyond that.
   883  //
   884  // This function is idempotent.
   885  //
   886  // The heap lock must not be held over this operation, since it will briefly acquire
   887  // the heap lock.
   888  //
   889  // Must be called on the system stack because it acquires the heap lock.
   890  //
   891  //go:systemstack
   892  func (h *mheap) enableMetadataHugePages() {
   893  	// Enable huge pages for page structure.
   894  	h.pages.enableChunkHugePages()
   895  
   896  	// Grab the lock and set arenasHugePages if it's not.
   897  	//
   898  	// Once arenasHugePages is set, all new L2 entries will be eligible for
   899  	// huge pages. We'll set all the old entries after we release the lock.
   900  	lock(&h.lock)
   901  	if h.arenasHugePages {
   902  		unlock(&h.lock)
   903  		return
   904  	}
   905  	h.arenasHugePages = true
   906  	unlock(&h.lock)
   907  
   908  	// N.B. The arenas L1 map is quite small on all platforms, so it's fine to
   909  	// just iterate over the whole thing.
   910  	for i := range h.arenas {
   911  		l2 := (*[1 << arenaL2Bits]*heapArena)(atomic.Loadp(unsafe.Pointer(&h.arenas[i])))
   912  		if l2 == nil {
   913  			continue
   914  		}
   915  		sysHugePage(unsafe.Pointer(l2), unsafe.Sizeof(*l2))
   916  	}
   917  }
   918  
   919  // base address for all 0-byte allocations
   920  var zerobase uintptr
   921  
   922  // nextFreeFast returns the next free object if one is quickly available.
   923  // Otherwise it returns 0.
   924  func nextFreeFast(s *mspan) gclinkptr {
   925  	theBit := sys.TrailingZeros64(s.allocCache) // Is there a free object in the allocCache?
   926  	if theBit < 64 {
   927  		result := s.freeindex + uint16(theBit)
   928  		if result < s.nelems {
   929  			freeidx := result + 1
   930  			if freeidx%64 == 0 && freeidx != s.nelems {
   931  				return 0
   932  			}
   933  			s.allocCache >>= uint(theBit + 1)
   934  			s.freeindex = freeidx
   935  			s.allocCount++
   936  			return gclinkptr(uintptr(result)*s.elemsize + s.base())
   937  		}
   938  	}
   939  	return 0
   940  }
   941  
   942  // nextFree returns the next free object from the cached span if one is available.
   943  // Otherwise it refills the cache with a span with an available object and
   944  // returns that object along with a flag indicating that this was a heavy
   945  // weight allocation. If it is a heavy weight allocation the caller must
   946  // determine whether a new GC cycle needs to be started or if the GC is active
   947  // whether this goroutine needs to assist the GC.
   948  //
   949  // Must run in a non-preemptible context since otherwise the owner of
   950  // c could change.
   951  func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, checkGCTrigger bool) {
   952  	s = c.alloc[spc]
   953  	checkGCTrigger = false
   954  	freeIndex := s.nextFreeIndex()
   955  	if freeIndex == s.nelems {
   956  		// The span is full.
   957  		if s.allocCount != s.nelems {
   958  			println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
   959  			throw("s.allocCount != s.nelems && freeIndex == s.nelems")
   960  		}
   961  		c.refill(spc)
   962  		checkGCTrigger = true
   963  		s = c.alloc[spc]
   964  
   965  		freeIndex = s.nextFreeIndex()
   966  	}
   967  
   968  	if freeIndex >= s.nelems {
   969  		throw("freeIndex is not valid")
   970  	}
   971  
   972  	v = gclinkptr(uintptr(freeIndex)*s.elemsize + s.base())
   973  	s.allocCount++
   974  	if s.allocCount > s.nelems {
   975  		println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
   976  		throw("s.allocCount > s.nelems")
   977  	}
   978  	return
   979  }
   980  
   981  // doubleCheckMalloc enables a bunch of extra checks to malloc to double-check
   982  // that various invariants are upheld.
   983  //
   984  // We might consider turning these on by default; many of them previously were.
   985  // They account for a few % of mallocgc's cost though, which does matter somewhat
   986  // at scale.
   987  const doubleCheckMalloc = false
   988  
   989  // Allocate an object of size bytes.
   990  // Small objects are allocated from the per-P cache's free lists.
   991  // Large objects (> 32 kB) are allocated straight from the heap.
   992  //
   993  // mallocgc should be an internal detail,
   994  // but widely used packages access it using linkname.
   995  // Notable members of the hall of shame include:
   996  //   - github.com/bytedance/gopkg
   997  //   - github.com/bytedance/sonic
   998  //   - github.com/cloudwego/frugal
   999  //   - github.com/cockroachdb/cockroach
  1000  //   - github.com/cockroachdb/pebble
  1001  //   - github.com/ugorji/go/codec
  1002  //
  1003  // Do not remove or change the type signature.
  1004  // See go.dev/issue/67401.
  1005  //
  1006  //go:linkname mallocgc
  1007  func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
  1008  	if doubleCheckMalloc {
  1009  		if gcphase == _GCmarktermination {
  1010  			throw("mallocgc called with gcphase == _GCmarktermination")
  1011  		}
  1012  	}
  1013  
  1014  	// Short-circuit zero-sized allocation requests.
  1015  	if size == 0 {
  1016  		return unsafe.Pointer(&zerobase)
  1017  	}
  1018  
  1019  	// It's possible for any malloc to trigger sweeping, which may in
  1020  	// turn queue finalizers. Record this dynamic lock edge.
  1021  	// N.B. Compiled away if lockrank experiment is not enabled.
  1022  	lockRankMayQueueFinalizer()
  1023  
  1024  	// Pre-malloc debug hooks.
  1025  	if debug.malloc {
  1026  		if x := preMallocgcDebug(size, typ); x != nil {
  1027  			return x
  1028  		}
  1029  	}
  1030  
  1031  	// For ASAN, we allocate extra memory around each allocation called the "redzone."
  1032  	// These "redzones" are marked as unaddressable.
  1033  	var asanRZ uintptr
  1034  	if asanenabled {
  1035  		asanRZ = redZoneSize(size)
  1036  		size += asanRZ
  1037  	}
  1038  
  1039  	// Assist the GC if needed.
  1040  	if gcBlackenEnabled != 0 {
  1041  		deductAssistCredit(size)
  1042  	}
  1043  
  1044  	// Actually do the allocation.
  1045  	var x unsafe.Pointer
  1046  	var elemsize uintptr
  1047  	if size <= maxSmallSize-mallocHeaderSize {
  1048  		if typ == nil || !typ.Pointers() {
  1049  			if size < maxTinySize {
  1050  				x, elemsize = mallocgcTiny(size, typ)
  1051  			} else {
  1052  				x, elemsize = mallocgcSmallNoscan(size, typ, needzero)
  1053  			}
  1054  		} else {
  1055  			if !needzero {
  1056  				throw("objects with pointers must be zeroed")
  1057  			}
  1058  			if heapBitsInSpan(size) {
  1059  				x, elemsize = mallocgcSmallScanNoHeader(size, typ)
  1060  			} else {
  1061  				x, elemsize = mallocgcSmallScanHeader(size, typ)
  1062  			}
  1063  		}
  1064  	} else {
  1065  		x, elemsize = mallocgcLarge(size, typ, needzero)
  1066  	}
  1067  
  1068  	// Notify sanitizers, if enabled.
  1069  	if raceenabled {
  1070  		racemalloc(x, size-asanRZ)
  1071  	}
  1072  	if msanenabled {
  1073  		msanmalloc(x, size-asanRZ)
  1074  	}
  1075  	if asanenabled {
  1076  		// Poison the space between the end of the requested size of x
  1077  		// and the end of the slot. Unpoison the requested allocation.
  1078  		frag := elemsize - size
  1079  		if typ != nil && typ.Pointers() && !heapBitsInSpan(elemsize) && size <= maxSmallSize-mallocHeaderSize {
  1080  			frag -= mallocHeaderSize
  1081  		}
  1082  		asanpoison(unsafe.Add(x, size-asanRZ), asanRZ)
  1083  		asanunpoison(x, size-asanRZ)
  1084  	}
  1085  
  1086  	// Adjust our GC assist debt to account for internal fragmentation.
  1087  	if gcBlackenEnabled != 0 && elemsize != 0 {
  1088  		if assistG := getg().m.curg; assistG != nil {
  1089  			assistG.gcAssistBytes -= int64(elemsize - size)
  1090  		}
  1091  	}
  1092  
  1093  	// Post-malloc debug hooks.
  1094  	if debug.malloc {
  1095  		postMallocgcDebug(x, elemsize, typ)
  1096  	}
  1097  	return x
  1098  }
  1099  
  1100  func mallocgcTiny(size uintptr, typ *_type) (unsafe.Pointer, uintptr) {
  1101  	// Set mp.mallocing to keep from being preempted by GC.
  1102  	mp := acquirem()
  1103  	if doubleCheckMalloc {
  1104  		if mp.mallocing != 0 {
  1105  			throw("malloc deadlock")
  1106  		}
  1107  		if mp.gsignal == getg() {
  1108  			throw("malloc during signal")
  1109  		}
  1110  		if typ != nil && typ.Pointers() {
  1111  			throw("expected noscan for tiny alloc")
  1112  		}
  1113  	}
  1114  	mp.mallocing = 1
  1115  
  1116  	// Tiny allocator.
  1117  	//
  1118  	// Tiny allocator combines several tiny allocation requests
  1119  	// into a single memory block. The resulting memory block
  1120  	// is freed when all subobjects are unreachable. The subobjects
  1121  	// must be noscan (don't have pointers), this ensures that
  1122  	// the amount of potentially wasted memory is bounded.
  1123  	//
  1124  	// Size of the memory block used for combining (maxTinySize) is tunable.
  1125  	// Current setting is 16 bytes, which relates to 2x worst case memory
  1126  	// wastage (when all but one subobjects are unreachable).
  1127  	// 8 bytes would result in no wastage at all, but provides less
  1128  	// opportunities for combining.
  1129  	// 32 bytes provides more opportunities for combining,
  1130  	// but can lead to 4x worst case wastage.
  1131  	// The best case winning is 8x regardless of block size.
  1132  	//
  1133  	// Objects obtained from tiny allocator must not be freed explicitly.
  1134  	// So when an object will be freed explicitly, we ensure that
  1135  	// its size >= maxTinySize.
  1136  	//
  1137  	// SetFinalizer has a special case for objects potentially coming
  1138  	// from tiny allocator, it such case it allows to set finalizers
  1139  	// for an inner byte of a memory block.
  1140  	//
  1141  	// The main targets of tiny allocator are small strings and
  1142  	// standalone escaping variables. On a json benchmark
  1143  	// the allocator reduces number of allocations by ~12% and
  1144  	// reduces heap size by ~20%.
  1145  	c := getMCache(mp)
  1146  	off := c.tinyoffset
  1147  	// Align tiny pointer for required (conservative) alignment.
  1148  	if size&7 == 0 {
  1149  		off = alignUp(off, 8)
  1150  	} else if goarch.PtrSize == 4 && size == 12 {
  1151  		// Conservatively align 12-byte objects to 8 bytes on 32-bit
  1152  		// systems so that objects whose first field is a 64-bit
  1153  		// value is aligned to 8 bytes and does not cause a fault on
  1154  		// atomic access. See issue 37262.
  1155  		// TODO(mknyszek): Remove this workaround if/when issue 36606
  1156  		// is resolved.
  1157  		off = alignUp(off, 8)
  1158  	} else if size&3 == 0 {
  1159  		off = alignUp(off, 4)
  1160  	} else if size&1 == 0 {
  1161  		off = alignUp(off, 2)
  1162  	}
  1163  	if off+size <= maxTinySize && c.tiny != 0 {
  1164  		// The object fits into existing tiny block.
  1165  		x := unsafe.Pointer(c.tiny + off)
  1166  		c.tinyoffset = off + size
  1167  		c.tinyAllocs++
  1168  		mp.mallocing = 0
  1169  		releasem(mp)
  1170  		return x, 0
  1171  	}
  1172  	// Allocate a new maxTinySize block.
  1173  	checkGCTrigger := false
  1174  	span := c.alloc[tinySpanClass]
  1175  	v := nextFreeFast(span)
  1176  	if v == 0 {
  1177  		v, span, checkGCTrigger = c.nextFree(tinySpanClass)
  1178  	}
  1179  	x := unsafe.Pointer(v)
  1180  	(*[2]uint64)(x)[0] = 0 // Always zero
  1181  	(*[2]uint64)(x)[1] = 0
  1182  	// See if we need to replace the existing tiny block with the new one
  1183  	// based on amount of remaining free space.
  1184  	if !raceenabled && (size < c.tinyoffset || c.tiny == 0) {
  1185  		// Note: disabled when race detector is on, see comment near end of this function.
  1186  		c.tiny = uintptr(x)
  1187  		c.tinyoffset = size
  1188  	}
  1189  
  1190  	// Ensure that the stores above that initialize x to
  1191  	// type-safe memory and set the heap bits occur before
  1192  	// the caller can make x observable to the garbage
  1193  	// collector. Otherwise, on weakly ordered machines,
  1194  	// the garbage collector could follow a pointer to x,
  1195  	// but see uninitialized memory or stale heap bits.
  1196  	publicationBarrier()
  1197  	// As x and the heap bits are initialized, update
  1198  	// freeIndexForScan now so x is seen by the GC
  1199  	// (including conservative scan) as an allocated object.
  1200  	// While this pointer can't escape into user code as a
  1201  	// _live_ pointer until we return, conservative scanning
  1202  	// may find a dead pointer that happens to point into this
  1203  	// object. Delaying this update until now ensures that
  1204  	// conservative scanning considers this pointer dead until
  1205  	// this point.
  1206  	span.freeIndexForScan = span.freeindex
  1207  
  1208  	// Allocate black during GC.
  1209  	// All slots hold nil so no scanning is needed.
  1210  	// This may be racing with GC so do it atomically if there can be
  1211  	// a race marking the bit.
  1212  	if writeBarrier.enabled {
  1213  		gcmarknewobject(span, uintptr(x))
  1214  	}
  1215  
  1216  	// Note cache c only valid while m acquired; see #47302
  1217  	//
  1218  	// N.B. Use the full size because that matches how the GC
  1219  	// will update the mem profile on the "free" side.
  1220  	//
  1221  	// TODO(mknyszek): We should really count the header as part
  1222  	// of gc_sys or something. The code below just pretends it is
  1223  	// internal fragmentation and matches the GC's accounting by
  1224  	// using the whole allocation slot.
  1225  	c.nextSample -= int64(span.elemsize)
  1226  	if c.nextSample < 0 || MemProfileRate != c.memProfRate {
  1227  		profilealloc(mp, x, span.elemsize)
  1228  	}
  1229  	mp.mallocing = 0
  1230  	releasem(mp)
  1231  
  1232  	if checkGCTrigger {
  1233  		if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
  1234  			gcStart(t)
  1235  		}
  1236  	}
  1237  
  1238  	if raceenabled {
  1239  		// Pad tinysize allocations so they are aligned with the end
  1240  		// of the tinyalloc region. This ensures that any arithmetic
  1241  		// that goes off the top end of the object will be detectable
  1242  		// by checkptr (issue 38872).
  1243  		// Note that we disable tinyalloc when raceenabled for this to work.
  1244  		// TODO: This padding is only performed when the race detector
  1245  		// is enabled. It would be nice to enable it if any package
  1246  		// was compiled with checkptr, but there's no easy way to
  1247  		// detect that (especially at compile time).
  1248  		// TODO: enable this padding for all allocations, not just
  1249  		// tinyalloc ones. It's tricky because of pointer maps.
  1250  		// Maybe just all noscan objects?
  1251  		x = add(x, span.elemsize-size)
  1252  	}
  1253  	return x, span.elemsize
  1254  }
  1255  
  1256  func mallocgcSmallNoscan(size uintptr, typ *_type, needzero bool) (unsafe.Pointer, uintptr) {
  1257  	// Set mp.mallocing to keep from being preempted by GC.
  1258  	mp := acquirem()
  1259  	if doubleCheckMalloc {
  1260  		if mp.mallocing != 0 {
  1261  			throw("malloc deadlock")
  1262  		}
  1263  		if mp.gsignal == getg() {
  1264  			throw("malloc during signal")
  1265  		}
  1266  		if typ != nil && typ.Pointers() {
  1267  			throw("expected noscan type for noscan alloc")
  1268  		}
  1269  	}
  1270  	mp.mallocing = 1
  1271  
  1272  	checkGCTrigger := false
  1273  	c := getMCache(mp)
  1274  	var sizeclass uint8
  1275  	if size <= smallSizeMax-8 {
  1276  		sizeclass = size_to_class8[divRoundUp(size, smallSizeDiv)]
  1277  	} else {
  1278  		sizeclass = size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]
  1279  	}
  1280  	size = uintptr(class_to_size[sizeclass])
  1281  	spc := makeSpanClass(sizeclass, true)
  1282  	span := c.alloc[spc]
  1283  	v := nextFreeFast(span)
  1284  	if v == 0 {
  1285  		v, span, checkGCTrigger = c.nextFree(spc)
  1286  	}
  1287  	x := unsafe.Pointer(v)
  1288  	if needzero && span.needzero != 0 {
  1289  		memclrNoHeapPointers(x, size)
  1290  	}
  1291  
  1292  	// Ensure that the stores above that initialize x to
  1293  	// type-safe memory and set the heap bits occur before
  1294  	// the caller can make x observable to the garbage
  1295  	// collector. Otherwise, on weakly ordered machines,
  1296  	// the garbage collector could follow a pointer to x,
  1297  	// but see uninitialized memory or stale heap bits.
  1298  	publicationBarrier()
  1299  	// As x and the heap bits are initialized, update
  1300  	// freeIndexForScan now so x is seen by the GC
  1301  	// (including conservative scan) as an allocated object.
  1302  	// While this pointer can't escape into user code as a
  1303  	// _live_ pointer until we return, conservative scanning
  1304  	// may find a dead pointer that happens to point into this
  1305  	// object. Delaying this update until now ensures that
  1306  	// conservative scanning considers this pointer dead until
  1307  	// this point.
  1308  	span.freeIndexForScan = span.freeindex
  1309  
  1310  	// Allocate black during GC.
  1311  	// All slots hold nil so no scanning is needed.
  1312  	// This may be racing with GC so do it atomically if there can be
  1313  	// a race marking the bit.
  1314  	if writeBarrier.enabled {
  1315  		gcmarknewobject(span, uintptr(x))
  1316  	}
  1317  
  1318  	// Note cache c only valid while m acquired; see #47302
  1319  	//
  1320  	// N.B. Use the full size because that matches how the GC
  1321  	// will update the mem profile on the "free" side.
  1322  	//
  1323  	// TODO(mknyszek): We should really count the header as part
  1324  	// of gc_sys or something. The code below just pretends it is
  1325  	// internal fragmentation and matches the GC's accounting by
  1326  	// using the whole allocation slot.
  1327  	c.nextSample -= int64(size)
  1328  	if c.nextSample < 0 || MemProfileRate != c.memProfRate {
  1329  		profilealloc(mp, x, size)
  1330  	}
  1331  	mp.mallocing = 0
  1332  	releasem(mp)
  1333  
  1334  	if checkGCTrigger {
  1335  		if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
  1336  			gcStart(t)
  1337  		}
  1338  	}
  1339  	return x, size
  1340  }
  1341  
  1342  func mallocgcSmallScanNoHeader(size uintptr, typ *_type) (unsafe.Pointer, uintptr) {
  1343  	// Set mp.mallocing to keep from being preempted by GC.
  1344  	mp := acquirem()
  1345  	if doubleCheckMalloc {
  1346  		if mp.mallocing != 0 {
  1347  			throw("malloc deadlock")
  1348  		}
  1349  		if mp.gsignal == getg() {
  1350  			throw("malloc during signal")
  1351  		}
  1352  		if typ == nil || !typ.Pointers() {
  1353  			throw("noscan allocated in scan-only path")
  1354  		}
  1355  		if !heapBitsInSpan(size) {
  1356  			throw("heap bits in not in span for non-header-only path")
  1357  		}
  1358  	}
  1359  	mp.mallocing = 1
  1360  
  1361  	checkGCTrigger := false
  1362  	c := getMCache(mp)
  1363  	sizeclass := size_to_class8[divRoundUp(size, smallSizeDiv)]
  1364  	spc := makeSpanClass(sizeclass, false)
  1365  	span := c.alloc[spc]
  1366  	v := nextFreeFast(span)
  1367  	if v == 0 {
  1368  		v, span, checkGCTrigger = c.nextFree(spc)
  1369  	}
  1370  	x := unsafe.Pointer(v)
  1371  	if span.needzero != 0 {
  1372  		memclrNoHeapPointers(x, size)
  1373  	}
  1374  	if goarch.PtrSize == 8 && sizeclass == 1 {
  1375  		// initHeapBits already set the pointer bits for the 8-byte sizeclass
  1376  		// on 64-bit platforms.
  1377  		c.scanAlloc += 8
  1378  	} else {
  1379  		c.scanAlloc += heapSetTypeNoHeader(uintptr(x), size, typ, span)
  1380  	}
  1381  	size = uintptr(class_to_size[sizeclass])
  1382  
  1383  	// Ensure that the stores above that initialize x to
  1384  	// type-safe memory and set the heap bits occur before
  1385  	// the caller can make x observable to the garbage
  1386  	// collector. Otherwise, on weakly ordered machines,
  1387  	// the garbage collector could follow a pointer to x,
  1388  	// but see uninitialized memory or stale heap bits.
  1389  	publicationBarrier()
  1390  	// As x and the heap bits are initialized, update
  1391  	// freeIndexForScan now so x is seen by the GC
  1392  	// (including conservative scan) as an allocated object.
  1393  	// While this pointer can't escape into user code as a
  1394  	// _live_ pointer until we return, conservative scanning
  1395  	// may find a dead pointer that happens to point into this
  1396  	// object. Delaying this update until now ensures that
  1397  	// conservative scanning considers this pointer dead until
  1398  	// this point.
  1399  	span.freeIndexForScan = span.freeindex
  1400  
  1401  	// Allocate black during GC.
  1402  	// All slots hold nil so no scanning is needed.
  1403  	// This may be racing with GC so do it atomically if there can be
  1404  	// a race marking the bit.
  1405  	if writeBarrier.enabled {
  1406  		gcmarknewobject(span, uintptr(x))
  1407  	}
  1408  
  1409  	// Note cache c only valid while m acquired; see #47302
  1410  	//
  1411  	// N.B. Use the full size because that matches how the GC
  1412  	// will update the mem profile on the "free" side.
  1413  	//
  1414  	// TODO(mknyszek): We should really count the header as part
  1415  	// of gc_sys or something. The code below just pretends it is
  1416  	// internal fragmentation and matches the GC's accounting by
  1417  	// using the whole allocation slot.
  1418  	c.nextSample -= int64(size)
  1419  	if c.nextSample < 0 || MemProfileRate != c.memProfRate {
  1420  		profilealloc(mp, x, size)
  1421  	}
  1422  	mp.mallocing = 0
  1423  	releasem(mp)
  1424  
  1425  	if checkGCTrigger {
  1426  		if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
  1427  			gcStart(t)
  1428  		}
  1429  	}
  1430  	return x, size
  1431  }
  1432  
  1433  func mallocgcSmallScanHeader(size uintptr, typ *_type) (unsafe.Pointer, uintptr) {
  1434  	// Set mp.mallocing to keep from being preempted by GC.
  1435  	mp := acquirem()
  1436  	if doubleCheckMalloc {
  1437  		if mp.mallocing != 0 {
  1438  			throw("malloc deadlock")
  1439  		}
  1440  		if mp.gsignal == getg() {
  1441  			throw("malloc during signal")
  1442  		}
  1443  		if typ == nil || !typ.Pointers() {
  1444  			throw("noscan allocated in scan-only path")
  1445  		}
  1446  		if heapBitsInSpan(size) {
  1447  			throw("heap bits in span for header-only path")
  1448  		}
  1449  	}
  1450  	mp.mallocing = 1
  1451  
  1452  	checkGCTrigger := false
  1453  	c := getMCache(mp)
  1454  	size += mallocHeaderSize
  1455  	var sizeclass uint8
  1456  	if size <= smallSizeMax-8 {
  1457  		sizeclass = size_to_class8[divRoundUp(size, smallSizeDiv)]
  1458  	} else {
  1459  		sizeclass = size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]
  1460  	}
  1461  	size = uintptr(class_to_size[sizeclass])
  1462  	spc := makeSpanClass(sizeclass, false)
  1463  	span := c.alloc[spc]
  1464  	v := nextFreeFast(span)
  1465  	if v == 0 {
  1466  		v, span, checkGCTrigger = c.nextFree(spc)
  1467  	}
  1468  	x := unsafe.Pointer(v)
  1469  	if span.needzero != 0 {
  1470  		memclrNoHeapPointers(x, size)
  1471  	}
  1472  	header := (**_type)(x)
  1473  	x = add(x, mallocHeaderSize)
  1474  	c.scanAlloc += heapSetTypeSmallHeader(uintptr(x), size-mallocHeaderSize, typ, header, span)
  1475  
  1476  	// Ensure that the stores above that initialize x to
  1477  	// type-safe memory and set the heap bits occur before
  1478  	// the caller can make x observable to the garbage
  1479  	// collector. Otherwise, on weakly ordered machines,
  1480  	// the garbage collector could follow a pointer to x,
  1481  	// but see uninitialized memory or stale heap bits.
  1482  	publicationBarrier()
  1483  	// As x and the heap bits are initialized, update
  1484  	// freeIndexForScan now so x is seen by the GC
  1485  	// (including conservative scan) as an allocated object.
  1486  	// While this pointer can't escape into user code as a
  1487  	// _live_ pointer until we return, conservative scanning
  1488  	// may find a dead pointer that happens to point into this
  1489  	// object. Delaying this update until now ensures that
  1490  	// conservative scanning considers this pointer dead until
  1491  	// this point.
  1492  	span.freeIndexForScan = span.freeindex
  1493  
  1494  	// Allocate black during GC.
  1495  	// All slots hold nil so no scanning is needed.
  1496  	// This may be racing with GC so do it atomically if there can be
  1497  	// a race marking the bit.
  1498  	if writeBarrier.enabled {
  1499  		gcmarknewobject(span, uintptr(x))
  1500  	}
  1501  
  1502  	// Note cache c only valid while m acquired; see #47302
  1503  	//
  1504  	// N.B. Use the full size because that matches how the GC
  1505  	// will update the mem profile on the "free" side.
  1506  	//
  1507  	// TODO(mknyszek): We should really count the header as part
  1508  	// of gc_sys or something. The code below just pretends it is
  1509  	// internal fragmentation and matches the GC's accounting by
  1510  	// using the whole allocation slot.
  1511  	c.nextSample -= int64(size)
  1512  	if c.nextSample < 0 || MemProfileRate != c.memProfRate {
  1513  		profilealloc(mp, x, size)
  1514  	}
  1515  	mp.mallocing = 0
  1516  	releasem(mp)
  1517  
  1518  	if checkGCTrigger {
  1519  		if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
  1520  			gcStart(t)
  1521  		}
  1522  	}
  1523  	return x, size
  1524  }
  1525  
  1526  func mallocgcLarge(size uintptr, typ *_type, needzero bool) (unsafe.Pointer, uintptr) {
  1527  	// Set mp.mallocing to keep from being preempted by GC.
  1528  	mp := acquirem()
  1529  	if doubleCheckMalloc {
  1530  		if mp.mallocing != 0 {
  1531  			throw("malloc deadlock")
  1532  		}
  1533  		if mp.gsignal == getg() {
  1534  			throw("malloc during signal")
  1535  		}
  1536  	}
  1537  	mp.mallocing = 1
  1538  
  1539  	c := getMCache(mp)
  1540  	// For large allocations, keep track of zeroed state so that
  1541  	// bulk zeroing can be happen later in a preemptible context.
  1542  	span := c.allocLarge(size, typ == nil || !typ.Pointers())
  1543  	span.freeindex = 1
  1544  	span.allocCount = 1
  1545  	span.largeType = nil // Tell the GC not to look at this yet.
  1546  	size = span.elemsize
  1547  	x := unsafe.Pointer(span.base())
  1548  
  1549  	// Ensure that the stores above that initialize x to
  1550  	// type-safe memory and set the heap bits occur before
  1551  	// the caller can make x observable to the garbage
  1552  	// collector. Otherwise, on weakly ordered machines,
  1553  	// the garbage collector could follow a pointer to x,
  1554  	// but see uninitialized memory or stale heap bits.
  1555  	publicationBarrier()
  1556  	// As x and the heap bits are initialized, update
  1557  	// freeIndexForScan now so x is seen by the GC
  1558  	// (including conservative scan) as an allocated object.
  1559  	// While this pointer can't escape into user code as a
  1560  	// _live_ pointer until we return, conservative scanning
  1561  	// may find a dead pointer that happens to point into this
  1562  	// object. Delaying this update until now ensures that
  1563  	// conservative scanning considers this pointer dead until
  1564  	// this point.
  1565  	span.freeIndexForScan = span.freeindex
  1566  
  1567  	// Allocate black during GC.
  1568  	// All slots hold nil so no scanning is needed.
  1569  	// This may be racing with GC so do it atomically if there can be
  1570  	// a race marking the bit.
  1571  	if writeBarrier.enabled {
  1572  		gcmarknewobject(span, uintptr(x))
  1573  	}
  1574  
  1575  	// Note cache c only valid while m acquired; see #47302
  1576  	//
  1577  	// N.B. Use the full size because that matches how the GC
  1578  	// will update the mem profile on the "free" side.
  1579  	//
  1580  	// TODO(mknyszek): We should really count the header as part
  1581  	// of gc_sys or something. The code below just pretends it is
  1582  	// internal fragmentation and matches the GC's accounting by
  1583  	// using the whole allocation slot.
  1584  	c.nextSample -= int64(size)
  1585  	if c.nextSample < 0 || MemProfileRate != c.memProfRate {
  1586  		profilealloc(mp, x, size)
  1587  	}
  1588  	mp.mallocing = 0
  1589  	releasem(mp)
  1590  
  1591  	// Check to see if we need to trigger the GC.
  1592  	if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
  1593  		gcStart(t)
  1594  	}
  1595  
  1596  	// Objects can be zeroed late in a context where preemption can occur.
  1597  	// If the object contains pointers, its pointer data must be cleared
  1598  	// or otherwise indicate that the GC shouldn't scan it.
  1599  	// x will keep the memory alive.
  1600  	if noscan := typ == nil || !typ.Pointers(); !noscan || (needzero && span.needzero != 0) {
  1601  		// N.B. size == fullSize always in this case.
  1602  		memclrNoHeapPointersChunked(size, x) // This is a possible preemption point: see #47302
  1603  
  1604  		// Finish storing the type information for this case.
  1605  		mp := acquirem()
  1606  		if !noscan {
  1607  			getMCache(mp).scanAlloc += heapSetTypeLarge(uintptr(x), size, typ, span)
  1608  		}
  1609  		// Publish the object with the now-zeroed memory.
  1610  		publicationBarrier()
  1611  		releasem(mp)
  1612  	}
  1613  	return x, size
  1614  }
  1615  
  1616  func preMallocgcDebug(size uintptr, typ *_type) unsafe.Pointer {
  1617  	if debug.sbrk != 0 {
  1618  		align := uintptr(16)
  1619  		if typ != nil {
  1620  			// TODO(austin): This should be just
  1621  			//   align = uintptr(typ.align)
  1622  			// but that's only 4 on 32-bit platforms,
  1623  			// even if there's a uint64 field in typ (see #599).
  1624  			// This causes 64-bit atomic accesses to panic.
  1625  			// Hence, we use stricter alignment that matches
  1626  			// the normal allocator better.
  1627  			if size&7 == 0 {
  1628  				align = 8
  1629  			} else if size&3 == 0 {
  1630  				align = 4
  1631  			} else if size&1 == 0 {
  1632  				align = 2
  1633  			} else {
  1634  				align = 1
  1635  			}
  1636  		}
  1637  		return persistentalloc(size, align, &memstats.other_sys)
  1638  	}
  1639  	if inittrace.active && inittrace.id == getg().goid {
  1640  		// Init functions are executed sequentially in a single goroutine.
  1641  		inittrace.allocs += 1
  1642  	}
  1643  	return nil
  1644  }
  1645  
  1646  func postMallocgcDebug(x unsafe.Pointer, elemsize uintptr, typ *_type) {
  1647  	if inittrace.active && inittrace.id == getg().goid {
  1648  		// Init functions are executed sequentially in a single goroutine.
  1649  		inittrace.bytes += uint64(elemsize)
  1650  	}
  1651  
  1652  	if traceAllocFreeEnabled() {
  1653  		trace := traceAcquire()
  1654  		if trace.ok() {
  1655  			trace.HeapObjectAlloc(uintptr(x), typ)
  1656  			traceRelease(trace)
  1657  		}
  1658  	}
  1659  }
  1660  
  1661  // deductAssistCredit reduces the current G's assist credit
  1662  // by size bytes, and assists the GC if necessary.
  1663  //
  1664  // Caller must be preemptible.
  1665  //
  1666  // Returns the G for which the assist credit was accounted.
  1667  func deductAssistCredit(size uintptr) {
  1668  	// Charge the current user G for this allocation.
  1669  	assistG := getg()
  1670  	if assistG.m.curg != nil {
  1671  		assistG = assistG.m.curg
  1672  	}
  1673  	// Charge the allocation against the G. We'll account
  1674  	// for internal fragmentation at the end of mallocgc.
  1675  	assistG.gcAssistBytes -= int64(size)
  1676  
  1677  	if assistG.gcAssistBytes < 0 {
  1678  		// This G is in debt. Assist the GC to correct
  1679  		// this before allocating. This must happen
  1680  		// before disabling preemption.
  1681  		gcAssistAlloc(assistG)
  1682  	}
  1683  }
  1684  
  1685  // memclrNoHeapPointersChunked repeatedly calls memclrNoHeapPointers
  1686  // on chunks of the buffer to be zeroed, with opportunities for preemption
  1687  // along the way.  memclrNoHeapPointers contains no safepoints and also
  1688  // cannot be preemptively scheduled, so this provides a still-efficient
  1689  // block copy that can also be preempted on a reasonable granularity.
  1690  //
  1691  // Use this with care; if the data being cleared is tagged to contain
  1692  // pointers, this allows the GC to run before it is all cleared.
  1693  func memclrNoHeapPointersChunked(size uintptr, x unsafe.Pointer) {
  1694  	v := uintptr(x)
  1695  	// got this from benchmarking. 128k is too small, 512k is too large.
  1696  	const chunkBytes = 256 * 1024
  1697  	vsize := v + size
  1698  	for voff := v; voff < vsize; voff = voff + chunkBytes {
  1699  		if getg().preempt {
  1700  			// may hold locks, e.g., profiling
  1701  			goschedguarded()
  1702  		}
  1703  		// clear min(avail, lump) bytes
  1704  		n := vsize - voff
  1705  		if n > chunkBytes {
  1706  			n = chunkBytes
  1707  		}
  1708  		memclrNoHeapPointers(unsafe.Pointer(voff), n)
  1709  	}
  1710  }
  1711  
  1712  // implementation of new builtin
  1713  // compiler (both frontend and SSA backend) knows the signature
  1714  // of this function.
  1715  func newobject(typ *_type) unsafe.Pointer {
  1716  	return mallocgc(typ.Size_, typ, true)
  1717  }
  1718  
  1719  //go:linkname maps_newobject internal/runtime/maps.newobject
  1720  func maps_newobject(typ *_type) unsafe.Pointer {
  1721  	return newobject(typ)
  1722  }
  1723  
  1724  // reflect_unsafe_New is meant for package reflect,
  1725  // but widely used packages access it using linkname.
  1726  // Notable members of the hall of shame include:
  1727  //   - gitee.com/quant1x/gox
  1728  //   - github.com/goccy/json
  1729  //   - github.com/modern-go/reflect2
  1730  //   - github.com/v2pro/plz
  1731  //
  1732  // Do not remove or change the type signature.
  1733  // See go.dev/issue/67401.
  1734  //
  1735  //go:linkname reflect_unsafe_New reflect.unsafe_New
  1736  func reflect_unsafe_New(typ *_type) unsafe.Pointer {
  1737  	return mallocgc(typ.Size_, typ, true)
  1738  }
  1739  
  1740  //go:linkname reflectlite_unsafe_New internal/reflectlite.unsafe_New
  1741  func reflectlite_unsafe_New(typ *_type) unsafe.Pointer {
  1742  	return mallocgc(typ.Size_, typ, true)
  1743  }
  1744  
  1745  // newarray allocates an array of n elements of type typ.
  1746  //
  1747  // newarray should be an internal detail,
  1748  // but widely used packages access it using linkname.
  1749  // Notable members of the hall of shame include:
  1750  //   - github.com/RomiChan/protobuf
  1751  //   - github.com/segmentio/encoding
  1752  //   - github.com/ugorji/go/codec
  1753  //
  1754  // Do not remove or change the type signature.
  1755  // See go.dev/issue/67401.
  1756  //
  1757  //go:linkname newarray
  1758  func newarray(typ *_type, n int) unsafe.Pointer {
  1759  	if n == 1 {
  1760  		return mallocgc(typ.Size_, typ, true)
  1761  	}
  1762  	mem, overflow := math.MulUintptr(typ.Size_, uintptr(n))
  1763  	if overflow || mem > maxAlloc || n < 0 {
  1764  		panic(plainError("runtime: allocation size out of range"))
  1765  	}
  1766  	return mallocgc(mem, typ, true)
  1767  }
  1768  
  1769  // reflect_unsafe_NewArray is meant for package reflect,
  1770  // but widely used packages access it using linkname.
  1771  // Notable members of the hall of shame include:
  1772  //   - gitee.com/quant1x/gox
  1773  //   - github.com/bytedance/sonic
  1774  //   - github.com/goccy/json
  1775  //   - github.com/modern-go/reflect2
  1776  //   - github.com/segmentio/encoding
  1777  //   - github.com/segmentio/kafka-go
  1778  //   - github.com/v2pro/plz
  1779  //
  1780  // Do not remove or change the type signature.
  1781  // See go.dev/issue/67401.
  1782  //
  1783  //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
  1784  func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
  1785  	return newarray(typ, n)
  1786  }
  1787  
  1788  //go:linkname maps_newarray internal/runtime/maps.newarray
  1789  func maps_newarray(typ *_type, n int) unsafe.Pointer {
  1790  	return newarray(typ, n)
  1791  }
  1792  
  1793  // profilealloc resets the current mcache's nextSample counter and
  1794  // records a memory profile sample.
  1795  //
  1796  // The caller must be non-preemptible and have a P.
  1797  func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
  1798  	c := getMCache(mp)
  1799  	if c == nil {
  1800  		throw("profilealloc called without a P or outside bootstrapping")
  1801  	}
  1802  	c.memProfRate = MemProfileRate
  1803  	c.nextSample = nextSample()
  1804  	mProf_Malloc(mp, x, size)
  1805  }
  1806  
  1807  // nextSample returns the next sampling point for heap profiling. The goal is
  1808  // to sample allocations on average every MemProfileRate bytes, but with a
  1809  // completely random distribution over the allocation timeline; this
  1810  // corresponds to a Poisson process with parameter MemProfileRate. In Poisson
  1811  // processes, the distance between two samples follows the exponential
  1812  // distribution (exp(MemProfileRate)), so the best return value is a random
  1813  // number taken from an exponential distribution whose mean is MemProfileRate.
  1814  func nextSample() int64 {
  1815  	if MemProfileRate == 0 {
  1816  		// Basically never sample.
  1817  		return maxInt64
  1818  	}
  1819  	if MemProfileRate == 1 {
  1820  		// Sample immediately.
  1821  		return 0
  1822  	}
  1823  	return int64(fastexprand(MemProfileRate))
  1824  }
  1825  
  1826  // fastexprand returns a random number from an exponential distribution with
  1827  // the specified mean.
  1828  func fastexprand(mean int) int32 {
  1829  	// Avoid overflow. Maximum possible step is
  1830  	// -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean.
  1831  	switch {
  1832  	case mean > 0x7000000:
  1833  		mean = 0x7000000
  1834  	case mean == 0:
  1835  		return 0
  1836  	}
  1837  
  1838  	// Take a random sample of the exponential distribution exp(-mean*x).
  1839  	// The probability distribution function is mean*exp(-mean*x), so the CDF is
  1840  	// p = 1 - exp(-mean*x), so
  1841  	// q = 1 - p == exp(-mean*x)
  1842  	// log_e(q) = -mean*x
  1843  	// -log_e(q)/mean = x
  1844  	// x = -log_e(q) * mean
  1845  	// x = log_2(q) * (-log_e(2)) * mean    ; Using log_2 for efficiency
  1846  	const randomBitCount = 26
  1847  	q := cheaprandn(1<<randomBitCount) + 1
  1848  	qlog := fastlog2(float64(q)) - randomBitCount
  1849  	if qlog > 0 {
  1850  		qlog = 0
  1851  	}
  1852  	const minusLog2 = -0.6931471805599453 // -ln(2)
  1853  	return int32(qlog*(minusLog2*float64(mean))) + 1
  1854  }
  1855  
  1856  type persistentAlloc struct {
  1857  	base *notInHeap
  1858  	off  uintptr
  1859  }
  1860  
  1861  var globalAlloc struct {
  1862  	mutex
  1863  	persistentAlloc
  1864  }
  1865  
  1866  // persistentChunkSize is the number of bytes we allocate when we grow
  1867  // a persistentAlloc.
  1868  const persistentChunkSize = 256 << 10
  1869  
  1870  // persistentChunks is a list of all the persistent chunks we have
  1871  // allocated. The list is maintained through the first word in the
  1872  // persistent chunk. This is updated atomically.
  1873  var persistentChunks *notInHeap
  1874  
  1875  // Wrapper around sysAlloc that can allocate small chunks.
  1876  // There is no associated free operation.
  1877  // Intended for things like function/type/debug-related persistent data.
  1878  // If align is 0, uses default align (currently 8).
  1879  // The returned memory will be zeroed.
  1880  // sysStat must be non-nil.
  1881  //
  1882  // Consider marking persistentalloc'd types not in heap by embedding
  1883  // internal/runtime/sys.NotInHeap.
  1884  //
  1885  // nosplit because it is used during write barriers and must not be preempted.
  1886  //
  1887  //go:nosplit
  1888  func persistentalloc(size, align uintptr, sysStat *sysMemStat) unsafe.Pointer {
  1889  	var p *notInHeap
  1890  	systemstack(func() {
  1891  		p = persistentalloc1(size, align, sysStat)
  1892  	})
  1893  	return unsafe.Pointer(p)
  1894  }
  1895  
  1896  // Must run on system stack because stack growth can (re)invoke it.
  1897  // See issue 9174.
  1898  //
  1899  //go:systemstack
  1900  func persistentalloc1(size, align uintptr, sysStat *sysMemStat) *notInHeap {
  1901  	const (
  1902  		maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
  1903  	)
  1904  
  1905  	if size == 0 {
  1906  		throw("persistentalloc: size == 0")
  1907  	}
  1908  	if align != 0 {
  1909  		if align&(align-1) != 0 {
  1910  			throw("persistentalloc: align is not a power of 2")
  1911  		}
  1912  		if align > _PageSize {
  1913  			throw("persistentalloc: align is too large")
  1914  		}
  1915  	} else {
  1916  		align = 8
  1917  	}
  1918  
  1919  	if size >= maxBlock {
  1920  		return (*notInHeap)(sysAlloc(size, sysStat, "immortal metadata"))
  1921  	}
  1922  
  1923  	mp := acquirem()
  1924  	var persistent *persistentAlloc
  1925  	if mp != nil && mp.p != 0 {
  1926  		persistent = &mp.p.ptr().palloc
  1927  	} else {
  1928  		lock(&globalAlloc.mutex)
  1929  		persistent = &globalAlloc.persistentAlloc
  1930  	}
  1931  	persistent.off = alignUp(persistent.off, align)
  1932  	if persistent.off+size > persistentChunkSize || persistent.base == nil {
  1933  		persistent.base = (*notInHeap)(sysAlloc(persistentChunkSize, &memstats.other_sys, "immortal metadata"))
  1934  		if persistent.base == nil {
  1935  			if persistent == &globalAlloc.persistentAlloc {
  1936  				unlock(&globalAlloc.mutex)
  1937  			}
  1938  			throw("runtime: cannot allocate memory")
  1939  		}
  1940  
  1941  		// Add the new chunk to the persistentChunks list.
  1942  		for {
  1943  			chunks := uintptr(unsafe.Pointer(persistentChunks))
  1944  			*(*uintptr)(unsafe.Pointer(persistent.base)) = chunks
  1945  			if atomic.Casuintptr((*uintptr)(unsafe.Pointer(&persistentChunks)), chunks, uintptr(unsafe.Pointer(persistent.base))) {
  1946  				break
  1947  			}
  1948  		}
  1949  		persistent.off = alignUp(goarch.PtrSize, align)
  1950  	}
  1951  	p := persistent.base.add(persistent.off)
  1952  	persistent.off += size
  1953  	releasem(mp)
  1954  	if persistent == &globalAlloc.persistentAlloc {
  1955  		unlock(&globalAlloc.mutex)
  1956  	}
  1957  
  1958  	if sysStat != &memstats.other_sys {
  1959  		sysStat.add(int64(size))
  1960  		memstats.other_sys.add(-int64(size))
  1961  	}
  1962  	return p
  1963  }
  1964  
  1965  // inPersistentAlloc reports whether p points to memory allocated by
  1966  // persistentalloc. This must be nosplit because it is called by the
  1967  // cgo checker code, which is called by the write barrier code.
  1968  //
  1969  //go:nosplit
  1970  func inPersistentAlloc(p uintptr) bool {
  1971  	chunk := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&persistentChunks)))
  1972  	for chunk != 0 {
  1973  		if p >= chunk && p < chunk+persistentChunkSize {
  1974  			return true
  1975  		}
  1976  		chunk = *(*uintptr)(unsafe.Pointer(chunk))
  1977  	}
  1978  	return false
  1979  }
  1980  
  1981  // linearAlloc is a simple linear allocator that pre-reserves a region
  1982  // of memory and then optionally maps that region into the Ready state
  1983  // as needed.
  1984  //
  1985  // The caller is responsible for locking.
  1986  type linearAlloc struct {
  1987  	next   uintptr // next free byte
  1988  	mapped uintptr // one byte past end of mapped space
  1989  	end    uintptr // end of reserved space
  1990  
  1991  	mapMemory bool // transition memory from Reserved to Ready if true
  1992  }
  1993  
  1994  func (l *linearAlloc) init(base, size uintptr, mapMemory bool) {
  1995  	if base+size < base {
  1996  		// Chop off the last byte. The runtime isn't prepared
  1997  		// to deal with situations where the bounds could overflow.
  1998  		// Leave that memory reserved, though, so we don't map it
  1999  		// later.
  2000  		size -= 1
  2001  	}
  2002  	l.next, l.mapped = base, base
  2003  	l.end = base + size
  2004  	l.mapMemory = mapMemory
  2005  }
  2006  
  2007  func (l *linearAlloc) alloc(size, align uintptr, sysStat *sysMemStat, vmaName string) unsafe.Pointer {
  2008  	p := alignUp(l.next, align)
  2009  	if p+size > l.end {
  2010  		return nil
  2011  	}
  2012  	l.next = p + size
  2013  	if pEnd := alignUp(l.next-1, physPageSize); pEnd > l.mapped {
  2014  		if l.mapMemory {
  2015  			// Transition from Reserved to Prepared to Ready.
  2016  			n := pEnd - l.mapped
  2017  			sysMap(unsafe.Pointer(l.mapped), n, sysStat, vmaName)
  2018  			sysUsed(unsafe.Pointer(l.mapped), n, n)
  2019  		}
  2020  		l.mapped = pEnd
  2021  	}
  2022  	return unsafe.Pointer(p)
  2023  }
  2024  
  2025  // notInHeap is off-heap memory allocated by a lower-level allocator
  2026  // like sysAlloc or persistentAlloc.
  2027  //
  2028  // In general, it's better to use real types which embed
  2029  // internal/runtime/sys.NotInHeap, but this serves as a generic type
  2030  // for situations where that isn't possible (like in the allocators).
  2031  //
  2032  // TODO: Use this as the return type of sysAlloc, persistentAlloc, etc?
  2033  type notInHeap struct{ _ sys.NotInHeap }
  2034  
  2035  func (p *notInHeap) add(bytes uintptr) *notInHeap {
  2036  	return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes))
  2037  }
  2038  
  2039  // redZoneSize computes the size of the redzone for a given allocation.
  2040  // Refer to the implementation of the compiler-rt.
  2041  func redZoneSize(userSize uintptr) uintptr {
  2042  	switch {
  2043  	case userSize <= (64 - 16):
  2044  		return 16 << 0
  2045  	case userSize <= (128 - 32):
  2046  		return 16 << 1
  2047  	case userSize <= (512 - 64):
  2048  		return 16 << 2
  2049  	case userSize <= (4096 - 128):
  2050  		return 16 << 3
  2051  	case userSize <= (1<<14)-256:
  2052  		return 16 << 4
  2053  	case userSize <= (1<<15)-512:
  2054  		return 16 << 5
  2055  	case userSize <= (1<<16)-1024:
  2056  		return 16 << 6
  2057  	default:
  2058  		return 16 << 7
  2059  	}
  2060  }
  2061  

View as plain text