Source file src/runtime/cgocall.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Cgo call and callback support.
     6  //
     7  // To call into the C function f from Go, the cgo-generated code calls
     8  // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
     9  // gcc-compiled function written by cgo.
    10  //
    11  // runtime.cgocall (below) calls entersyscall so as not to block
    12  // other goroutines or the garbage collector, and then calls
    13  // runtime.asmcgocall(_cgo_Cfunc_f, frame).
    14  //
    15  // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack
    16  // (assumed to be an operating system-allocated stack, so safe to run
    17  // gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
    18  //
    19  // _cgo_Cfunc_f invokes the actual C function f with arguments
    20  // taken from the frame structure, records the results in the frame,
    21  // and returns to runtime.asmcgocall.
    22  //
    23  // After it regains control, runtime.asmcgocall switches back to the
    24  // original g (m->curg)'s stack and returns to runtime.cgocall.
    25  //
    26  // After it regains control, runtime.cgocall calls exitsyscall, which blocks
    27  // until this m can run Go code without violating the $GOMAXPROCS limit,
    28  // and then unlocks g from m.
    29  //
    30  // The above description skipped over the possibility of the gcc-compiled
    31  // function f calling back into Go. If that happens, we continue down
    32  // the rabbit hole during the execution of f.
    33  //
    34  // To make it possible for gcc-compiled C code to call a Go function p.GoF,
    35  // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
    36  // know about packages).  The gcc-compiled C function f calls GoF.
    37  //
    38  // GoF initializes "frame", a structure containing all of its
    39  // arguments and slots for p.GoF's results. It calls
    40  // crosscall2(_cgoexp_GoF, frame, framesize, ctxt) using the gcc ABI.
    41  //
    42  // crosscall2 (in cgo/asm_$GOARCH.s) is a four-argument adapter from
    43  // the gcc function call ABI to the gc function call ABI. At this
    44  // point we're in the Go runtime, but we're still running on m.g0's
    45  // stack and outside the $GOMAXPROCS limit. crosscall2 calls
    46  // runtime.cgocallback(_cgoexp_GoF, frame, ctxt) using the gc ABI.
    47  // (crosscall2's framesize argument is no longer used, but there's one
    48  // case where SWIG calls crosscall2 directly and expects to pass this
    49  // argument. See _cgo_panic.)
    50  //
    51  // runtime.cgocallback (in asm_$GOARCH.s) switches from m.g0's stack
    52  // to the original g (m.curg)'s stack, on which it calls
    53  // runtime.cgocallbackg(_cgoexp_GoF, frame, ctxt). As part of the
    54  // stack switch, runtime.cgocallback saves the current SP as
    55  // m.g0.sched.sp, so that any use of m.g0's stack during the execution
    56  // of the callback will be done below the existing stack frames.
    57  // Before overwriting m.g0.sched.sp, it pushes the old value on the
    58  // m.g0 stack, so that it can be restored later.
    59  //
    60  // runtime.cgocallbackg (below) is now running on a real goroutine
    61  // stack (not an m.g0 stack).  First it calls runtime.exitsyscall, which will
    62  // block until the $GOMAXPROCS limit allows running this goroutine.
    63  // Once exitsyscall has returned, it is safe to do things like call the memory
    64  // allocator or invoke the Go callback function.  runtime.cgocallbackg
    65  // first defers a function to unwind m.g0.sched.sp, so that if p.GoF
    66  // panics, m.g0.sched.sp will be restored to its old value: the m.g0 stack
    67  // and the m.curg stack will be unwound in lock step.
    68  // Then it calls _cgoexp_GoF(frame).
    69  //
    70  // _cgoexp_GoF, which was generated by cmd/cgo, unpacks the arguments
    71  // from frame, calls p.GoF, writes the results back to frame, and
    72  // returns. Now we start unwinding this whole process.
    73  //
    74  // runtime.cgocallbackg pops but does not execute the deferred
    75  // function to unwind m.g0.sched.sp, calls runtime.entersyscall, and
    76  // returns to runtime.cgocallback.
    77  //
    78  // After it regains control, runtime.cgocallback switches back to
    79  // m.g0's stack (the pointer is still in m.g0.sched.sp), restores the old
    80  // m.g0.sched.sp value from the stack, and returns to crosscall2.
    81  //
    82  // crosscall2 restores the callee-save registers for gcc and returns
    83  // to GoF, which unpacks any result values and returns to f.
    84  
    85  package runtime
    86  
    87  import (
    88  	"internal/abi"
    89  	"internal/goarch"
    90  	"internal/goexperiment"
    91  	"internal/runtime/sys"
    92  	"unsafe"
    93  )
    94  
    95  // Addresses collected in a cgo backtrace when crashing.
    96  // Length must match arg.Max in x_cgo_callers in runtime/cgo/gcc_traceback.c.
    97  type cgoCallers [32]uintptr
    98  
    99  // argset matches runtime/cgo/linux_syscall.c:argset_t
   100  type argset struct {
   101  	args   unsafe.Pointer
   102  	retval uintptr
   103  }
   104  
   105  // wrapper for syscall package to call cgocall for libc (cgo) calls.
   106  //
   107  //go:linkname syscall_cgocaller syscall.cgocaller
   108  //go:nosplit
   109  //go:uintptrescapes
   110  func syscall_cgocaller(fn unsafe.Pointer, args ...uintptr) uintptr {
   111  	as := argset{args: unsafe.Pointer(&args[0])}
   112  	cgocall(fn, unsafe.Pointer(&as))
   113  	return as.retval
   114  }
   115  
   116  var ncgocall uint64 // number of cgo calls in total for dead m
   117  
   118  // Call from Go to C.
   119  //
   120  // This must be nosplit because it's used for syscalls on some
   121  // platforms. Syscalls may have untyped arguments on the stack, so
   122  // it's not safe to grow or scan the stack.
   123  //
   124  // cgocall should be an internal detail,
   125  // but widely used packages access it using linkname.
   126  // Notable members of the hall of shame include:
   127  //   - github.com/ebitengine/purego
   128  //
   129  // Do not remove or change the type signature.
   130  // See go.dev/issue/67401.
   131  //
   132  //go:linkname cgocall
   133  //go:nosplit
   134  func cgocall(fn, arg unsafe.Pointer) int32 {
   135  	if !iscgo && GOOS != "solaris" && GOOS != "illumos" && GOOS != "windows" {
   136  		throw("cgocall unavailable")
   137  	}
   138  
   139  	if fn == nil {
   140  		throw("cgocall nil")
   141  	}
   142  
   143  	if raceenabled {
   144  		racereleasemerge(unsafe.Pointer(&racecgosync))
   145  	}
   146  
   147  	mp := getg().m
   148  	mp.ncgocall++
   149  
   150  	// Reset traceback.
   151  	mp.cgoCallers[0] = 0
   152  
   153  	// Announce we are entering a system call
   154  	// so that the scheduler knows to create another
   155  	// M to run goroutines while we are in the
   156  	// foreign code.
   157  	//
   158  	// The call to asmcgocall is guaranteed not to
   159  	// grow the stack and does not allocate memory,
   160  	// so it is safe to call while "in a system call", outside
   161  	// the $GOMAXPROCS accounting.
   162  	//
   163  	// fn may call back into Go code, in which case we'll exit the
   164  	// "system call", run the Go code (which may grow the stack),
   165  	// and then re-enter the "system call" reusing the PC and SP
   166  	// saved by entersyscall here.
   167  	entersyscall()
   168  
   169  	// Tell asynchronous preemption that we're entering external
   170  	// code. We do this after entersyscall because this may block
   171  	// and cause an async preemption to fail, but at this point a
   172  	// sync preemption will succeed (though this is not a matter
   173  	// of correctness).
   174  	osPreemptExtEnter(mp)
   175  
   176  	mp.incgo = true
   177  	// We use ncgo as a check during execution tracing for whether there is
   178  	// any C on the call stack, which there will be after this point. If
   179  	// there isn't, we can use frame pointer unwinding to collect call
   180  	// stacks efficiently. This will be the case for the first Go-to-C call
   181  	// on a stack, so it's preferable to update it here, after we emit a
   182  	// trace event in entersyscall above.
   183  	mp.ncgo++
   184  
   185  	errno := asmcgocall(fn, arg)
   186  
   187  	// Update accounting before exitsyscall because exitsyscall may
   188  	// reschedule us on to a different M.
   189  	mp.incgo = false
   190  	mp.ncgo--
   191  
   192  	osPreemptExtExit(mp)
   193  
   194  	// Save current syscall parameters, so m.winsyscall can be
   195  	// used again if callback decide to make syscall.
   196  	winsyscall := mp.winsyscall
   197  
   198  	exitsyscall()
   199  
   200  	getg().m.winsyscall = winsyscall
   201  
   202  	// Note that raceacquire must be called only after exitsyscall has
   203  	// wired this M to a P.
   204  	if raceenabled {
   205  		raceacquire(unsafe.Pointer(&racecgosync))
   206  	}
   207  
   208  	// From the garbage collector's perspective, time can move
   209  	// backwards in the sequence above. If there's a callback into
   210  	// Go code, GC will see this function at the call to
   211  	// asmcgocall. When the Go call later returns to C, the
   212  	// syscall PC/SP is rolled back and the GC sees this function
   213  	// back at the call to entersyscall. Normally, fn and arg
   214  	// would be live at entersyscall and dead at asmcgocall, so if
   215  	// time moved backwards, GC would see these arguments as dead
   216  	// and then live. Prevent these undead arguments from crashing
   217  	// GC by forcing them to stay live across this time warp.
   218  	KeepAlive(fn)
   219  	KeepAlive(arg)
   220  	KeepAlive(mp)
   221  
   222  	return errno
   223  }
   224  
   225  // Set or reset the system stack bounds for a callback on sp.
   226  //
   227  // Must be nosplit because it is called by needm prior to fully initializing
   228  // the M.
   229  //
   230  //go:nosplit
   231  func callbackUpdateSystemStack(mp *m, sp uintptr, signal bool) {
   232  	g0 := mp.g0
   233  
   234  	if !mp.isextra {
   235  		// We allocated the stack for standard Ms. Don't replace the
   236  		// stack bounds with estimated ones when we already initialized
   237  		// with the exact ones.
   238  		return
   239  	}
   240  
   241  	inBound := sp > g0.stack.lo && sp <= g0.stack.hi
   242  	if inBound && mp.g0StackAccurate {
   243  		// This M has called into Go before and has the stack bounds
   244  		// initialized. We have the accurate stack bounds, and the SP
   245  		// is in bounds. We expect it continues to run within the same
   246  		// bounds.
   247  		return
   248  	}
   249  
   250  	// We don't have an accurate stack bounds (either it never calls
   251  	// into Go before, or we couldn't get the accurate bounds), or the
   252  	// current SP is not within the previous bounds (the stack may have
   253  	// changed between calls). We need to update the stack bounds.
   254  	//
   255  	// N.B. we need to update the stack bounds even if SP appears to
   256  	// already be in bounds, if our bounds are estimated dummy bounds
   257  	// (below). We may be in a different region within the same actual
   258  	// stack bounds, but our estimates were not accurate. Or the actual
   259  	// stack bounds could have shifted but still have partial overlap with
   260  	// our dummy bounds. If we failed to update in that case, we could find
   261  	// ourselves seemingly called near the bottom of the stack bounds, where
   262  	// we quickly run out of space.
   263  
   264  	// Set the stack bounds to match the current stack. If we don't
   265  	// actually know how big the stack is, like we don't know how big any
   266  	// scheduling stack is, but we assume there's at least 32 kB. If we
   267  	// can get a more accurate stack bound from pthread, use that, provided
   268  	// it actually contains SP.
   269  	g0.stack.hi = sp + 1024
   270  	g0.stack.lo = sp - 32*1024
   271  	mp.g0StackAccurate = false
   272  	if !signal && _cgo_getstackbound != nil {
   273  		// Don't adjust if called from the signal handler.
   274  		// We are on the signal stack, not the pthread stack.
   275  		// (We could get the stack bounds from sigaltstack, but
   276  		// we're getting out of the signal handler very soon
   277  		// anyway. Not worth it.)
   278  		var bounds [2]uintptr
   279  		asmcgocall(_cgo_getstackbound, unsafe.Pointer(&bounds))
   280  		// getstackbound is an unsupported no-op on Windows.
   281  		//
   282  		// On Unix systems, if the API to get accurate stack bounds is
   283  		// not available, it returns zeros.
   284  		//
   285  		// Don't use these bounds if they don't contain SP. Perhaps we
   286  		// were called by something not using the standard thread
   287  		// stack.
   288  		if bounds[0] != 0 && sp > bounds[0] && sp <= bounds[1] {
   289  			g0.stack.lo = bounds[0]
   290  			g0.stack.hi = bounds[1]
   291  			mp.g0StackAccurate = true
   292  		}
   293  	}
   294  	g0.stackguard0 = g0.stack.lo + stackGuard
   295  	g0.stackguard1 = g0.stackguard0
   296  }
   297  
   298  // Call from C back to Go. fn must point to an ABIInternal Go entry-point.
   299  //
   300  //go:nosplit
   301  func cgocallbackg(fn, frame unsafe.Pointer, ctxt uintptr) {
   302  	gp := getg()
   303  	if gp != gp.m.curg {
   304  		println("runtime: bad g in cgocallback")
   305  		exit(2)
   306  	}
   307  
   308  	sp := gp.m.g0.sched.sp // system sp saved by cgocallback.
   309  	oldStack := gp.m.g0.stack
   310  	oldAccurate := gp.m.g0StackAccurate
   311  	callbackUpdateSystemStack(gp.m, sp, false)
   312  
   313  	// The call from C is on gp.m's g0 stack, so we must ensure
   314  	// that we stay on that M. We have to do this before calling
   315  	// exitsyscall, since it would otherwise be free to move us to
   316  	// a different M. The call to unlockOSThread is in this function
   317  	// after cgocallbackg1, or in the case of panicking, in unwindm.
   318  	lockOSThread()
   319  
   320  	checkm := gp.m
   321  
   322  	// Save current syscall parameters, so m.winsyscall can be
   323  	// used again if callback decide to make syscall.
   324  	winsyscall := gp.m.winsyscall
   325  
   326  	// entersyscall saves the caller's SP to allow the GC to trace the Go
   327  	// stack. However, since we're returning to an earlier stack frame and
   328  	// need to pair with the entersyscall() call made by cgocall, we must
   329  	// save syscall* and let reentersyscall restore them.
   330  	//
   331  	// Note: savedsp and savedbp MUST be held in locals as an unsafe.Pointer.
   332  	// When we call into Go, the stack is free to be moved. If these locals
   333  	// aren't visible in the stack maps, they won't get updated properly,
   334  	// and will end up being stale when restored by reentersyscall.
   335  	savedsp := unsafe.Pointer(gp.syscallsp)
   336  	savedpc := gp.syscallpc
   337  	savedbp := unsafe.Pointer(gp.syscallbp)
   338  	exitsyscall() // coming out of cgo call
   339  	gp.m.incgo = false
   340  	if gp.m.isextra {
   341  		gp.m.isExtraInC = false
   342  	}
   343  
   344  	osPreemptExtExit(gp.m)
   345  
   346  	if gp.nocgocallback {
   347  		panic("runtime: function marked with #cgo nocallback called back into Go")
   348  	}
   349  
   350  	cgocallbackg1(fn, frame, ctxt)
   351  
   352  	// At this point we're about to call unlockOSThread.
   353  	// The following code must not change to a different m.
   354  	// This is enforced by checking incgo in the schedule function.
   355  	gp.m.incgo = true
   356  	unlockOSThread()
   357  
   358  	if gp.m.isextra && gp.m.ncgo == 0 {
   359  		// There are no active cgocalls above this frame (ncgo == 0),
   360  		// thus there can't be more Go frames above this frame.
   361  		gp.m.isExtraInC = true
   362  	}
   363  
   364  	if gp.m != checkm {
   365  		throw("m changed unexpectedly in cgocallbackg")
   366  	}
   367  
   368  	osPreemptExtEnter(gp.m)
   369  
   370  	// going back to cgo call
   371  	reentersyscall(savedpc, uintptr(savedsp), uintptr(savedbp))
   372  
   373  	gp.m.winsyscall = winsyscall
   374  
   375  	// Restore the old g0 stack bounds
   376  	gp.m.g0.stack = oldStack
   377  	gp.m.g0.stackguard0 = oldStack.lo + stackGuard
   378  	gp.m.g0.stackguard1 = gp.m.g0.stackguard0
   379  	gp.m.g0StackAccurate = oldAccurate
   380  }
   381  
   382  func cgocallbackg1(fn, frame unsafe.Pointer, ctxt uintptr) {
   383  	gp := getg()
   384  
   385  	if gp.m.needextram || extraMWaiters.Load() > 0 {
   386  		gp.m.needextram = false
   387  		systemstack(newextram)
   388  	}
   389  
   390  	if ctxt != 0 {
   391  		s := append(gp.cgoCtxt, ctxt)
   392  
   393  		// Now we need to set gp.cgoCtxt = s, but we could get
   394  		// a SIGPROF signal while manipulating the slice, and
   395  		// the SIGPROF handler could pick up gp.cgoCtxt while
   396  		// tracing up the stack.  We need to ensure that the
   397  		// handler always sees a valid slice, so set the
   398  		// values in an order such that it always does.
   399  		p := (*slice)(unsafe.Pointer(&gp.cgoCtxt))
   400  		atomicstorep(unsafe.Pointer(&p.array), unsafe.Pointer(&s[0]))
   401  		p.cap = cap(s)
   402  		p.len = len(s)
   403  
   404  		defer func(gp *g) {
   405  			// Decrease the length of the slice by one, safely.
   406  			p := (*slice)(unsafe.Pointer(&gp.cgoCtxt))
   407  			p.len--
   408  		}(gp)
   409  	}
   410  
   411  	if gp.m.ncgo == 0 {
   412  		// The C call to Go came from a thread not currently running
   413  		// any Go. In the case of -buildmode=c-archive or c-shared,
   414  		// this call may be coming in before package initialization
   415  		// is complete. Wait until it is.
   416  		<-main_init_done
   417  	}
   418  
   419  	// Check whether the profiler needs to be turned on or off; this route to
   420  	// run Go code does not use runtime.execute, so bypasses the check there.
   421  	hz := sched.profilehz
   422  	if gp.m.profilehz != hz {
   423  		setThreadCPUProfiler(hz)
   424  	}
   425  
   426  	// Add entry to defer stack in case of panic.
   427  	restore := true
   428  	defer unwindm(&restore)
   429  
   430  	var ditAlreadySet bool
   431  	if debug.dataindependenttiming == 1 && gp.m.isextra {
   432  		// We only need to enable DIT for threads that were created by C, as it
   433  		// should already by enabled on threads that were created by Go.
   434  		ditAlreadySet = sys.EnableDIT()
   435  	}
   436  
   437  	if raceenabled {
   438  		raceacquire(unsafe.Pointer(&racecgosync))
   439  	}
   440  
   441  	// Invoke callback. This function is generated by cmd/cgo and
   442  	// will unpack the argument frame and call the Go function.
   443  	var cb func(frame unsafe.Pointer)
   444  	cbFV := funcval{uintptr(fn)}
   445  	*(*unsafe.Pointer)(unsafe.Pointer(&cb)) = noescape(unsafe.Pointer(&cbFV))
   446  	cb(frame)
   447  
   448  	if raceenabled {
   449  		racereleasemerge(unsafe.Pointer(&racecgosync))
   450  	}
   451  
   452  	if debug.dataindependenttiming == 1 && !ditAlreadySet {
   453  		// Only unset DIT if it wasn't already enabled when cgocallback was called.
   454  		sys.DisableDIT()
   455  	}
   456  
   457  	// Do not unwind m->g0->sched.sp.
   458  	// Our caller, cgocallback, will do that.
   459  	restore = false
   460  }
   461  
   462  func unwindm(restore *bool) {
   463  	if *restore {
   464  		// Restore sp saved by cgocallback during
   465  		// unwind of g's stack (see comment at top of file).
   466  		mp := acquirem()
   467  		sched := &mp.g0.sched
   468  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + alignUp(sys.MinFrameSize, sys.StackAlign)))
   469  
   470  		// Do the accounting that cgocall will not have a chance to do
   471  		// during an unwind.
   472  		//
   473  		// In the case where a Go call originates from C, ncgo is 0
   474  		// and there is no matching cgocall to end.
   475  		if mp.ncgo > 0 {
   476  			mp.incgo = false
   477  			mp.ncgo--
   478  			osPreemptExtExit(mp)
   479  		}
   480  
   481  		// Undo the call to lockOSThread in cgocallbackg, only on the
   482  		// panicking path. In normal return case cgocallbackg will call
   483  		// unlockOSThread, ensuring no preemption point after the unlock.
   484  		// Here we don't need to worry about preemption, because we're
   485  		// panicking out of the callback and unwinding the g0 stack,
   486  		// instead of reentering cgo (which requires the same thread).
   487  		unlockOSThread()
   488  
   489  		releasem(mp)
   490  	}
   491  }
   492  
   493  // called from assembly.
   494  func badcgocallback() {
   495  	throw("misaligned stack in cgocallback")
   496  }
   497  
   498  // called from (incomplete) assembly.
   499  func cgounimpl() {
   500  	throw("cgo not implemented")
   501  }
   502  
   503  var racecgosync uint64 // represents possible synchronization in C code
   504  
   505  // Pointer checking for cgo code.
   506  
   507  // We want to detect all cases where a program that does not use
   508  // unsafe makes a cgo call passing a Go pointer to memory that
   509  // contains an unpinned Go pointer. Here a Go pointer is defined as a
   510  // pointer to memory allocated by the Go runtime. Programs that use
   511  // unsafe can evade this restriction easily, so we don't try to catch
   512  // them. The cgo program will rewrite all possibly bad pointer
   513  // arguments to call cgoCheckPointer, where we can catch cases of a Go
   514  // pointer pointing to an unpinned Go pointer.
   515  
   516  // Complicating matters, taking the address of a slice or array
   517  // element permits the C program to access all elements of the slice
   518  // or array. In that case we will see a pointer to a single element,
   519  // but we need to check the entire data structure.
   520  
   521  // The cgoCheckPointer call takes additional arguments indicating that
   522  // it was called on an address expression. An additional argument of
   523  // true means that it only needs to check a single element. An
   524  // additional argument of a slice or array means that it needs to
   525  // check the entire slice/array, but nothing else. Otherwise, the
   526  // pointer could be anything, and we check the entire heap object,
   527  // which is conservative but safe.
   528  
   529  // When and if we implement a moving garbage collector,
   530  // cgoCheckPointer will pin the pointer for the duration of the cgo
   531  // call.  (This is necessary but not sufficient; the cgo program will
   532  // also have to change to pin Go pointers that cannot point to Go
   533  // pointers.)
   534  
   535  // cgoCheckPointer checks if the argument contains a Go pointer that
   536  // points to an unpinned Go pointer, and panics if it does.
   537  func cgoCheckPointer(ptr any, arg any) {
   538  	if !goexperiment.CgoCheck2 && debug.cgocheck == 0 {
   539  		return
   540  	}
   541  
   542  	ep := efaceOf(&ptr)
   543  	t := ep._type
   544  
   545  	top := true
   546  	if arg != nil && (t.Kind_&abi.KindMask == abi.Pointer || t.Kind_&abi.KindMask == abi.UnsafePointer) {
   547  		p := ep.data
   548  		if t.Kind_&abi.KindDirectIface == 0 {
   549  			p = *(*unsafe.Pointer)(p)
   550  		}
   551  		if p == nil || !cgoIsGoPointer(p) {
   552  			return
   553  		}
   554  		aep := efaceOf(&arg)
   555  		switch aep._type.Kind_ & abi.KindMask {
   556  		case abi.Bool:
   557  			if t.Kind_&abi.KindMask == abi.UnsafePointer {
   558  				// We don't know the type of the element.
   559  				break
   560  			}
   561  			pt := (*ptrtype)(unsafe.Pointer(t))
   562  			cgoCheckArg(pt.Elem, p, true, false, cgoCheckPointerFail)
   563  			return
   564  		case abi.Slice:
   565  			// Check the slice rather than the pointer.
   566  			ep = aep
   567  			t = ep._type
   568  		case abi.Array:
   569  			// Check the array rather than the pointer.
   570  			// Pass top as false since we have a pointer
   571  			// to the array.
   572  			ep = aep
   573  			t = ep._type
   574  			top = false
   575  		case abi.Pointer:
   576  			// The Go code is indexing into a pointer to an array,
   577  			// and we have been passed the pointer-to-array.
   578  			// Check the array rather than the pointer.
   579  			pt := (*abi.PtrType)(unsafe.Pointer(aep._type))
   580  			t = pt.Elem
   581  			if t.Kind_&abi.KindMask != abi.Array {
   582  				throw("can't happen")
   583  			}
   584  			ep = aep
   585  			top = false
   586  		default:
   587  			throw("can't happen")
   588  		}
   589  	}
   590  
   591  	cgoCheckArg(t, ep.data, t.Kind_&abi.KindDirectIface == 0, top, cgoCheckPointerFail)
   592  }
   593  
   594  const cgoCheckPointerFail = "cgo argument has Go pointer to unpinned Go pointer"
   595  const cgoResultFail = "cgo result is unpinned Go pointer or points to unpinned Go pointer"
   596  
   597  // cgoCheckArg is the real work of cgoCheckPointer. The argument p
   598  // is either a pointer to the value (of type t), or the value itself,
   599  // depending on indir. The top parameter is whether we are at the top
   600  // level, where Go pointers are allowed. Go pointers to pinned objects are
   601  // allowed as long as they don't reference other unpinned pointers.
   602  func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
   603  	if !t.Pointers() || p == nil {
   604  		// If the type has no pointers there is nothing to do.
   605  		return
   606  	}
   607  
   608  	switch t.Kind_ & abi.KindMask {
   609  	default:
   610  		throw("can't happen")
   611  	case abi.Array:
   612  		at := (*arraytype)(unsafe.Pointer(t))
   613  		if !indir {
   614  			if at.Len != 1 {
   615  				throw("can't happen")
   616  			}
   617  			cgoCheckArg(at.Elem, p, at.Elem.Kind_&abi.KindDirectIface == 0, top, msg)
   618  			return
   619  		}
   620  		for i := uintptr(0); i < at.Len; i++ {
   621  			cgoCheckArg(at.Elem, p, true, top, msg)
   622  			p = add(p, at.Elem.Size_)
   623  		}
   624  	case abi.Chan, abi.Map:
   625  		// These types contain internal pointers that will
   626  		// always be allocated in the Go heap. It's never OK
   627  		// to pass them to C.
   628  		panic(errorString(msg))
   629  	case abi.Func:
   630  		if indir {
   631  			p = *(*unsafe.Pointer)(p)
   632  		}
   633  		if !cgoIsGoPointer(p) {
   634  			return
   635  		}
   636  		panic(errorString(msg))
   637  	case abi.Interface:
   638  		it := *(**_type)(p)
   639  		if it == nil {
   640  			return
   641  		}
   642  		// A type known at compile time is OK since it's
   643  		// constant. A type not known at compile time will be
   644  		// in the heap and will not be OK.
   645  		if inheap(uintptr(unsafe.Pointer(it))) {
   646  			panic(errorString(msg))
   647  		}
   648  		p = *(*unsafe.Pointer)(add(p, goarch.PtrSize))
   649  		if !cgoIsGoPointer(p) {
   650  			return
   651  		}
   652  		if !top && !isPinned(p) {
   653  			panic(errorString(msg))
   654  		}
   655  		cgoCheckArg(it, p, it.Kind_&abi.KindDirectIface == 0, false, msg)
   656  	case abi.Slice:
   657  		st := (*slicetype)(unsafe.Pointer(t))
   658  		s := (*slice)(p)
   659  		p = s.array
   660  		if p == nil || !cgoIsGoPointer(p) {
   661  			return
   662  		}
   663  		if !top && !isPinned(p) {
   664  			panic(errorString(msg))
   665  		}
   666  		if !st.Elem.Pointers() {
   667  			return
   668  		}
   669  		for i := 0; i < s.cap; i++ {
   670  			cgoCheckArg(st.Elem, p, true, false, msg)
   671  			p = add(p, st.Elem.Size_)
   672  		}
   673  	case abi.String:
   674  		ss := (*stringStruct)(p)
   675  		if !cgoIsGoPointer(ss.str) {
   676  			return
   677  		}
   678  		if !top && !isPinned(ss.str) {
   679  			panic(errorString(msg))
   680  		}
   681  	case abi.Struct:
   682  		st := (*structtype)(unsafe.Pointer(t))
   683  		if !indir {
   684  			if len(st.Fields) != 1 {
   685  				throw("can't happen")
   686  			}
   687  			cgoCheckArg(st.Fields[0].Typ, p, st.Fields[0].Typ.Kind_&abi.KindDirectIface == 0, top, msg)
   688  			return
   689  		}
   690  		for _, f := range st.Fields {
   691  			if !f.Typ.Pointers() {
   692  				continue
   693  			}
   694  			cgoCheckArg(f.Typ, add(p, f.Offset), true, top, msg)
   695  		}
   696  	case abi.Pointer, abi.UnsafePointer:
   697  		if indir {
   698  			p = *(*unsafe.Pointer)(p)
   699  			if p == nil {
   700  				return
   701  			}
   702  		}
   703  
   704  		if !cgoIsGoPointer(p) {
   705  			return
   706  		}
   707  		if !top && !isPinned(p) {
   708  			panic(errorString(msg))
   709  		}
   710  
   711  		cgoCheckUnknownPointer(p, msg)
   712  	}
   713  }
   714  
   715  // cgoCheckUnknownPointer is called for an arbitrary pointer into Go
   716  // memory. It checks whether that Go memory contains any other
   717  // pointer into unpinned Go memory. If it does, we panic.
   718  // The return values are unused but useful to see in panic tracebacks.
   719  func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
   720  	if inheap(uintptr(p)) {
   721  		b, span, _ := findObject(uintptr(p), 0, 0)
   722  		base = b
   723  		if base == 0 {
   724  			return
   725  		}
   726  		tp := span.typePointersOfUnchecked(base)
   727  		for {
   728  			var addr uintptr
   729  			if tp, addr = tp.next(base + span.elemsize); addr == 0 {
   730  				break
   731  			}
   732  			pp := *(*unsafe.Pointer)(unsafe.Pointer(addr))
   733  			if cgoIsGoPointer(pp) && !isPinned(pp) {
   734  				panic(errorString(msg))
   735  			}
   736  		}
   737  		return
   738  	}
   739  
   740  	for _, datap := range activeModules() {
   741  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   742  			// We have no way to know the size of the object.
   743  			// We have to assume that it might contain a pointer.
   744  			panic(errorString(msg))
   745  		}
   746  		// In the text or noptr sections, we know that the
   747  		// pointer does not point to a Go pointer.
   748  	}
   749  
   750  	return
   751  }
   752  
   753  // cgoIsGoPointer reports whether the pointer is a Go pointer--a
   754  // pointer to Go memory. We only care about Go memory that might
   755  // contain pointers.
   756  //
   757  //go:nosplit
   758  //go:nowritebarrierrec
   759  func cgoIsGoPointer(p unsafe.Pointer) bool {
   760  	if p == nil {
   761  		return false
   762  	}
   763  
   764  	if inHeapOrStack(uintptr(p)) {
   765  		return true
   766  	}
   767  
   768  	for _, datap := range activeModules() {
   769  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   770  			return true
   771  		}
   772  	}
   773  
   774  	return false
   775  }
   776  
   777  // cgoInRange reports whether p is between start and end.
   778  //
   779  //go:nosplit
   780  //go:nowritebarrierrec
   781  func cgoInRange(p unsafe.Pointer, start, end uintptr) bool {
   782  	return start <= uintptr(p) && uintptr(p) < end
   783  }
   784  
   785  // cgoCheckResult is called to check the result parameter of an
   786  // exported Go function. It panics if the result is or contains any
   787  // other pointer into unpinned Go memory.
   788  func cgoCheckResult(val any) {
   789  	if !goexperiment.CgoCheck2 && debug.cgocheck == 0 {
   790  		return
   791  	}
   792  
   793  	ep := efaceOf(&val)
   794  	t := ep._type
   795  	cgoCheckArg(t, ep.data, t.Kind_&abi.KindDirectIface == 0, false, cgoResultFail)
   796  }
   797  

View as plain text