Text file
src/runtime/asm_arm64.s
1 // Copyright 2015 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 #include "go_asm.h"
6 #include "go_tls.h"
7 #include "tls_arm64.h"
8 #include "funcdata.h"
9 #include "textflag.h"
10
11 #ifdef GOARM64_LSE
12 DATA no_lse_msg<>+0x00(SB)/64, $"This program can only run on ARM64 processors with LSE support.\n"
13 GLOBL no_lse_msg<>(SB), RODATA, $64
14 #endif
15
16 // We know for sure that Linux and FreeBSD allow to read instruction set
17 // attribute registers (while some others OSes, like OpenBSD and Darwin,
18 // are not). Let's be conservative and allow code reading such registers
19 // only when we sure this won't lead to sigill.
20 #ifdef GOOS_linux
21 #define ISA_REGS_READABLE
22 #endif
23 #ifdef GOOS_freebsd
24 #define ISA_REGS_READABLE
25 #endif
26
27 #ifdef GOARM64_LSE
28 #ifdef ISA_REGS_READABLE
29 #define CHECK_GOARM64_LSE
30 #endif
31 #endif
32
33 TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0
34 // SP = stack; R0 = argc; R1 = argv
35
36 SUB $32, RSP
37 MOVW R0, 8(RSP) // argc
38 MOVD R1, 16(RSP) // argv
39
40 #ifdef TLS_darwin
41 // Initialize TLS.
42 MOVD ZR, g // clear g, make sure it's not junk.
43 SUB $32, RSP
44 MRS_TPIDR_R0
45 AND $~7, R0
46 MOVD R0, 16(RSP) // arg2: TLS base
47 MOVD $runtime·tls_g(SB), R2
48 MOVD R2, 8(RSP) // arg1: &tlsg
49 BL ·tlsinit(SB)
50 ADD $32, RSP
51 #endif
52
53 // create istack out of the given (operating system) stack.
54 // _cgo_init may update stackguard.
55 MOVD $runtime·g0(SB), g
56 MOVD RSP, R7
57 MOVD $(-64*1024)(R7), R0
58 MOVD R0, g_stackguard0(g)
59 MOVD R0, g_stackguard1(g)
60 MOVD R0, (g_stack+stack_lo)(g)
61 MOVD R7, (g_stack+stack_hi)(g)
62
63 // if there is a _cgo_init, call it using the gcc ABI.
64 MOVD _cgo_init(SB), R12
65 CBZ R12, nocgo
66
67 #ifdef GOOS_android
68 MRS_TPIDR_R0 // load TLS base pointer
69 MOVD R0, R3 // arg 3: TLS base pointer
70 MOVD $runtime·tls_g(SB), R2 // arg 2: &tls_g
71 #else
72 MOVD $0, R2 // arg 2: not used when using platform's TLS
73 #endif
74 MOVD $setg_gcc<>(SB), R1 // arg 1: setg
75 MOVD g, R0 // arg 0: G
76 SUB $16, RSP // reserve 16 bytes for sp-8 where fp may be saved.
77 BL (R12)
78 ADD $16, RSP
79
80 nocgo:
81 BL runtime·save_g(SB)
82 // update stackguard after _cgo_init
83 MOVD (g_stack+stack_lo)(g), R0
84 ADD $const_stackGuard, R0
85 MOVD R0, g_stackguard0(g)
86 MOVD R0, g_stackguard1(g)
87
88 // set the per-goroutine and per-mach "registers"
89 MOVD $runtime·m0(SB), R0
90
91 // save m->g0 = g0
92 MOVD g, m_g0(R0)
93 // save m0 to g0->m
94 MOVD R0, g_m(g)
95
96 BL runtime·check(SB)
97
98 #ifdef GOOS_windows
99 BL runtime·wintls(SB)
100 #endif
101
102 // Check that CPU we use for execution supports instructions targeted during compile-time.
103 #ifdef CHECK_GOARM64_LSE
104 // Read the ID_AA64ISAR0_EL1 register
105 MRS ID_AA64ISAR0_EL1, R0
106
107 // Extract the LSE field (bits [23:20])
108 LSR $20, R0, R0
109 AND $0xf, R0, R0
110
111 // LSE support is indicated by a non-zero value
112 CBZ R0, no_lse
113 #endif
114
115 MOVW 8(RSP), R0 // copy argc
116 MOVW R0, -8(RSP)
117 MOVD 16(RSP), R0 // copy argv
118 MOVD R0, 0(RSP)
119 BL runtime·args(SB)
120 BL runtime·osinit(SB)
121 BL runtime·schedinit(SB)
122
123 // create a new goroutine to start program
124 MOVD $runtime·mainPC(SB), R0 // entry
125 SUB $16, RSP
126 MOVD R0, 8(RSP) // arg
127 MOVD $0, 0(RSP) // dummy LR
128 BL runtime·newproc(SB)
129 ADD $16, RSP
130
131 // start this M
132 BL runtime·mstart(SB)
133 UNDEF
134
135 #ifdef CHECK_GOARM64_LSE
136 no_lse:
137 MOVD $1, R0 // stderr
138 MOVD R0, 8(RSP)
139 MOVD $no_lse_msg<>(SB), R1 // message address
140 MOVD R1, 16(RSP)
141 MOVD $64, R2 // message length
142 MOVD R2, 24(RSP)
143 CALL runtime·write(SB)
144 CALL runtime·exit(SB)
145 CALL runtime·abort(SB)
146 RET
147 #endif
148
149 // Prevent dead-code elimination of debugCallV2 and debugPinnerV1, which are
150 // intended to be called by debuggers.
151 MOVD $runtime·debugPinnerV1<ABIInternal>(SB), R0
152 MOVD $runtime·debugCallV2<ABIInternal>(SB), R0
153
154 MOVD $0, R0
155 MOVD R0, (R0) // boom
156 UNDEF
157
158 DATA runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
159 GLOBL runtime·mainPC(SB),RODATA,$8
160
161 // Windows ARM64 needs an immediate 0xf000 argument.
162 // See go.dev/issues/53837.
163 #define BREAK \
164 #ifdef GOOS_windows \
165 BRK $0xf000 \
166 #else \
167 BRK \
168 #endif \
169
170
171 TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
172 BREAK
173 RET
174
175 TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
176 RET
177
178 TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0
179 BL runtime·mstart0(SB)
180 RET // not reached
181
182 /*
183 * go-routine
184 */
185
186 // void gogo(Gobuf*)
187 // restore state from Gobuf; longjmp
188 TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8
189 MOVD buf+0(FP), R5
190 MOVD gobuf_g(R5), R6
191 MOVD 0(R6), R4 // make sure g != nil
192 B gogo<>(SB)
193
194 TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0
195 MOVD R6, g
196 BL runtime·save_g(SB)
197
198 MOVD gobuf_sp(R5), R0
199 MOVD R0, RSP
200 MOVD gobuf_bp(R5), R29
201 MOVD gobuf_lr(R5), LR
202 MOVD gobuf_ctxt(R5), R26
203 MOVD $0, gobuf_sp(R5)
204 MOVD $0, gobuf_bp(R5)
205 MOVD $0, gobuf_lr(R5)
206 MOVD $0, gobuf_ctxt(R5)
207 CMP ZR, ZR // set condition codes for == test, needed by stack split
208 MOVD gobuf_pc(R5), R6
209 B (R6)
210
211 // void mcall(fn func(*g))
212 // Switch to m->g0's stack, call fn(g).
213 // Fn must never return. It should gogo(&g->sched)
214 // to keep running g.
215 TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT|NOFRAME, $0-8
216 MOVD R0, R26 // context
217
218 // Save caller state in g->sched
219 MOVD RSP, R0
220 MOVD R0, (g_sched+gobuf_sp)(g)
221 MOVD R29, (g_sched+gobuf_bp)(g)
222 MOVD LR, (g_sched+gobuf_pc)(g)
223 MOVD $0, (g_sched+gobuf_lr)(g)
224
225 // Switch to m->g0 & its stack, call fn.
226 MOVD g, R3
227 MOVD g_m(g), R8
228 MOVD m_g0(R8), g
229 BL runtime·save_g(SB)
230 CMP g, R3
231 BNE 2(PC)
232 B runtime·badmcall(SB)
233
234 MOVD (g_sched+gobuf_sp)(g), R0
235 MOVD R0, RSP // sp = m->g0->sched.sp
236 MOVD (g_sched+gobuf_bp)(g), R29
237 MOVD R3, R0 // arg = g
238 MOVD $0, -16(RSP) // dummy LR
239 SUB $16, RSP
240 MOVD 0(R26), R4 // code pointer
241 BL (R4)
242 B runtime·badmcall2(SB)
243
244 // systemstack_switch is a dummy routine that systemstack leaves at the bottom
245 // of the G stack. We need to distinguish the routine that
246 // lives at the bottom of the G stack from the one that lives
247 // at the top of the system stack because the one at the top of
248 // the system stack terminates the stack walk (see topofstack()).
249 TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
250 UNDEF
251 BL (LR) // make sure this function is not leaf
252 RET
253
254 // func systemstack(fn func())
255 TEXT runtime·systemstack(SB), NOSPLIT, $0-8
256 MOVD fn+0(FP), R3 // R3 = fn
257 MOVD R3, R26 // context
258 MOVD g_m(g), R4 // R4 = m
259
260 MOVD m_gsignal(R4), R5 // R5 = gsignal
261 CMP g, R5
262 BEQ noswitch
263
264 MOVD m_g0(R4), R5 // R5 = g0
265 CMP g, R5
266 BEQ noswitch
267
268 MOVD m_curg(R4), R6
269 CMP g, R6
270 BEQ switch
271
272 // Bad: g is not gsignal, not g0, not curg. What is it?
273 // Hide call from linker nosplit analysis.
274 MOVD $runtime·badsystemstack(SB), R3
275 BL (R3)
276 B runtime·abort(SB)
277
278 switch:
279 // save our state in g->sched. Pretend to
280 // be systemstack_switch if the G stack is scanned.
281 BL gosave_systemstack_switch<>(SB)
282
283 // switch to g0
284 MOVD R5, g
285 BL runtime·save_g(SB)
286 MOVD (g_sched+gobuf_sp)(g), R3
287 MOVD R3, RSP
288 MOVD (g_sched+gobuf_bp)(g), R29
289
290 // call target function
291 MOVD 0(R26), R3 // code pointer
292 BL (R3)
293
294 // switch back to g
295 MOVD g_m(g), R3
296 MOVD m_curg(R3), g
297 BL runtime·save_g(SB)
298 MOVD (g_sched+gobuf_sp)(g), R0
299 MOVD R0, RSP
300 MOVD (g_sched+gobuf_bp)(g), R29
301 MOVD $0, (g_sched+gobuf_sp)(g)
302 MOVD $0, (g_sched+gobuf_bp)(g)
303 RET
304
305 noswitch:
306 // already on m stack, just call directly
307 // Using a tail call here cleans up tracebacks since we won't stop
308 // at an intermediate systemstack.
309 MOVD 0(R26), R3 // code pointer
310 MOVD.P 16(RSP), R30 // restore LR
311 SUB $8, RSP, R29 // restore FP
312 B (R3)
313
314 // func switchToCrashStack0(fn func())
315 TEXT runtime·switchToCrashStack0<ABIInternal>(SB), NOSPLIT, $0-8
316 MOVD R0, R26 // context register
317 MOVD g_m(g), R1 // curm
318
319 // set g to gcrash
320 MOVD $runtime·gcrash(SB), g // g = &gcrash
321 BL runtime·save_g(SB) // clobbers R0
322 MOVD R1, g_m(g) // g.m = curm
323 MOVD g, m_g0(R1) // curm.g0 = g
324
325 // switch to crashstack
326 MOVD (g_stack+stack_hi)(g), R1
327 SUB $(4*8), R1
328 MOVD R1, RSP
329
330 // call target function
331 MOVD 0(R26), R0
332 CALL (R0)
333
334 // should never return
335 CALL runtime·abort(SB)
336 UNDEF
337
338 /*
339 * support for morestack
340 */
341
342 // Called during function prolog when more stack is needed.
343 // Caller has already loaded:
344 // R3 prolog's LR (R30)
345 //
346 // The traceback routines see morestack on a g0 as being
347 // the top of a stack (for example, morestack calling newstack
348 // calling the scheduler calling newm calling gc), so we must
349 // record an argument size. For that purpose, it has no arguments.
350 TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
351 // Cannot grow scheduler stack (m->g0).
352 MOVD g_m(g), R8
353 MOVD m_g0(R8), R4
354
355 // Called from f.
356 // Set g->sched to context in f
357 MOVD RSP, R0
358 MOVD R0, (g_sched+gobuf_sp)(g)
359 MOVD R29, (g_sched+gobuf_bp)(g)
360 MOVD LR, (g_sched+gobuf_pc)(g)
361 MOVD R3, (g_sched+gobuf_lr)(g)
362 MOVD R26, (g_sched+gobuf_ctxt)(g)
363
364 CMP g, R4
365 BNE 3(PC)
366 BL runtime·badmorestackg0(SB)
367 B runtime·abort(SB)
368
369 // Cannot grow signal stack (m->gsignal).
370 MOVD m_gsignal(R8), R4
371 CMP g, R4
372 BNE 3(PC)
373 BL runtime·badmorestackgsignal(SB)
374 B runtime·abort(SB)
375
376 // Called from f.
377 // Set m->morebuf to f's callers.
378 MOVD R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC
379 MOVD RSP, R0
380 MOVD R0, (m_morebuf+gobuf_sp)(R8) // f's caller's RSP
381 MOVD g, (m_morebuf+gobuf_g)(R8)
382
383 // Call newstack on m->g0's stack.
384 MOVD m_g0(R8), g
385 BL runtime·save_g(SB)
386 MOVD (g_sched+gobuf_sp)(g), R0
387 MOVD R0, RSP
388 MOVD (g_sched+gobuf_bp)(g), R29
389 MOVD.W $0, -16(RSP) // create a call frame on g0 (saved LR; keep 16-aligned)
390 BL runtime·newstack(SB)
391
392 // Not reached, but make sure the return PC from the call to newstack
393 // is still in this function, and not the beginning of the next.
394 UNDEF
395
396 TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
397 // Force SPWRITE. This function doesn't actually write SP,
398 // but it is called with a special calling convention where
399 // the caller doesn't save LR on stack but passes it as a
400 // register (R3), and the unwinder currently doesn't understand.
401 // Make it SPWRITE to stop unwinding. (See issue 54332)
402 MOVD RSP, RSP
403
404 MOVW $0, R26
405 B runtime·morestack(SB)
406
407 // spillArgs stores return values from registers to a *internal/abi.RegArgs in R20.
408 TEXT ·spillArgs(SB),NOSPLIT,$0-0
409 STP (R0, R1), (0*8)(R20)
410 STP (R2, R3), (2*8)(R20)
411 STP (R4, R5), (4*8)(R20)
412 STP (R6, R7), (6*8)(R20)
413 STP (R8, R9), (8*8)(R20)
414 STP (R10, R11), (10*8)(R20)
415 STP (R12, R13), (12*8)(R20)
416 STP (R14, R15), (14*8)(R20)
417 FSTPD (F0, F1), (16*8)(R20)
418 FSTPD (F2, F3), (18*8)(R20)
419 FSTPD (F4, F5), (20*8)(R20)
420 FSTPD (F6, F7), (22*8)(R20)
421 FSTPD (F8, F9), (24*8)(R20)
422 FSTPD (F10, F11), (26*8)(R20)
423 FSTPD (F12, F13), (28*8)(R20)
424 FSTPD (F14, F15), (30*8)(R20)
425 RET
426
427 // unspillArgs loads args into registers from a *internal/abi.RegArgs in R20.
428 TEXT ·unspillArgs(SB),NOSPLIT,$0-0
429 LDP (0*8)(R20), (R0, R1)
430 LDP (2*8)(R20), (R2, R3)
431 LDP (4*8)(R20), (R4, R5)
432 LDP (6*8)(R20), (R6, R7)
433 LDP (8*8)(R20), (R8, R9)
434 LDP (10*8)(R20), (R10, R11)
435 LDP (12*8)(R20), (R12, R13)
436 LDP (14*8)(R20), (R14, R15)
437 FLDPD (16*8)(R20), (F0, F1)
438 FLDPD (18*8)(R20), (F2, F3)
439 FLDPD (20*8)(R20), (F4, F5)
440 FLDPD (22*8)(R20), (F6, F7)
441 FLDPD (24*8)(R20), (F8, F9)
442 FLDPD (26*8)(R20), (F10, F11)
443 FLDPD (28*8)(R20), (F12, F13)
444 FLDPD (30*8)(R20), (F14, F15)
445 RET
446
447 // reflectcall: call a function with the given argument list
448 // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
449 // we don't have variable-sized frames, so we use a small number
450 // of constant-sized-frame functions to encode a few bits of size in the pc.
451 // Caution: ugly multiline assembly macros in your future!
452
453 #define DISPATCH(NAME,MAXSIZE) \
454 MOVD $MAXSIZE, R27; \
455 CMP R27, R16; \
456 BGT 3(PC); \
457 MOVD $NAME(SB), R27; \
458 B (R27)
459 // Note: can't just "B NAME(SB)" - bad inlining results.
460
461 TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-48
462 MOVWU frameSize+32(FP), R16
463 DISPATCH(runtime·call16, 16)
464 DISPATCH(runtime·call32, 32)
465 DISPATCH(runtime·call64, 64)
466 DISPATCH(runtime·call128, 128)
467 DISPATCH(runtime·call256, 256)
468 DISPATCH(runtime·call512, 512)
469 DISPATCH(runtime·call1024, 1024)
470 DISPATCH(runtime·call2048, 2048)
471 DISPATCH(runtime·call4096, 4096)
472 DISPATCH(runtime·call8192, 8192)
473 DISPATCH(runtime·call16384, 16384)
474 DISPATCH(runtime·call32768, 32768)
475 DISPATCH(runtime·call65536, 65536)
476 DISPATCH(runtime·call131072, 131072)
477 DISPATCH(runtime·call262144, 262144)
478 DISPATCH(runtime·call524288, 524288)
479 DISPATCH(runtime·call1048576, 1048576)
480 DISPATCH(runtime·call2097152, 2097152)
481 DISPATCH(runtime·call4194304, 4194304)
482 DISPATCH(runtime·call8388608, 8388608)
483 DISPATCH(runtime·call16777216, 16777216)
484 DISPATCH(runtime·call33554432, 33554432)
485 DISPATCH(runtime·call67108864, 67108864)
486 DISPATCH(runtime·call134217728, 134217728)
487 DISPATCH(runtime·call268435456, 268435456)
488 DISPATCH(runtime·call536870912, 536870912)
489 DISPATCH(runtime·call1073741824, 1073741824)
490 MOVD $runtime·badreflectcall(SB), R0
491 B (R0)
492
493 #define CALLFN(NAME,MAXSIZE) \
494 TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \
495 NO_LOCAL_POINTERS; \
496 /* copy arguments to stack */ \
497 MOVD stackArgs+16(FP), R3; \
498 MOVWU stackArgsSize+24(FP), R4; \
499 ADD $8, RSP, R5; \
500 BIC $0xf, R4, R6; \
501 CBZ R6, 6(PC); \
502 /* if R6=(argsize&~15) != 0 */ \
503 ADD R6, R5, R6; \
504 /* copy 16 bytes a time */ \
505 LDP.P 16(R3), (R7, R8); \
506 STP.P (R7, R8), 16(R5); \
507 CMP R5, R6; \
508 BNE -3(PC); \
509 AND $0xf, R4, R6; \
510 CBZ R6, 6(PC); \
511 /* if R6=(argsize&15) != 0 */ \
512 ADD R6, R5, R6; \
513 /* copy 1 byte a time for the rest */ \
514 MOVBU.P 1(R3), R7; \
515 MOVBU.P R7, 1(R5); \
516 CMP R5, R6; \
517 BNE -3(PC); \
518 /* set up argument registers */ \
519 MOVD regArgs+40(FP), R20; \
520 CALL ·unspillArgs(SB); \
521 /* call function */ \
522 MOVD f+8(FP), R26; \
523 MOVD (R26), R20; \
524 PCDATA $PCDATA_StackMapIndex, $0; \
525 BL (R20); \
526 /* copy return values back */ \
527 MOVD regArgs+40(FP), R20; \
528 CALL ·spillArgs(SB); \
529 MOVD stackArgsType+0(FP), R7; \
530 MOVD stackArgs+16(FP), R3; \
531 MOVWU stackArgsSize+24(FP), R4; \
532 MOVWU stackRetOffset+28(FP), R6; \
533 ADD $8, RSP, R5; \
534 ADD R6, R5; \
535 ADD R6, R3; \
536 SUB R6, R4; \
537 BL callRet<>(SB); \
538 RET
539
540 // callRet copies return values back at the end of call*. This is a
541 // separate function so it can allocate stack space for the arguments
542 // to reflectcallmove. It does not follow the Go ABI; it expects its
543 // arguments in registers.
544 TEXT callRet<>(SB), NOSPLIT, $48-0
545 NO_LOCAL_POINTERS
546 STP (R7, R3), 8(RSP)
547 STP (R5, R4), 24(RSP)
548 MOVD R20, 40(RSP)
549 BL runtime·reflectcallmove(SB)
550 RET
551
552 CALLFN(·call16, 16)
553 CALLFN(·call32, 32)
554 CALLFN(·call64, 64)
555 CALLFN(·call128, 128)
556 CALLFN(·call256, 256)
557 CALLFN(·call512, 512)
558 CALLFN(·call1024, 1024)
559 CALLFN(·call2048, 2048)
560 CALLFN(·call4096, 4096)
561 CALLFN(·call8192, 8192)
562 CALLFN(·call16384, 16384)
563 CALLFN(·call32768, 32768)
564 CALLFN(·call65536, 65536)
565 CALLFN(·call131072, 131072)
566 CALLFN(·call262144, 262144)
567 CALLFN(·call524288, 524288)
568 CALLFN(·call1048576, 1048576)
569 CALLFN(·call2097152, 2097152)
570 CALLFN(·call4194304, 4194304)
571 CALLFN(·call8388608, 8388608)
572 CALLFN(·call16777216, 16777216)
573 CALLFN(·call33554432, 33554432)
574 CALLFN(·call67108864, 67108864)
575 CALLFN(·call134217728, 134217728)
576 CALLFN(·call268435456, 268435456)
577 CALLFN(·call536870912, 536870912)
578 CALLFN(·call1073741824, 1073741824)
579
580 // func memhash32(p unsafe.Pointer, h uintptr) uintptr
581 TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
582 MOVB runtime·useAeshash(SB), R10
583 CBZ R10, noaes
584 MOVD $runtime·aeskeysched+0(SB), R3
585
586 VEOR V0.B16, V0.B16, V0.B16
587 VLD1 (R3), [V2.B16]
588 VLD1 (R0), V0.S[1]
589 VMOV R1, V0.S[0]
590
591 AESE V2.B16, V0.B16
592 AESMC V0.B16, V0.B16
593 AESE V2.B16, V0.B16
594 AESMC V0.B16, V0.B16
595 AESE V2.B16, V0.B16
596
597 VMOV V0.D[0], R0
598 RET
599 noaes:
600 B runtime·memhash32Fallback<ABIInternal>(SB)
601
602 // func memhash64(p unsafe.Pointer, h uintptr) uintptr
603 TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
604 MOVB runtime·useAeshash(SB), R10
605 CBZ R10, noaes
606 MOVD $runtime·aeskeysched+0(SB), R3
607
608 VEOR V0.B16, V0.B16, V0.B16
609 VLD1 (R3), [V2.B16]
610 VLD1 (R0), V0.D[1]
611 VMOV R1, V0.D[0]
612
613 AESE V2.B16, V0.B16
614 AESMC V0.B16, V0.B16
615 AESE V2.B16, V0.B16
616 AESMC V0.B16, V0.B16
617 AESE V2.B16, V0.B16
618
619 VMOV V0.D[0], R0
620 RET
621 noaes:
622 B runtime·memhash64Fallback<ABIInternal>(SB)
623
624 // func memhash(p unsafe.Pointer, h, size uintptr) uintptr
625 TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-32
626 MOVB runtime·useAeshash(SB), R10
627 CBZ R10, noaes
628 B aeshashbody<>(SB)
629 noaes:
630 B runtime·memhashFallback<ABIInternal>(SB)
631
632 // func strhash(p unsafe.Pointer, h uintptr) uintptr
633 TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
634 MOVB runtime·useAeshash(SB), R10
635 CBZ R10, noaes
636 LDP (R0), (R0, R2) // string data / length
637 B aeshashbody<>(SB)
638 noaes:
639 B runtime·strhashFallback<ABIInternal>(SB)
640
641 // R0: data
642 // R1: seed data
643 // R2: length
644 // At return, R0 = return value
645 TEXT aeshashbody<>(SB),NOSPLIT|NOFRAME,$0
646 VEOR V30.B16, V30.B16, V30.B16
647 VMOV R1, V30.D[0]
648 VMOV R2, V30.D[1] // load length into seed
649
650 MOVD $runtime·aeskeysched+0(SB), R4
651 VLD1.P 16(R4), [V0.B16]
652 AESE V30.B16, V0.B16
653 AESMC V0.B16, V0.B16
654 CMP $16, R2
655 BLO aes0to15
656 BEQ aes16
657 CMP $32, R2
658 BLS aes17to32
659 CMP $64, R2
660 BLS aes33to64
661 CMP $128, R2
662 BLS aes65to128
663 B aes129plus
664
665 aes0to15:
666 CBZ R2, aes0
667 VEOR V2.B16, V2.B16, V2.B16
668 TBZ $3, R2, less_than_8
669 VLD1.P 8(R0), V2.D[0]
670
671 less_than_8:
672 TBZ $2, R2, less_than_4
673 VLD1.P 4(R0), V2.S[2]
674
675 less_than_4:
676 TBZ $1, R2, less_than_2
677 VLD1.P 2(R0), V2.H[6]
678
679 less_than_2:
680 TBZ $0, R2, done
681 VLD1 (R0), V2.B[14]
682 done:
683 AESE V0.B16, V2.B16
684 AESMC V2.B16, V2.B16
685 AESE V0.B16, V2.B16
686 AESMC V2.B16, V2.B16
687 AESE V0.B16, V2.B16
688 AESMC V2.B16, V2.B16
689
690 VMOV V2.D[0], R0
691 RET
692
693 aes0:
694 VMOV V0.D[0], R0
695 RET
696
697 aes16:
698 VLD1 (R0), [V2.B16]
699 B done
700
701 aes17to32:
702 // make second seed
703 VLD1 (R4), [V1.B16]
704 AESE V30.B16, V1.B16
705 AESMC V1.B16, V1.B16
706 SUB $16, R2, R10
707 VLD1.P (R0)(R10), [V2.B16]
708 VLD1 (R0), [V3.B16]
709
710 AESE V0.B16, V2.B16
711 AESMC V2.B16, V2.B16
712 AESE V1.B16, V3.B16
713 AESMC V3.B16, V3.B16
714
715 AESE V0.B16, V2.B16
716 AESMC V2.B16, V2.B16
717 AESE V1.B16, V3.B16
718 AESMC V3.B16, V3.B16
719
720 AESE V0.B16, V2.B16
721 AESE V1.B16, V3.B16
722
723 VEOR V3.B16, V2.B16, V2.B16
724
725 VMOV V2.D[0], R0
726 RET
727
728 aes33to64:
729 VLD1 (R4), [V1.B16, V2.B16, V3.B16]
730 AESE V30.B16, V1.B16
731 AESMC V1.B16, V1.B16
732 AESE V30.B16, V2.B16
733 AESMC V2.B16, V2.B16
734 AESE V30.B16, V3.B16
735 AESMC V3.B16, V3.B16
736 SUB $32, R2, R10
737
738 VLD1.P (R0)(R10), [V4.B16, V5.B16]
739 VLD1 (R0), [V6.B16, V7.B16]
740
741 AESE V0.B16, V4.B16
742 AESMC V4.B16, V4.B16
743 AESE V1.B16, V5.B16
744 AESMC V5.B16, V5.B16
745 AESE V2.B16, V6.B16
746 AESMC V6.B16, V6.B16
747 AESE V3.B16, V7.B16
748 AESMC V7.B16, V7.B16
749
750 AESE V0.B16, V4.B16
751 AESMC V4.B16, V4.B16
752 AESE V1.B16, V5.B16
753 AESMC V5.B16, V5.B16
754 AESE V2.B16, V6.B16
755 AESMC V6.B16, V6.B16
756 AESE V3.B16, V7.B16
757 AESMC V7.B16, V7.B16
758
759 AESE V0.B16, V4.B16
760 AESE V1.B16, V5.B16
761 AESE V2.B16, V6.B16
762 AESE V3.B16, V7.B16
763
764 VEOR V6.B16, V4.B16, V4.B16
765 VEOR V7.B16, V5.B16, V5.B16
766 VEOR V5.B16, V4.B16, V4.B16
767
768 VMOV V4.D[0], R0
769 RET
770
771 aes65to128:
772 VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
773 VLD1 (R4), [V5.B16, V6.B16, V7.B16]
774 AESE V30.B16, V1.B16
775 AESMC V1.B16, V1.B16
776 AESE V30.B16, V2.B16
777 AESMC V2.B16, V2.B16
778 AESE V30.B16, V3.B16
779 AESMC V3.B16, V3.B16
780 AESE V30.B16, V4.B16
781 AESMC V4.B16, V4.B16
782 AESE V30.B16, V5.B16
783 AESMC V5.B16, V5.B16
784 AESE V30.B16, V6.B16
785 AESMC V6.B16, V6.B16
786 AESE V30.B16, V7.B16
787 AESMC V7.B16, V7.B16
788
789 SUB $64, R2, R10
790 VLD1.P (R0)(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
791 VLD1 (R0), [V12.B16, V13.B16, V14.B16, V15.B16]
792 AESE V0.B16, V8.B16
793 AESMC V8.B16, V8.B16
794 AESE V1.B16, V9.B16
795 AESMC V9.B16, V9.B16
796 AESE V2.B16, V10.B16
797 AESMC V10.B16, V10.B16
798 AESE V3.B16, V11.B16
799 AESMC V11.B16, V11.B16
800 AESE V4.B16, V12.B16
801 AESMC V12.B16, V12.B16
802 AESE V5.B16, V13.B16
803 AESMC V13.B16, V13.B16
804 AESE V6.B16, V14.B16
805 AESMC V14.B16, V14.B16
806 AESE V7.B16, V15.B16
807 AESMC V15.B16, V15.B16
808
809 AESE V0.B16, V8.B16
810 AESMC V8.B16, V8.B16
811 AESE V1.B16, V9.B16
812 AESMC V9.B16, V9.B16
813 AESE V2.B16, V10.B16
814 AESMC V10.B16, V10.B16
815 AESE V3.B16, V11.B16
816 AESMC V11.B16, V11.B16
817 AESE V4.B16, V12.B16
818 AESMC V12.B16, V12.B16
819 AESE V5.B16, V13.B16
820 AESMC V13.B16, V13.B16
821 AESE V6.B16, V14.B16
822 AESMC V14.B16, V14.B16
823 AESE V7.B16, V15.B16
824 AESMC V15.B16, V15.B16
825
826 AESE V0.B16, V8.B16
827 AESE V1.B16, V9.B16
828 AESE V2.B16, V10.B16
829 AESE V3.B16, V11.B16
830 AESE V4.B16, V12.B16
831 AESE V5.B16, V13.B16
832 AESE V6.B16, V14.B16
833 AESE V7.B16, V15.B16
834
835 VEOR V12.B16, V8.B16, V8.B16
836 VEOR V13.B16, V9.B16, V9.B16
837 VEOR V14.B16, V10.B16, V10.B16
838 VEOR V15.B16, V11.B16, V11.B16
839 VEOR V10.B16, V8.B16, V8.B16
840 VEOR V11.B16, V9.B16, V9.B16
841 VEOR V9.B16, V8.B16, V8.B16
842
843 VMOV V8.D[0], R0
844 RET
845
846 aes129plus:
847 PRFM (R0), PLDL1KEEP
848 VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
849 VLD1 (R4), [V5.B16, V6.B16, V7.B16]
850 AESE V30.B16, V1.B16
851 AESMC V1.B16, V1.B16
852 AESE V30.B16, V2.B16
853 AESMC V2.B16, V2.B16
854 AESE V30.B16, V3.B16
855 AESMC V3.B16, V3.B16
856 AESE V30.B16, V4.B16
857 AESMC V4.B16, V4.B16
858 AESE V30.B16, V5.B16
859 AESMC V5.B16, V5.B16
860 AESE V30.B16, V6.B16
861 AESMC V6.B16, V6.B16
862 AESE V30.B16, V7.B16
863 AESMC V7.B16, V7.B16
864 ADD R0, R2, R10
865 SUB $128, R10, R10
866 VLD1.P 64(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
867 VLD1 (R10), [V12.B16, V13.B16, V14.B16, V15.B16]
868 SUB $1, R2, R2
869 LSR $7, R2, R2
870
871 aesloop:
872 AESE V8.B16, V0.B16
873 AESMC V0.B16, V0.B16
874 AESE V9.B16, V1.B16
875 AESMC V1.B16, V1.B16
876 AESE V10.B16, V2.B16
877 AESMC V2.B16, V2.B16
878 AESE V11.B16, V3.B16
879 AESMC V3.B16, V3.B16
880 AESE V12.B16, V4.B16
881 AESMC V4.B16, V4.B16
882 AESE V13.B16, V5.B16
883 AESMC V5.B16, V5.B16
884 AESE V14.B16, V6.B16
885 AESMC V6.B16, V6.B16
886 AESE V15.B16, V7.B16
887 AESMC V7.B16, V7.B16
888
889 VLD1.P 64(R0), [V8.B16, V9.B16, V10.B16, V11.B16]
890 AESE V8.B16, V0.B16
891 AESMC V0.B16, V0.B16
892 AESE V9.B16, V1.B16
893 AESMC V1.B16, V1.B16
894 AESE V10.B16, V2.B16
895 AESMC V2.B16, V2.B16
896 AESE V11.B16, V3.B16
897 AESMC V3.B16, V3.B16
898
899 VLD1.P 64(R0), [V12.B16, V13.B16, V14.B16, V15.B16]
900 AESE V12.B16, V4.B16
901 AESMC V4.B16, V4.B16
902 AESE V13.B16, V5.B16
903 AESMC V5.B16, V5.B16
904 AESE V14.B16, V6.B16
905 AESMC V6.B16, V6.B16
906 AESE V15.B16, V7.B16
907 AESMC V7.B16, V7.B16
908 SUB $1, R2, R2
909 CBNZ R2, aesloop
910
911 AESE V8.B16, V0.B16
912 AESMC V0.B16, V0.B16
913 AESE V9.B16, V1.B16
914 AESMC V1.B16, V1.B16
915 AESE V10.B16, V2.B16
916 AESMC V2.B16, V2.B16
917 AESE V11.B16, V3.B16
918 AESMC V3.B16, V3.B16
919 AESE V12.B16, V4.B16
920 AESMC V4.B16, V4.B16
921 AESE V13.B16, V5.B16
922 AESMC V5.B16, V5.B16
923 AESE V14.B16, V6.B16
924 AESMC V6.B16, V6.B16
925 AESE V15.B16, V7.B16
926 AESMC V7.B16, V7.B16
927
928 AESE V8.B16, V0.B16
929 AESMC V0.B16, V0.B16
930 AESE V9.B16, V1.B16
931 AESMC V1.B16, V1.B16
932 AESE V10.B16, V2.B16
933 AESMC V2.B16, V2.B16
934 AESE V11.B16, V3.B16
935 AESMC V3.B16, V3.B16
936 AESE V12.B16, V4.B16
937 AESMC V4.B16, V4.B16
938 AESE V13.B16, V5.B16
939 AESMC V5.B16, V5.B16
940 AESE V14.B16, V6.B16
941 AESMC V6.B16, V6.B16
942 AESE V15.B16, V7.B16
943 AESMC V7.B16, V7.B16
944
945 AESE V8.B16, V0.B16
946 AESE V9.B16, V1.B16
947 AESE V10.B16, V2.B16
948 AESE V11.B16, V3.B16
949 AESE V12.B16, V4.B16
950 AESE V13.B16, V5.B16
951 AESE V14.B16, V6.B16
952 AESE V15.B16, V7.B16
953
954 VEOR V0.B16, V1.B16, V0.B16
955 VEOR V2.B16, V3.B16, V2.B16
956 VEOR V4.B16, V5.B16, V4.B16
957 VEOR V6.B16, V7.B16, V6.B16
958 VEOR V0.B16, V2.B16, V0.B16
959 VEOR V4.B16, V6.B16, V4.B16
960 VEOR V4.B16, V0.B16, V0.B16
961
962 VMOV V0.D[0], R0
963 RET
964
965 TEXT runtime·procyield(SB),NOSPLIT,$0-0
966 MOVWU cycles+0(FP), R0
967 again:
968 YIELD
969 SUBW $1, R0
970 CBNZ R0, again
971 RET
972
973 // Save state of caller into g->sched,
974 // but using fake PC from systemstack_switch.
975 // Must only be called from functions with no locals ($0)
976 // or else unwinding from systemstack_switch is incorrect.
977 // Smashes R0.
978 TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
979 MOVD $runtime·systemstack_switch(SB), R0
980 ADD $8, R0 // get past prologue
981 MOVD R0, (g_sched+gobuf_pc)(g)
982 MOVD RSP, R0
983 MOVD R0, (g_sched+gobuf_sp)(g)
984 MOVD R29, (g_sched+gobuf_bp)(g)
985 MOVD $0, (g_sched+gobuf_lr)(g)
986 // Assert ctxt is zero. See func save.
987 MOVD (g_sched+gobuf_ctxt)(g), R0
988 CBZ R0, 2(PC)
989 CALL runtime·abort(SB)
990 RET
991
992 // func asmcgocall_no_g(fn, arg unsafe.Pointer)
993 // Call fn(arg) aligned appropriately for the gcc ABI.
994 // Called on a system stack, and there may be no g yet (during needm).
995 TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-16
996 MOVD fn+0(FP), R1
997 MOVD arg+8(FP), R0
998 SUB $16, RSP // skip over saved frame pointer below RSP
999 BL (R1)
1000 ADD $16, RSP // skip over saved frame pointer below RSP
1001 RET
1002
1003 // func asmcgocall(fn, arg unsafe.Pointer) int32
1004 // Call fn(arg) on the scheduler stack,
1005 // aligned appropriately for the gcc ABI.
1006 // See cgocall.go for more details.
1007 TEXT ·asmcgocall(SB),NOSPLIT,$0-20
1008 MOVD fn+0(FP), R1
1009 MOVD arg+8(FP), R0
1010
1011 MOVD RSP, R2 // save original stack pointer
1012 CBZ g, nosave
1013 MOVD g, R4
1014
1015 // Figure out if we need to switch to m->g0 stack.
1016 // We get called to create new OS threads too, and those
1017 // come in on the m->g0 stack already. Or we might already
1018 // be on the m->gsignal stack.
1019 MOVD g_m(g), R8
1020 MOVD m_gsignal(R8), R3
1021 CMP R3, g
1022 BEQ nosave
1023 MOVD m_g0(R8), R3
1024 CMP R3, g
1025 BEQ nosave
1026
1027 // Switch to system stack.
1028 MOVD R0, R9 // gosave_systemstack_switch<> and save_g might clobber R0
1029 BL gosave_systemstack_switch<>(SB)
1030 MOVD R3, g
1031 BL runtime·save_g(SB)
1032 MOVD (g_sched+gobuf_sp)(g), R0
1033 MOVD R0, RSP
1034 MOVD (g_sched+gobuf_bp)(g), R29
1035 MOVD R9, R0
1036
1037 // Now on a scheduling stack (a pthread-created stack).
1038 // Save room for two of our pointers /*, plus 32 bytes of callee
1039 // save area that lives on the caller stack. */
1040 MOVD RSP, R13
1041 SUB $16, R13
1042 MOVD R13, RSP
1043 MOVD R4, 0(RSP) // save old g on stack
1044 MOVD (g_stack+stack_hi)(R4), R4
1045 SUB R2, R4
1046 MOVD R4, 8(RSP) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
1047 BL (R1)
1048 MOVD R0, R9
1049
1050 // Restore g, stack pointer. R0 is errno, so don't touch it
1051 MOVD 0(RSP), g
1052 BL runtime·save_g(SB)
1053 MOVD (g_stack+stack_hi)(g), R5
1054 MOVD 8(RSP), R6
1055 SUB R6, R5
1056 MOVD R9, R0
1057 MOVD R5, RSP
1058
1059 MOVW R0, ret+16(FP)
1060 RET
1061
1062 nosave:
1063 // Running on a system stack, perhaps even without a g.
1064 // Having no g can happen during thread creation or thread teardown
1065 // (see needm/dropm on Solaris, for example).
1066 // This code is like the above sequence but without saving/restoring g
1067 // and without worrying about the stack moving out from under us
1068 // (because we're on a system stack, not a goroutine stack).
1069 // The above code could be used directly if already on a system stack,
1070 // but then the only path through this code would be a rare case on Solaris.
1071 // Using this code for all "already on system stack" calls exercises it more,
1072 // which should help keep it correct.
1073 MOVD RSP, R13
1074 SUB $16, R13
1075 MOVD R13, RSP
1076 MOVD $0, R4
1077 MOVD R4, 0(RSP) // Where above code stores g, in case someone looks during debugging.
1078 MOVD R2, 8(RSP) // Save original stack pointer.
1079 BL (R1)
1080 // Restore stack pointer.
1081 MOVD 8(RSP), R2
1082 MOVD R2, RSP
1083 MOVD R0, ret+16(FP)
1084 RET
1085
1086 // cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
1087 // See cgocall.go for more details.
1088 TEXT ·cgocallback(SB),NOSPLIT,$24-24
1089 NO_LOCAL_POINTERS
1090
1091 // Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
1092 // It is used to dropm while thread is exiting.
1093 MOVD fn+0(FP), R1
1094 CBNZ R1, loadg
1095 // Restore the g from frame.
1096 MOVD frame+8(FP), g
1097 B dropm
1098
1099 loadg:
1100 // Load g from thread-local storage.
1101 BL runtime·load_g(SB)
1102
1103 // If g is nil, Go did not create the current thread,
1104 // or if this thread never called into Go on pthread platforms.
1105 // Call needm to obtain one for temporary use.
1106 // In this case, we're running on the thread stack, so there's
1107 // lots of space, but the linker doesn't know. Hide the call from
1108 // the linker analysis by using an indirect call.
1109 CBZ g, needm
1110
1111 MOVD g_m(g), R8
1112 MOVD R8, savedm-8(SP)
1113 B havem
1114
1115 needm:
1116 MOVD g, savedm-8(SP) // g is zero, so is m.
1117 MOVD $runtime·needAndBindM(SB), R0
1118 BL (R0)
1119
1120 // Set m->g0->sched.sp = SP, so that if a panic happens
1121 // during the function we are about to execute, it will
1122 // have a valid SP to run on the g0 stack.
1123 // The next few lines (after the havem label)
1124 // will save this SP onto the stack and then write
1125 // the same SP back to m->sched.sp. That seems redundant,
1126 // but if an unrecovered panic happens, unwindm will
1127 // restore the g->sched.sp from the stack location
1128 // and then systemstack will try to use it. If we don't set it here,
1129 // that restored SP will be uninitialized (typically 0) and
1130 // will not be usable.
1131 MOVD g_m(g), R8
1132 MOVD m_g0(R8), R3
1133 MOVD RSP, R0
1134 MOVD R0, (g_sched+gobuf_sp)(R3)
1135 MOVD R29, (g_sched+gobuf_bp)(R3)
1136
1137 havem:
1138 // Now there's a valid m, and we're running on its m->g0.
1139 // Save current m->g0->sched.sp on stack and then set it to SP.
1140 // Save current sp in m->g0->sched.sp in preparation for
1141 // switch back to m->curg stack.
1142 // NOTE: unwindm knows that the saved g->sched.sp is at 16(RSP) aka savedsp-16(SP).
1143 // Beware that the frame size is actually 32+16.
1144 MOVD m_g0(R8), R3
1145 MOVD (g_sched+gobuf_sp)(R3), R4
1146 MOVD R4, savedsp-16(SP)
1147 MOVD RSP, R0
1148 MOVD R0, (g_sched+gobuf_sp)(R3)
1149
1150 // Switch to m->curg stack and call runtime.cgocallbackg.
1151 // Because we are taking over the execution of m->curg
1152 // but *not* resuming what had been running, we need to
1153 // save that information (m->curg->sched) so we can restore it.
1154 // We can restore m->curg->sched.sp easily, because calling
1155 // runtime.cgocallbackg leaves SP unchanged upon return.
1156 // To save m->curg->sched.pc, we push it onto the curg stack and
1157 // open a frame the same size as cgocallback's g0 frame.
1158 // Once we switch to the curg stack, the pushed PC will appear
1159 // to be the return PC of cgocallback, so that the traceback
1160 // will seamlessly trace back into the earlier calls.
1161 MOVD m_curg(R8), g
1162 BL runtime·save_g(SB)
1163 MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
1164 MOVD (g_sched+gobuf_pc)(g), R5
1165 MOVD R5, -48(R4)
1166 MOVD (g_sched+gobuf_bp)(g), R5
1167 MOVD R5, -56(R4)
1168 // Gather our arguments into registers.
1169 MOVD fn+0(FP), R1
1170 MOVD frame+8(FP), R2
1171 MOVD ctxt+16(FP), R3
1172 MOVD $-48(R4), R0 // maintain 16-byte SP alignment
1173 MOVD R0, RSP // switch stack
1174 MOVD R1, 8(RSP)
1175 MOVD R2, 16(RSP)
1176 MOVD R3, 24(RSP)
1177 MOVD $runtime·cgocallbackg(SB), R0
1178 CALL (R0) // indirect call to bypass nosplit check. We're on a different stack now.
1179
1180 // Restore g->sched (== m->curg->sched) from saved values.
1181 MOVD 0(RSP), R5
1182 MOVD R5, (g_sched+gobuf_pc)(g)
1183 MOVD RSP, R4
1184 ADD $48, R4, R4
1185 MOVD R4, (g_sched+gobuf_sp)(g)
1186
1187 // Switch back to m->g0's stack and restore m->g0->sched.sp.
1188 // (Unlike m->curg, the g0 goroutine never uses sched.pc,
1189 // so we do not have to restore it.)
1190 MOVD g_m(g), R8
1191 MOVD m_g0(R8), g
1192 BL runtime·save_g(SB)
1193 MOVD (g_sched+gobuf_sp)(g), R0
1194 MOVD R0, RSP
1195 MOVD savedsp-16(SP), R4
1196 MOVD R4, (g_sched+gobuf_sp)(g)
1197
1198 // If the m on entry was nil, we called needm above to borrow an m,
1199 // 1. for the duration of the call on non-pthread platforms,
1200 // 2. or the duration of the C thread alive on pthread platforms.
1201 // If the m on entry wasn't nil,
1202 // 1. the thread might be a Go thread,
1203 // 2. or it wasn't the first call from a C thread on pthread platforms,
1204 // since then we skip dropm to reuse the m in the first call.
1205 MOVD savedm-8(SP), R6
1206 CBNZ R6, droppedm
1207
1208 // Skip dropm to reuse it in the next call, when a pthread key has been created.
1209 MOVD _cgo_pthread_key_created(SB), R6
1210 // It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
1211 CBZ R6, dropm
1212 MOVD (R6), R6
1213 CBNZ R6, droppedm
1214
1215 dropm:
1216 MOVD $runtime·dropm(SB), R0
1217 BL (R0)
1218 droppedm:
1219
1220 // Done!
1221 RET
1222
1223 // Called from cgo wrappers, this function returns g->m->curg.stack.hi.
1224 // Must obey the gcc calling convention.
1225 TEXT _cgo_topofstack(SB),NOSPLIT,$24
1226 // g (R28) and REGTMP (R27) might be clobbered by load_g. They
1227 // are callee-save in the gcc calling convention, so save them.
1228 MOVD R27, savedR27-8(SP)
1229 MOVD g, saveG-16(SP)
1230
1231 BL runtime·load_g(SB)
1232 MOVD g_m(g), R0
1233 MOVD m_curg(R0), R0
1234 MOVD (g_stack+stack_hi)(R0), R0
1235
1236 MOVD saveG-16(SP), g
1237 MOVD savedR28-8(SP), R27
1238 RET
1239
1240 // void setg(G*); set g. for use by needm.
1241 TEXT runtime·setg(SB), NOSPLIT, $0-8
1242 MOVD gg+0(FP), g
1243 // This only happens if iscgo, so jump straight to save_g
1244 BL runtime·save_g(SB)
1245 RET
1246
1247 // void setg_gcc(G*); set g called from gcc
1248 TEXT setg_gcc<>(SB),NOSPLIT,$8
1249 MOVD R0, g
1250 MOVD R27, savedR27-8(SP)
1251 BL runtime·save_g(SB)
1252 MOVD savedR27-8(SP), R27
1253 RET
1254
1255 TEXT runtime·emptyfunc(SB),0,$0-0
1256 RET
1257
1258 TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
1259 MOVD ZR, R0
1260 MOVD (R0), R0
1261 UNDEF
1262
1263 // The top-most function running on a goroutine
1264 // returns to goexit+PCQuantum.
1265 TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
1266 MOVD R0, R0 // NOP
1267 BL runtime·goexit1(SB) // does not return
1268
1269 // This is called from .init_array and follows the platform, not Go, ABI.
1270 TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
1271 SUB $0x10, RSP
1272 MOVD R27, 8(RSP) // The access to global variables below implicitly uses R27, which is callee-save
1273 MOVD runtime·lastmoduledatap(SB), R1
1274 MOVD R0, moduledata_next(R1)
1275 MOVD R0, runtime·lastmoduledatap(SB)
1276 MOVD 8(RSP), R27
1277 ADD $0x10, RSP
1278 RET
1279
1280 TEXT ·checkASM(SB),NOSPLIT,$0-1
1281 MOVW $1, R3
1282 MOVB R3, ret+0(FP)
1283 RET
1284
1285 // gcWriteBarrier informs the GC about heap pointer writes.
1286 //
1287 // gcWriteBarrier does NOT follow the Go ABI. It accepts the
1288 // number of bytes of buffer needed in R25, and returns a pointer
1289 // to the buffer space in R25.
1290 // It clobbers condition codes.
1291 // It does not clobber any general-purpose registers except R27,
1292 // but may clobber others (e.g., floating point registers)
1293 // The act of CALLing gcWriteBarrier will clobber R30 (LR).
1294 TEXT gcWriteBarrier<>(SB),NOSPLIT,$200
1295 // Save the registers clobbered by the fast path.
1296 STP (R0, R1), 184(RSP)
1297 retry:
1298 MOVD g_m(g), R0
1299 MOVD m_p(R0), R0
1300 MOVD (p_wbBuf+wbBuf_next)(R0), R1
1301 MOVD (p_wbBuf+wbBuf_end)(R0), R27
1302 // Increment wbBuf.next position.
1303 ADD R25, R1
1304 // Is the buffer full?
1305 CMP R27, R1
1306 BHI flush
1307 // Commit to the larger buffer.
1308 MOVD R1, (p_wbBuf+wbBuf_next)(R0)
1309 // Make return value (the original next position)
1310 SUB R25, R1, R25
1311 // Restore registers.
1312 LDP 184(RSP), (R0, R1)
1313 RET
1314
1315 flush:
1316 // Save all general purpose registers since these could be
1317 // clobbered by wbBufFlush and were not saved by the caller.
1318 // R0 and R1 already saved
1319 STP (R2, R3), 1*8(RSP)
1320 STP (R4, R5), 3*8(RSP)
1321 STP (R6, R7), 5*8(RSP)
1322 STP (R8, R9), 7*8(RSP)
1323 STP (R10, R11), 9*8(RSP)
1324 STP (R12, R13), 11*8(RSP)
1325 STP (R14, R15), 13*8(RSP)
1326 // R16, R17 may be clobbered by linker trampoline
1327 // R18 is unused.
1328 STP (R19, R20), 15*8(RSP)
1329 STP (R21, R22), 17*8(RSP)
1330 STP (R23, R24), 19*8(RSP)
1331 STP (R25, R26), 21*8(RSP)
1332 // R27 is temp register.
1333 // R28 is g.
1334 // R29 is frame pointer (unused).
1335 // R30 is LR, which was saved by the prologue.
1336 // R31 is SP.
1337
1338 CALL runtime·wbBufFlush(SB)
1339 LDP 1*8(RSP), (R2, R3)
1340 LDP 3*8(RSP), (R4, R5)
1341 LDP 5*8(RSP), (R6, R7)
1342 LDP 7*8(RSP), (R8, R9)
1343 LDP 9*8(RSP), (R10, R11)
1344 LDP 11*8(RSP), (R12, R13)
1345 LDP 13*8(RSP), (R14, R15)
1346 LDP 15*8(RSP), (R19, R20)
1347 LDP 17*8(RSP), (R21, R22)
1348 LDP 19*8(RSP), (R23, R24)
1349 LDP 21*8(RSP), (R25, R26)
1350 JMP retry
1351
1352 TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT,$0
1353 MOVD $8, R25
1354 JMP gcWriteBarrier<>(SB)
1355 TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT,$0
1356 MOVD $16, R25
1357 JMP gcWriteBarrier<>(SB)
1358 TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT,$0
1359 MOVD $24, R25
1360 JMP gcWriteBarrier<>(SB)
1361 TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT,$0
1362 MOVD $32, R25
1363 JMP gcWriteBarrier<>(SB)
1364 TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT,$0
1365 MOVD $40, R25
1366 JMP gcWriteBarrier<>(SB)
1367 TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT,$0
1368 MOVD $48, R25
1369 JMP gcWriteBarrier<>(SB)
1370 TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT,$0
1371 MOVD $56, R25
1372 JMP gcWriteBarrier<>(SB)
1373 TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT,$0
1374 MOVD $64, R25
1375 JMP gcWriteBarrier<>(SB)
1376
1377 DATA debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
1378 GLOBL debugCallFrameTooLarge<>(SB), RODATA, $20 // Size duplicated below
1379
1380 // debugCallV2 is the entry point for debugger-injected function
1381 // calls on running goroutines. It informs the runtime that a
1382 // debug call has been injected and creates a call frame for the
1383 // debugger to fill in.
1384 //
1385 // To inject a function call, a debugger should:
1386 // 1. Check that the goroutine is in state _Grunning and that
1387 // there are at least 288 bytes free on the stack.
1388 // 2. Set SP as SP-16.
1389 // 3. Store the current LR in (SP) (using the SP after step 2).
1390 // 4. Store the current PC in the LR register.
1391 // 5. Write the desired argument frame size at SP-16
1392 // 6. Save all machine registers (including flags and fpsimd registers)
1393 // so they can be restored later by the debugger.
1394 // 7. Set the PC to debugCallV2 and resume execution.
1395 //
1396 // If the goroutine is in state _Grunnable, then it's not generally
1397 // safe to inject a call because it may return out via other runtime
1398 // operations. Instead, the debugger should unwind the stack to find
1399 // the return to non-runtime code, add a temporary breakpoint there,
1400 // and inject the call once that breakpoint is hit.
1401 //
1402 // If the goroutine is in any other state, it's not safe to inject a call.
1403 //
1404 // This function communicates back to the debugger by setting R20 and
1405 // invoking BRK to raise a breakpoint signal. Note that the signal PC of
1406 // the signal triggered by the BRK instruction is the PC where the signal
1407 // is trapped, not the next PC, so to resume execution, the debugger needs
1408 // to set the signal PC to PC+4. See the comments in the implementation for
1409 // the protocol the debugger is expected to follow. InjectDebugCall in the
1410 // runtime tests demonstrates this protocol.
1411 //
1412 // The debugger must ensure that any pointers passed to the function
1413 // obey escape analysis requirements. Specifically, it must not pass
1414 // a stack pointer to an escaping argument. debugCallV2 cannot check
1415 // this invariant.
1416 //
1417 // This is ABIInternal because Go code injects its PC directly into new
1418 // goroutine stacks.
1419 TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-0
1420 STP (R29, R30), -280(RSP)
1421 SUB $272, RSP, RSP
1422 SUB $8, RSP, R29
1423 // Save all registers that may contain pointers so they can be
1424 // conservatively scanned.
1425 //
1426 // We can't do anything that might clobber any of these
1427 // registers before this.
1428 STP (R27, g), (30*8)(RSP)
1429 STP (R25, R26), (28*8)(RSP)
1430 STP (R23, R24), (26*8)(RSP)
1431 STP (R21, R22), (24*8)(RSP)
1432 STP (R19, R20), (22*8)(RSP)
1433 STP (R16, R17), (20*8)(RSP)
1434 STP (R14, R15), (18*8)(RSP)
1435 STP (R12, R13), (16*8)(RSP)
1436 STP (R10, R11), (14*8)(RSP)
1437 STP (R8, R9), (12*8)(RSP)
1438 STP (R6, R7), (10*8)(RSP)
1439 STP (R4, R5), (8*8)(RSP)
1440 STP (R2, R3), (6*8)(RSP)
1441 STP (R0, R1), (4*8)(RSP)
1442
1443 // Perform a safe-point check.
1444 MOVD R30, 8(RSP) // Caller's PC
1445 CALL runtime·debugCallCheck(SB)
1446 MOVD 16(RSP), R0
1447 CBZ R0, good
1448
1449 // The safety check failed. Put the reason string at the top
1450 // of the stack.
1451 MOVD R0, 8(RSP)
1452 MOVD 24(RSP), R0
1453 MOVD R0, 16(RSP)
1454
1455 // Set R20 to 8 and invoke BRK. The debugger should get the
1456 // reason a call can't be injected from SP+8 and resume execution.
1457 MOVD $8, R20
1458 BREAK
1459 JMP restore
1460
1461 good:
1462 // Registers are saved and it's safe to make a call.
1463 // Open up a call frame, moving the stack if necessary.
1464 //
1465 // Once the frame is allocated, this will set R20 to 0 and
1466 // invoke BRK. The debugger should write the argument
1467 // frame for the call at SP+8, set up argument registers,
1468 // set the LR as the signal PC + 4, set the PC to the function
1469 // to call, set R26 to point to the closure (if a closure call),
1470 // and resume execution.
1471 //
1472 // If the function returns, this will set R20 to 1 and invoke
1473 // BRK. The debugger can then inspect any return value saved
1474 // on the stack at SP+8 and in registers. To resume execution,
1475 // the debugger should restore the LR from (SP).
1476 //
1477 // If the function panics, this will set R20 to 2 and invoke BRK.
1478 // The interface{} value of the panic will be at SP+8. The debugger
1479 // can inspect the panic value and resume execution again.
1480 #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE) \
1481 CMP $MAXSIZE, R0; \
1482 BGT 5(PC); \
1483 MOVD $NAME(SB), R0; \
1484 MOVD R0, 8(RSP); \
1485 CALL runtime·debugCallWrap(SB); \
1486 JMP restore
1487
1488 MOVD 256(RSP), R0 // the argument frame size
1489 DEBUG_CALL_DISPATCH(debugCall32<>, 32)
1490 DEBUG_CALL_DISPATCH(debugCall64<>, 64)
1491 DEBUG_CALL_DISPATCH(debugCall128<>, 128)
1492 DEBUG_CALL_DISPATCH(debugCall256<>, 256)
1493 DEBUG_CALL_DISPATCH(debugCall512<>, 512)
1494 DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
1495 DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
1496 DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
1497 DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
1498 DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
1499 DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
1500 DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
1501 // The frame size is too large. Report the error.
1502 MOVD $debugCallFrameTooLarge<>(SB), R0
1503 MOVD R0, 8(RSP)
1504 MOVD $20, R0
1505 MOVD R0, 16(RSP) // length of debugCallFrameTooLarge string
1506 MOVD $8, R20
1507 BREAK
1508 JMP restore
1509
1510 restore:
1511 // Calls and failures resume here.
1512 //
1513 // Set R20 to 16 and invoke BRK. The debugger should restore
1514 // all registers except for PC and RSP and resume execution.
1515 MOVD $16, R20
1516 BREAK
1517 // We must not modify flags after this point.
1518
1519 // Restore pointer-containing registers, which may have been
1520 // modified from the debugger's copy by stack copying.
1521 LDP (30*8)(RSP), (R27, g)
1522 LDP (28*8)(RSP), (R25, R26)
1523 LDP (26*8)(RSP), (R23, R24)
1524 LDP (24*8)(RSP), (R21, R22)
1525 LDP (22*8)(RSP), (R19, R20)
1526 LDP (20*8)(RSP), (R16, R17)
1527 LDP (18*8)(RSP), (R14, R15)
1528 LDP (16*8)(RSP), (R12, R13)
1529 LDP (14*8)(RSP), (R10, R11)
1530 LDP (12*8)(RSP), (R8, R9)
1531 LDP (10*8)(RSP), (R6, R7)
1532 LDP (8*8)(RSP), (R4, R5)
1533 LDP (6*8)(RSP), (R2, R3)
1534 LDP (4*8)(RSP), (R0, R1)
1535
1536 LDP -8(RSP), (R29, R27)
1537 ADD $288, RSP, RSP // Add 16 more bytes, see saveSigContext
1538 MOVD -16(RSP), R30 // restore old lr
1539 JMP (R27)
1540
1541 // runtime.debugCallCheck assumes that functions defined with the
1542 // DEBUG_CALL_FN macro are safe points to inject calls.
1543 #define DEBUG_CALL_FN(NAME,MAXSIZE) \
1544 TEXT NAME(SB),WRAPPER,$MAXSIZE-0; \
1545 NO_LOCAL_POINTERS; \
1546 MOVD $0, R20; \
1547 BREAK; \
1548 MOVD $1, R20; \
1549 BREAK; \
1550 RET
1551 DEBUG_CALL_FN(debugCall32<>, 32)
1552 DEBUG_CALL_FN(debugCall64<>, 64)
1553 DEBUG_CALL_FN(debugCall128<>, 128)
1554 DEBUG_CALL_FN(debugCall256<>, 256)
1555 DEBUG_CALL_FN(debugCall512<>, 512)
1556 DEBUG_CALL_FN(debugCall1024<>, 1024)
1557 DEBUG_CALL_FN(debugCall2048<>, 2048)
1558 DEBUG_CALL_FN(debugCall4096<>, 4096)
1559 DEBUG_CALL_FN(debugCall8192<>, 8192)
1560 DEBUG_CALL_FN(debugCall16384<>, 16384)
1561 DEBUG_CALL_FN(debugCall32768<>, 32768)
1562 DEBUG_CALL_FN(debugCall65536<>, 65536)
1563
1564 // func debugCallPanicked(val interface{})
1565 TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
1566 // Copy the panic value to the top of stack at SP+8.
1567 MOVD val_type+0(FP), R0
1568 MOVD R0, 8(RSP)
1569 MOVD val_data+8(FP), R0
1570 MOVD R0, 16(RSP)
1571 MOVD $2, R20
1572 BREAK
1573 RET
1574
1575 // Note: these functions use a special calling convention to save generated code space.
1576 // Arguments are passed in registers, but the space for those arguments are allocated
1577 // in the caller's stack frame. These stubs write the args into that stack space and
1578 // then tail call to the corresponding runtime handler.
1579 // The tail call makes these stubs disappear in backtraces.
1580 //
1581 // Defined as ABIInternal since the compiler generates ABIInternal
1582 // calls to it directly and it does not use the stack-based Go ABI.
1583 TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16
1584 JMP runtime·goPanicIndex<ABIInternal>(SB)
1585 TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16
1586 JMP runtime·goPanicIndexU<ABIInternal>(SB)
1587 TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16
1588 MOVD R1, R0
1589 MOVD R2, R1
1590 JMP runtime·goPanicSliceAlen<ABIInternal>(SB)
1591 TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16
1592 MOVD R1, R0
1593 MOVD R2, R1
1594 JMP runtime·goPanicSliceAlenU<ABIInternal>(SB)
1595 TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16
1596 MOVD R1, R0
1597 MOVD R2, R1
1598 JMP runtime·goPanicSliceAcap<ABIInternal>(SB)
1599 TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16
1600 MOVD R1, R0
1601 MOVD R2, R1
1602 JMP runtime·goPanicSliceAcapU<ABIInternal>(SB)
1603 TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16
1604 JMP runtime·goPanicSliceB<ABIInternal>(SB)
1605 TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16
1606 JMP runtime·goPanicSliceBU<ABIInternal>(SB)
1607 TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16
1608 MOVD R2, R0
1609 MOVD R3, R1
1610 JMP runtime·goPanicSlice3Alen<ABIInternal>(SB)
1611 TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16
1612 MOVD R2, R0
1613 MOVD R3, R1
1614 JMP runtime·goPanicSlice3AlenU<ABIInternal>(SB)
1615 TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16
1616 MOVD R2, R0
1617 MOVD R3, R1
1618 JMP runtime·goPanicSlice3Acap<ABIInternal>(SB)
1619 TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16
1620 MOVD R2, R0
1621 MOVD R3, R1
1622 JMP runtime·goPanicSlice3AcapU<ABIInternal>(SB)
1623 TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16
1624 MOVD R1, R0
1625 MOVD R2, R1
1626 JMP runtime·goPanicSlice3B<ABIInternal>(SB)
1627 TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16
1628 MOVD R1, R0
1629 MOVD R2, R1
1630 JMP runtime·goPanicSlice3BU<ABIInternal>(SB)
1631 TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16
1632 JMP runtime·goPanicSlice3C<ABIInternal>(SB)
1633 TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16
1634 JMP runtime·goPanicSlice3CU<ABIInternal>(SB)
1635 TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16
1636 MOVD R2, R0
1637 MOVD R3, R1
1638 JMP runtime·goPanicSliceConvert<ABIInternal>(SB)
1639
1640 TEXT ·getfp<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
1641 MOVD R29, R0
1642 RET
1643
View as plain text