Text file
src/runtime/asm_arm64.s
1 // Copyright 2015 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 #include "go_asm.h"
6 #include "go_tls.h"
7 #include "tls_arm64.h"
8 #include "funcdata.h"
9 #include "textflag.h"
10 #include "cgo/abi_arm64.h"
11
12 // _rt0_arm64 is common startup code for most arm64 systems when using
13 // internal linking. This is the entry point for the program from the
14 // kernel for an ordinary -buildmode=exe program. The stack holds the
15 // number of arguments and the C-style argv.
16 TEXT _rt0_arm64(SB),NOSPLIT,$0
17 MOVD 0(RSP), R0 // argc
18 ADD $8, RSP, R1 // argv
19 JMP runtime·rt0_go(SB)
20
21 // main is common startup code for most amd64 systems when using
22 // external linking. The C startup code will call the symbol "main"
23 // passing argc and argv in the usual C ABI registers R0 and R1.
24 TEXT main(SB),NOSPLIT,$0
25 JMP runtime·rt0_go(SB)
26
27 // _rt0_arm64_lib is common startup code for most arm64 systems when
28 // using -buildmode=c-archive or -buildmode=c-shared. The linker will
29 // arrange to invoke this function as a global constructor (for
30 // c-archive) or when the shared library is loaded (for c-shared).
31 // We expect argc and argv to be passed in the usual C ABI registers
32 // R0 and R1.
33 TEXT _rt0_arm64_lib(SB),NOSPLIT,$184
34 // Preserve callee-save registers.
35 SAVE_R19_TO_R28(24)
36 SAVE_F8_TO_F15(104)
37
38 // Initialize g as null in case of using g later e.g. sigaction in cgo_sigaction.go
39 MOVD ZR, g
40
41 MOVD R0, _rt0_arm64_lib_argc<>(SB)
42 MOVD R1, _rt0_arm64_lib_argv<>(SB)
43
44 // Synchronous initialization.
45 MOVD $runtime·libpreinit(SB), R4
46 BL (R4)
47
48 // Create a new thread to do the runtime initialization and return.
49 MOVD _cgo_sys_thread_create(SB), R4
50 CBZ R4, nocgo
51 MOVD $_rt0_arm64_lib_go(SB), R0
52 MOVD $0, R1
53 SUB $16, RSP // reserve 16 bytes for sp-8 where fp may be saved.
54 BL (R4)
55 ADD $16, RSP
56 B restore
57
58 nocgo:
59 MOVD $0x800000, R0 // stacksize = 8192KB
60 MOVD $_rt0_arm64_lib_go(SB), R1
61 MOVD R0, 8(RSP)
62 MOVD R1, 16(RSP)
63 MOVD $runtime·newosproc0(SB),R4
64 BL (R4)
65
66 restore:
67 // Restore callee-save registers.
68 RESTORE_R19_TO_R28(24)
69 RESTORE_F8_TO_F15(104)
70 RET
71
72 TEXT _rt0_arm64_lib_go(SB),NOSPLIT,$0
73 MOVD _rt0_arm64_lib_argc<>(SB), R0
74 MOVD _rt0_arm64_lib_argv<>(SB), R1
75 MOVD $runtime·rt0_go(SB),R4
76 B (R4)
77
78 DATA _rt0_arm64_lib_argc<>(SB)/8, $0
79 GLOBL _rt0_arm64_lib_argc<>(SB),NOPTR, $8
80 DATA _rt0_arm64_lib_argv<>(SB)/8, $0
81 GLOBL _rt0_arm64_lib_argv<>(SB),NOPTR, $8
82
83 #ifdef GOARM64_LSE
84 DATA no_lse_msg<>+0x00(SB)/64, $"This program can only run on ARM64 processors with LSE support.\n"
85 GLOBL no_lse_msg<>(SB), RODATA, $64
86 #endif
87
88 // We know for sure that Linux and FreeBSD allow to read instruction set
89 // attribute registers (while some others OSes, like OpenBSD and Darwin,
90 // are not). Let's be conservative and allow code reading such registers
91 // only when we sure this won't lead to sigill.
92 #ifdef GOOS_linux
93 #define ISA_REGS_READABLE
94 #endif
95 #ifdef GOOS_freebsd
96 #define ISA_REGS_READABLE
97 #endif
98
99 #ifdef GOARM64_LSE
100 #ifdef ISA_REGS_READABLE
101 #define CHECK_GOARM64_LSE
102 #endif
103 #endif
104
105 TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0
106 // SP = stack; R0 = argc; R1 = argv
107
108 SUB $32, RSP
109 MOVW R0, 8(RSP) // argc
110 MOVD R1, 16(RSP) // argv
111
112 // This is typically the entry point for Go programs.
113 // Call stack unwinding must not proceed past this frame.
114 // Set the frame pointer register to 0 so that frame pointer-based unwinders
115 // (which don't use debug info for performance reasons)
116 // won't attempt to unwind past this function.
117 // See go.dev/issue/63630
118 MOVD $0, R29
119
120 #ifdef TLS_darwin
121 // Initialize TLS.
122 MOVD ZR, g // clear g, make sure it's not junk.
123 SUB $32, RSP
124 MRS_TPIDR_R0
125 AND $~7, R0
126 MOVD R0, 16(RSP) // arg2: TLS base
127 MOVD $runtime·tls_g(SB), R2
128 MOVD R2, 8(RSP) // arg1: &tlsg
129 BL ·tlsinit(SB)
130 ADD $32, RSP
131 #endif
132
133 // create istack out of the given (operating system) stack.
134 // _cgo_init may update stackguard.
135 MOVD $runtime·g0(SB), g
136 MOVD RSP, R7
137 MOVD $(-64*1024)(R7), R0
138 MOVD R0, g_stackguard0(g)
139 MOVD R0, g_stackguard1(g)
140 MOVD R0, (g_stack+stack_lo)(g)
141 MOVD R7, (g_stack+stack_hi)(g)
142
143 // if there is a _cgo_init, call it using the gcc ABI.
144 MOVD _cgo_init(SB), R12
145 CBZ R12, nocgo
146
147 #ifdef GOOS_android
148 MRS_TPIDR_R0 // load TLS base pointer
149 MOVD R0, R3 // arg 3: TLS base pointer
150 MOVD $runtime·tls_g(SB), R2 // arg 2: &tls_g
151 #else
152 MOVD $0, R2 // arg 2: not used when using platform's TLS
153 #endif
154 MOVD $setg_gcc<>(SB), R1 // arg 1: setg
155 MOVD g, R0 // arg 0: G
156 SUB $16, RSP // reserve 16 bytes for sp-8 where fp may be saved.
157 BL (R12)
158 ADD $16, RSP
159
160 nocgo:
161 BL runtime·save_g(SB)
162 // update stackguard after _cgo_init
163 MOVD (g_stack+stack_lo)(g), R0
164 ADD $const_stackGuard, R0
165 MOVD R0, g_stackguard0(g)
166 MOVD R0, g_stackguard1(g)
167
168 // set the per-goroutine and per-mach "registers"
169 MOVD $runtime·m0(SB), R0
170
171 // save m->g0 = g0
172 MOVD g, m_g0(R0)
173 // save m0 to g0->m
174 MOVD R0, g_m(g)
175
176 BL runtime·check(SB)
177
178 #ifdef GOOS_windows
179 BL runtime·wintls(SB)
180 #endif
181
182 // Check that CPU we use for execution supports instructions targeted during compile-time.
183 #ifdef CHECK_GOARM64_LSE
184 // Read the ID_AA64ISAR0_EL1 register
185 MRS ID_AA64ISAR0_EL1, R0
186
187 // Extract the LSE field (bits [23:20])
188 LSR $20, R0, R0
189 AND $0xf, R0, R0
190
191 // LSE support is indicated by a non-zero value
192 CBZ R0, no_lse
193 #endif
194
195 MOVW 8(RSP), R0 // copy argc
196 MOVW R0, -8(RSP)
197 MOVD 16(RSP), R0 // copy argv
198 MOVD R0, 0(RSP)
199 BL runtime·args(SB)
200 BL runtime·osinit(SB)
201 BL runtime·schedinit(SB)
202
203 // create a new goroutine to start program
204 MOVD $runtime·mainPC(SB), R0 // entry
205 SUB $16, RSP
206 MOVD R0, 8(RSP) // arg
207 MOVD $0, 0(RSP) // dummy LR
208 BL runtime·newproc(SB)
209 ADD $16, RSP
210
211 // start this M
212 BL runtime·mstart(SB)
213 UNDEF
214
215 #ifdef CHECK_GOARM64_LSE
216 no_lse:
217 MOVD $1, R0 // stderr
218 MOVD R0, 8(RSP)
219 MOVD $no_lse_msg<>(SB), R1 // message address
220 MOVD R1, 16(RSP)
221 MOVD $64, R2 // message length
222 MOVD R2, 24(RSP)
223 CALL runtime·write(SB)
224 CALL runtime·exit(SB)
225 CALL runtime·abort(SB)
226 RET
227 #endif
228
229 // Prevent dead-code elimination of debugCallV2 and debugPinnerV1, which are
230 // intended to be called by debuggers.
231 MOVD $runtime·debugPinnerV1<ABIInternal>(SB), R0
232 MOVD $runtime·debugCallV2<ABIInternal>(SB), R0
233
234 MOVD $0, R0
235 MOVD R0, (R0) // boom
236 UNDEF
237
238 DATA runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
239 GLOBL runtime·mainPC(SB),RODATA,$8
240
241 // Windows ARM64 needs an immediate 0xf000 argument.
242 // See go.dev/issues/53837.
243 #define BREAK \
244 #ifdef GOOS_windows \
245 BRK $0xf000 \
246 #else \
247 BRK \
248 #endif \
249
250
251 TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
252 BREAK
253 RET
254
255 TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
256 RET
257
258 TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0
259 // This is the root frame of new Go-created OS threads.
260 // Call stack unwinding must not proceed past this frame.
261 // Set the frame pointer register to 0 so that frame pointer-based unwinders
262 // (which don't use debug info for performance reasons)
263 // won't attempt to unwind past this function.
264 // See go.dev/issue/63630
265 MOVD $0, R29
266 BL runtime·mstart0(SB)
267 RET // not reached
268
269 /*
270 * go-routine
271 */
272
273 // void gogo(Gobuf*)
274 // restore state from Gobuf; longjmp
275 TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8
276 MOVD buf+0(FP), R5
277 MOVD gobuf_g(R5), R6
278 MOVD 0(R6), R4 // make sure g != nil
279 B gogo<>(SB)
280
281 TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0
282 MOVD R6, g
283 BL runtime·save_g(SB)
284
285 MOVD gobuf_sp(R5), R0
286 MOVD R0, RSP
287 MOVD gobuf_bp(R5), R29
288 MOVD gobuf_lr(R5), LR
289 MOVD gobuf_ctxt(R5), R26
290 MOVD $0, gobuf_sp(R5)
291 MOVD $0, gobuf_bp(R5)
292 MOVD $0, gobuf_lr(R5)
293 MOVD $0, gobuf_ctxt(R5)
294 CMP ZR, ZR // set condition codes for == test, needed by stack split
295 MOVD gobuf_pc(R5), R6
296 B (R6)
297
298 // void mcall(fn func(*g))
299 // Switch to m->g0's stack, call fn(g).
300 // Fn must never return. It should gogo(&g->sched)
301 // to keep running g.
302 TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT|NOFRAME, $0-8
303 #ifdef GOEXPERIMENT_runtimesecret
304 MOVW g_secret(g), R26
305 CBZ R26, nosecret
306 // Use R26 as a secondary link register
307 // We purposefully don't erase it in secretEraseRegistersMcall
308 MOVD LR, R26
309 BL runtime·secretEraseRegistersMcall(SB)
310 MOVD R26, LR
311
312 nosecret:
313 #endif
314 MOVD R0, R26 // context
315
316 // Save caller state in g->sched
317 MOVD RSP, R0
318 MOVD R0, (g_sched+gobuf_sp)(g)
319 MOVD R29, (g_sched+gobuf_bp)(g)
320 MOVD LR, (g_sched+gobuf_pc)(g)
321 MOVD $0, (g_sched+gobuf_lr)(g)
322
323 // Switch to m->g0 & its stack, call fn.
324 MOVD g, R3
325 MOVD g_m(g), R8
326 MOVD m_g0(R8), g
327 BL runtime·save_g(SB)
328 CMP g, R3
329 BNE 2(PC)
330 B runtime·badmcall(SB)
331
332 MOVD (g_sched+gobuf_sp)(g), R0
333 MOVD R0, RSP // sp = m->g0->sched.sp
334 MOVD $0, R29 // clear frame pointer, as caller may execute on another M
335 MOVD R3, R0 // arg = g
336 MOVD $0, -16(RSP) // dummy LR
337 SUB $16, RSP
338 MOVD 0(R26), R4 // code pointer
339 BL (R4)
340 B runtime·badmcall2(SB)
341
342 // systemstack_switch is a dummy routine that systemstack leaves at the bottom
343 // of the G stack. We need to distinguish the routine that
344 // lives at the bottom of the G stack from the one that lives
345 // at the top of the system stack because the one at the top of
346 // the system stack terminates the stack walk (see topofstack()).
347 TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
348 UNDEF
349 BL (LR) // make sure this function is not leaf
350 RET
351
352 // func systemstack(fn func())
353 TEXT runtime·systemstack(SB), NOSPLIT, $0-8
354 #ifdef GOEXPERIMENT_runtimesecret
355 MOVW g_secret(g), R3
356 CBZ R3, nosecret
357 BL ·secretEraseRegisters(SB)
358
359 nosecret:
360 #endif
361 MOVD fn+0(FP), R3 // R3 = fn
362 MOVD R3, R26 // context
363 MOVD g_m(g), R4 // R4 = m
364
365 MOVD m_gsignal(R4), R5 // R5 = gsignal
366 CMP g, R5
367 BEQ noswitch
368
369 MOVD m_g0(R4), R5 // R5 = g0
370 CMP g, R5
371 BEQ noswitch
372
373 MOVD m_curg(R4), R6
374 CMP g, R6
375 BEQ switch
376
377 // Bad: g is not gsignal, not g0, not curg. What is it?
378 // Hide call from linker nosplit analysis.
379 MOVD $runtime·badsystemstack(SB), R3
380 BL (R3)
381 B runtime·abort(SB)
382
383 switch:
384 // Switch stacks.
385 // The original frame pointer is stored in R29,
386 // which is useful for stack unwinding.
387 // Save our state in g->sched. Pretend to
388 // be systemstack_switch if the G stack is scanned.
389 BL gosave_systemstack_switch<>(SB)
390
391 // switch to g0
392 MOVD R5, g
393 BL runtime·save_g(SB)
394 MOVD (g_sched+gobuf_sp)(g), R3
395 MOVD R3, RSP
396
397 // call target function
398 MOVD 0(R26), R3 // code pointer
399 BL (R3)
400
401 // switch back to g
402 MOVD g_m(g), R3
403 MOVD m_curg(R3), g
404 BL runtime·save_g(SB)
405 MOVD (g_sched+gobuf_sp)(g), R0
406 MOVD R0, RSP
407 MOVD (g_sched+gobuf_bp)(g), R29
408 MOVD $0, (g_sched+gobuf_sp)(g)
409 MOVD $0, (g_sched+gobuf_bp)(g)
410 RET
411
412 noswitch:
413 // already on m stack, just call directly
414 // Using a tail call here cleans up tracebacks since we won't stop
415 // at an intermediate systemstack.
416 MOVD 0(R26), R3 // code pointer
417 MOVD.P 16(RSP), R30 // restore LR
418 SUB $8, RSP, R29 // restore FP
419 B (R3)
420
421 // func switchToCrashStack0(fn func())
422 TEXT runtime·switchToCrashStack0<ABIInternal>(SB), NOSPLIT, $0-8
423 MOVD R0, R26 // context register
424 MOVD g_m(g), R1 // curm
425
426 // set g to gcrash
427 MOVD $runtime·gcrash(SB), g // g = &gcrash
428 BL runtime·save_g(SB) // clobbers R0
429 MOVD R1, g_m(g) // g.m = curm
430 MOVD g, m_g0(R1) // curm.g0 = g
431
432 // switch to crashstack
433 MOVD (g_stack+stack_hi)(g), R1
434 SUB $(4*8), R1
435 MOVD R1, RSP
436
437 // call target function
438 MOVD 0(R26), R0
439 CALL (R0)
440
441 // should never return
442 CALL runtime·abort(SB)
443 UNDEF
444
445 /*
446 * support for morestack
447 */
448
449 // Called during function prolog when more stack is needed.
450 // Caller has already loaded:
451 // R3 prolog's LR (R30)
452 //
453 // The traceback routines see morestack on a g0 as being
454 // the top of a stack (for example, morestack calling newstack
455 // calling the scheduler calling newm calling gc), so we must
456 // record an argument size. For that purpose, it has no arguments.
457 TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
458 // Cannot grow scheduler stack (m->g0).
459 MOVD g_m(g), R8
460 MOVD m_g0(R8), R4
461
462 // Called from f.
463 // Set g->sched to context in f
464 MOVD RSP, R0
465 MOVD R0, (g_sched+gobuf_sp)(g)
466 MOVD R29, (g_sched+gobuf_bp)(g)
467 MOVD LR, (g_sched+gobuf_pc)(g)
468 MOVD R3, (g_sched+gobuf_lr)(g)
469 MOVD R26, (g_sched+gobuf_ctxt)(g)
470
471 CMP g, R4
472 BNE 3(PC)
473 BL runtime·badmorestackg0(SB)
474 B runtime·abort(SB)
475
476 // Cannot grow signal stack (m->gsignal).
477 MOVD m_gsignal(R8), R4
478 CMP g, R4
479 BNE 3(PC)
480 BL runtime·badmorestackgsignal(SB)
481 B runtime·abort(SB)
482
483 // Called from f.
484 // Set m->morebuf to f's callers.
485 MOVD R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC
486 MOVD RSP, R0
487 MOVD R0, (m_morebuf+gobuf_sp)(R8) // f's caller's RSP
488 MOVD g, (m_morebuf+gobuf_g)(R8)
489
490 // If in secret mode, erase registers on transition
491 // from G stack to M stack,
492 #ifdef GOEXPERIMENT_runtimesecret
493 MOVW g_secret(g), R4
494 CBZ R4, nosecret
495 BL ·secretEraseRegisters(SB)
496 MOVD g_m(g), R8
497 nosecret:
498 #endif
499
500 // Call newstack on m->g0's stack.
501 MOVD m_g0(R8), g
502 BL runtime·save_g(SB)
503 MOVD (g_sched+gobuf_sp)(g), R0
504 MOVD R0, RSP
505 MOVD $0, R29 // clear frame pointer, as caller may execute on another M
506 MOVD.W $0, -16(RSP) // create a call frame on g0 (saved LR; keep 16-aligned)
507 BL runtime·newstack(SB)
508
509 // Not reached, but make sure the return PC from the call to newstack
510 // is still in this function, and not the beginning of the next.
511 UNDEF
512
513 TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
514 // Force SPWRITE. This function doesn't actually write SP,
515 // but it is called with a special calling convention where
516 // the caller doesn't save LR on stack but passes it as a
517 // register (R3), and the unwinder currently doesn't understand.
518 // Make it SPWRITE to stop unwinding. (See issue 54332)
519 MOVD RSP, RSP
520
521 MOVW $0, R26
522 B runtime·morestack(SB)
523
524 // spillArgs stores return values from registers to a *internal/abi.RegArgs in R20.
525 TEXT ·spillArgs(SB),NOSPLIT,$0-0
526 STP (R0, R1), (0*8)(R20)
527 STP (R2, R3), (2*8)(R20)
528 STP (R4, R5), (4*8)(R20)
529 STP (R6, R7), (6*8)(R20)
530 STP (R8, R9), (8*8)(R20)
531 STP (R10, R11), (10*8)(R20)
532 STP (R12, R13), (12*8)(R20)
533 STP (R14, R15), (14*8)(R20)
534 FSTPD (F0, F1), (16*8)(R20)
535 FSTPD (F2, F3), (18*8)(R20)
536 FSTPD (F4, F5), (20*8)(R20)
537 FSTPD (F6, F7), (22*8)(R20)
538 FSTPD (F8, F9), (24*8)(R20)
539 FSTPD (F10, F11), (26*8)(R20)
540 FSTPD (F12, F13), (28*8)(R20)
541 FSTPD (F14, F15), (30*8)(R20)
542 RET
543
544 // unspillArgs loads args into registers from a *internal/abi.RegArgs in R20.
545 TEXT ·unspillArgs(SB),NOSPLIT,$0-0
546 LDP (0*8)(R20), (R0, R1)
547 LDP (2*8)(R20), (R2, R3)
548 LDP (4*8)(R20), (R4, R5)
549 LDP (6*8)(R20), (R6, R7)
550 LDP (8*8)(R20), (R8, R9)
551 LDP (10*8)(R20), (R10, R11)
552 LDP (12*8)(R20), (R12, R13)
553 LDP (14*8)(R20), (R14, R15)
554 FLDPD (16*8)(R20), (F0, F1)
555 FLDPD (18*8)(R20), (F2, F3)
556 FLDPD (20*8)(R20), (F4, F5)
557 FLDPD (22*8)(R20), (F6, F7)
558 FLDPD (24*8)(R20), (F8, F9)
559 FLDPD (26*8)(R20), (F10, F11)
560 FLDPD (28*8)(R20), (F12, F13)
561 FLDPD (30*8)(R20), (F14, F15)
562 RET
563
564 // reflectcall: call a function with the given argument list
565 // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
566 // we don't have variable-sized frames, so we use a small number
567 // of constant-sized-frame functions to encode a few bits of size in the pc.
568 // Caution: ugly multiline assembly macros in your future!
569
570 #define DISPATCH(NAME,MAXSIZE) \
571 MOVD $MAXSIZE, R27; \
572 CMP R27, R16; \
573 BGT 3(PC); \
574 MOVD $NAME(SB), R27; \
575 B (R27)
576 // Note: can't just "B NAME(SB)" - bad inlining results.
577
578 TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-48
579 MOVWU frameSize+32(FP), R16
580 DISPATCH(runtime·call16, 16)
581 DISPATCH(runtime·call32, 32)
582 DISPATCH(runtime·call64, 64)
583 DISPATCH(runtime·call128, 128)
584 DISPATCH(runtime·call256, 256)
585 DISPATCH(runtime·call512, 512)
586 DISPATCH(runtime·call1024, 1024)
587 DISPATCH(runtime·call2048, 2048)
588 DISPATCH(runtime·call4096, 4096)
589 DISPATCH(runtime·call8192, 8192)
590 DISPATCH(runtime·call16384, 16384)
591 DISPATCH(runtime·call32768, 32768)
592 DISPATCH(runtime·call65536, 65536)
593 DISPATCH(runtime·call131072, 131072)
594 DISPATCH(runtime·call262144, 262144)
595 DISPATCH(runtime·call524288, 524288)
596 DISPATCH(runtime·call1048576, 1048576)
597 DISPATCH(runtime·call2097152, 2097152)
598 DISPATCH(runtime·call4194304, 4194304)
599 DISPATCH(runtime·call8388608, 8388608)
600 DISPATCH(runtime·call16777216, 16777216)
601 DISPATCH(runtime·call33554432, 33554432)
602 DISPATCH(runtime·call67108864, 67108864)
603 DISPATCH(runtime·call134217728, 134217728)
604 DISPATCH(runtime·call268435456, 268435456)
605 DISPATCH(runtime·call536870912, 536870912)
606 DISPATCH(runtime·call1073741824, 1073741824)
607 MOVD $runtime·badreflectcall(SB), R0
608 B (R0)
609
610 #define CALLFN(NAME,MAXSIZE) \
611 TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \
612 NO_LOCAL_POINTERS; \
613 /* copy arguments to stack */ \
614 MOVD stackArgs+16(FP), R3; \
615 MOVWU stackArgsSize+24(FP), R4; \
616 ADD $8, RSP, R5; \
617 BIC $0xf, R4, R6; \
618 CBZ R6, 6(PC); \
619 /* if R6=(argsize&~15) != 0 */ \
620 ADD R6, R5, R6; \
621 /* copy 16 bytes a time */ \
622 LDP.P 16(R3), (R7, R8); \
623 STP.P (R7, R8), 16(R5); \
624 CMP R5, R6; \
625 BNE -3(PC); \
626 AND $0xf, R4, R6; \
627 CBZ R6, 6(PC); \
628 /* if R6=(argsize&15) != 0 */ \
629 ADD R6, R5, R6; \
630 /* copy 1 byte a time for the rest */ \
631 MOVBU.P 1(R3), R7; \
632 MOVBU.P R7, 1(R5); \
633 CMP R5, R6; \
634 BNE -3(PC); \
635 /* set up argument registers */ \
636 MOVD regArgs+40(FP), R20; \
637 CALL ·unspillArgs(SB); \
638 /* call function */ \
639 MOVD f+8(FP), R26; \
640 MOVD (R26), R20; \
641 PCDATA $PCDATA_StackMapIndex, $0; \
642 BL (R20); \
643 /* copy return values back */ \
644 MOVD regArgs+40(FP), R20; \
645 CALL ·spillArgs(SB); \
646 MOVD stackArgsType+0(FP), R7; \
647 MOVD stackArgs+16(FP), R3; \
648 MOVWU stackArgsSize+24(FP), R4; \
649 MOVWU stackRetOffset+28(FP), R6; \
650 ADD $8, RSP, R5; \
651 ADD R6, R5; \
652 ADD R6, R3; \
653 SUB R6, R4; \
654 BL callRet<>(SB); \
655 RET
656
657 // callRet copies return values back at the end of call*. This is a
658 // separate function so it can allocate stack space for the arguments
659 // to reflectcallmove. It does not follow the Go ABI; it expects its
660 // arguments in registers.
661 TEXT callRet<>(SB), NOSPLIT, $48-0
662 NO_LOCAL_POINTERS
663 STP (R7, R3), 8(RSP)
664 STP (R5, R4), 24(RSP)
665 MOVD R20, 40(RSP)
666 BL runtime·reflectcallmove(SB)
667 RET
668
669 CALLFN(·call16, 16)
670 CALLFN(·call32, 32)
671 CALLFN(·call64, 64)
672 CALLFN(·call128, 128)
673 CALLFN(·call256, 256)
674 CALLFN(·call512, 512)
675 CALLFN(·call1024, 1024)
676 CALLFN(·call2048, 2048)
677 CALLFN(·call4096, 4096)
678 CALLFN(·call8192, 8192)
679 CALLFN(·call16384, 16384)
680 CALLFN(·call32768, 32768)
681 CALLFN(·call65536, 65536)
682 CALLFN(·call131072, 131072)
683 CALLFN(·call262144, 262144)
684 CALLFN(·call524288, 524288)
685 CALLFN(·call1048576, 1048576)
686 CALLFN(·call2097152, 2097152)
687 CALLFN(·call4194304, 4194304)
688 CALLFN(·call8388608, 8388608)
689 CALLFN(·call16777216, 16777216)
690 CALLFN(·call33554432, 33554432)
691 CALLFN(·call67108864, 67108864)
692 CALLFN(·call134217728, 134217728)
693 CALLFN(·call268435456, 268435456)
694 CALLFN(·call536870912, 536870912)
695 CALLFN(·call1073741824, 1073741824)
696
697 // func memhash32(p unsafe.Pointer, h uintptr) uintptr
698 TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
699 MOVB runtime·useAeshash(SB), R10
700 CBZ R10, noaes
701 MOVD $runtime·aeskeysched+0(SB), R3
702
703 VEOR V0.B16, V0.B16, V0.B16
704 VLD1 (R3), [V2.B16]
705 VLD1 (R0), V0.S[1]
706 VMOV R1, V0.S[0]
707
708 AESE V2.B16, V0.B16
709 AESMC V0.B16, V0.B16
710 AESE V2.B16, V0.B16
711 AESMC V0.B16, V0.B16
712 AESE V2.B16, V0.B16
713
714 VMOV V0.D[0], R0
715 RET
716 noaes:
717 B runtime·memhash32Fallback<ABIInternal>(SB)
718
719 // func memhash64(p unsafe.Pointer, h uintptr) uintptr
720 TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
721 MOVB runtime·useAeshash(SB), R10
722 CBZ R10, noaes
723 MOVD $runtime·aeskeysched+0(SB), R3
724
725 VEOR V0.B16, V0.B16, V0.B16
726 VLD1 (R3), [V2.B16]
727 VLD1 (R0), V0.D[1]
728 VMOV R1, V0.D[0]
729
730 AESE V2.B16, V0.B16
731 AESMC V0.B16, V0.B16
732 AESE V2.B16, V0.B16
733 AESMC V0.B16, V0.B16
734 AESE V2.B16, V0.B16
735
736 VMOV V0.D[0], R0
737 RET
738 noaes:
739 B runtime·memhash64Fallback<ABIInternal>(SB)
740
741 // func memhash(p unsafe.Pointer, h, size uintptr) uintptr
742 TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-32
743 MOVB runtime·useAeshash(SB), R10
744 CBZ R10, noaes
745 B aeshashbody<>(SB)
746 noaes:
747 B runtime·memhashFallback<ABIInternal>(SB)
748
749 // func strhash(p unsafe.Pointer, h uintptr) uintptr
750 TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
751 MOVB runtime·useAeshash(SB), R10
752 CBZ R10, noaes
753 LDP (R0), (R0, R2) // string data / length
754 B aeshashbody<>(SB)
755 noaes:
756 B runtime·strhashFallback<ABIInternal>(SB)
757
758 // R0: data
759 // R1: seed data
760 // R2: length
761 // At return, R0 = return value
762 TEXT aeshashbody<>(SB),NOSPLIT|NOFRAME,$0
763 VEOR V30.B16, V30.B16, V30.B16
764 VMOV R1, V30.D[0]
765 VMOV R2, V30.D[1] // load length into seed
766
767 MOVD $runtime·aeskeysched+0(SB), R4
768 VLD1.P 16(R4), [V0.B16]
769 AESE V30.B16, V0.B16
770 AESMC V0.B16, V0.B16
771 CMP $16, R2
772 BLO aes0to15
773 BEQ aes16
774 CMP $32, R2
775 BLS aes17to32
776 CMP $64, R2
777 BLS aes33to64
778 CMP $128, R2
779 BLS aes65to128
780 B aes129plus
781
782 aes0to15:
783 CBZ R2, aes0
784 VEOR V2.B16, V2.B16, V2.B16
785 TBZ $3, R2, less_than_8
786 VLD1.P 8(R0), V2.D[0]
787
788 less_than_8:
789 TBZ $2, R2, less_than_4
790 VLD1.P 4(R0), V2.S[2]
791
792 less_than_4:
793 TBZ $1, R2, less_than_2
794 VLD1.P 2(R0), V2.H[6]
795
796 less_than_2:
797 TBZ $0, R2, done
798 VLD1 (R0), V2.B[14]
799 done:
800 AESE V0.B16, V2.B16
801 AESMC V2.B16, V2.B16
802 AESE V0.B16, V2.B16
803 AESMC V2.B16, V2.B16
804 AESE V0.B16, V2.B16
805 AESMC V2.B16, V2.B16
806
807 VMOV V2.D[0], R0
808 RET
809
810 aes0:
811 VMOV V0.D[0], R0
812 RET
813
814 aes16:
815 VLD1 (R0), [V2.B16]
816 B done
817
818 aes17to32:
819 // make second seed
820 VLD1 (R4), [V1.B16]
821 AESE V30.B16, V1.B16
822 AESMC V1.B16, V1.B16
823 SUB $16, R2, R10
824 VLD1.P (R0)(R10), [V2.B16]
825 VLD1 (R0), [V3.B16]
826
827 AESE V0.B16, V2.B16
828 AESMC V2.B16, V2.B16
829 AESE V1.B16, V3.B16
830 AESMC V3.B16, V3.B16
831
832 AESE V0.B16, V2.B16
833 AESMC V2.B16, V2.B16
834 AESE V1.B16, V3.B16
835 AESMC V3.B16, V3.B16
836
837 AESE V0.B16, V2.B16
838 AESE V1.B16, V3.B16
839
840 VEOR V3.B16, V2.B16, V2.B16
841
842 VMOV V2.D[0], R0
843 RET
844
845 aes33to64:
846 VLD1 (R4), [V1.B16, V2.B16, V3.B16]
847 AESE V30.B16, V1.B16
848 AESMC V1.B16, V1.B16
849 AESE V30.B16, V2.B16
850 AESMC V2.B16, V2.B16
851 AESE V30.B16, V3.B16
852 AESMC V3.B16, V3.B16
853 SUB $32, R2, R10
854
855 VLD1.P (R0)(R10), [V4.B16, V5.B16]
856 VLD1 (R0), [V6.B16, V7.B16]
857
858 AESE V0.B16, V4.B16
859 AESMC V4.B16, V4.B16
860 AESE V1.B16, V5.B16
861 AESMC V5.B16, V5.B16
862 AESE V2.B16, V6.B16
863 AESMC V6.B16, V6.B16
864 AESE V3.B16, V7.B16
865 AESMC V7.B16, V7.B16
866
867 AESE V0.B16, V4.B16
868 AESMC V4.B16, V4.B16
869 AESE V1.B16, V5.B16
870 AESMC V5.B16, V5.B16
871 AESE V2.B16, V6.B16
872 AESMC V6.B16, V6.B16
873 AESE V3.B16, V7.B16
874 AESMC V7.B16, V7.B16
875
876 AESE V0.B16, V4.B16
877 AESE V1.B16, V5.B16
878 AESE V2.B16, V6.B16
879 AESE V3.B16, V7.B16
880
881 VEOR V6.B16, V4.B16, V4.B16
882 VEOR V7.B16, V5.B16, V5.B16
883 VEOR V5.B16, V4.B16, V4.B16
884
885 VMOV V4.D[0], R0
886 RET
887
888 aes65to128:
889 VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
890 VLD1 (R4), [V5.B16, V6.B16, V7.B16]
891 AESE V30.B16, V1.B16
892 AESMC V1.B16, V1.B16
893 AESE V30.B16, V2.B16
894 AESMC V2.B16, V2.B16
895 AESE V30.B16, V3.B16
896 AESMC V3.B16, V3.B16
897 AESE V30.B16, V4.B16
898 AESMC V4.B16, V4.B16
899 AESE V30.B16, V5.B16
900 AESMC V5.B16, V5.B16
901 AESE V30.B16, V6.B16
902 AESMC V6.B16, V6.B16
903 AESE V30.B16, V7.B16
904 AESMC V7.B16, V7.B16
905
906 SUB $64, R2, R10
907 VLD1.P (R0)(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
908 VLD1 (R0), [V12.B16, V13.B16, V14.B16, V15.B16]
909 AESE V0.B16, V8.B16
910 AESMC V8.B16, V8.B16
911 AESE V1.B16, V9.B16
912 AESMC V9.B16, V9.B16
913 AESE V2.B16, V10.B16
914 AESMC V10.B16, V10.B16
915 AESE V3.B16, V11.B16
916 AESMC V11.B16, V11.B16
917 AESE V4.B16, V12.B16
918 AESMC V12.B16, V12.B16
919 AESE V5.B16, V13.B16
920 AESMC V13.B16, V13.B16
921 AESE V6.B16, V14.B16
922 AESMC V14.B16, V14.B16
923 AESE V7.B16, V15.B16
924 AESMC V15.B16, V15.B16
925
926 AESE V0.B16, V8.B16
927 AESMC V8.B16, V8.B16
928 AESE V1.B16, V9.B16
929 AESMC V9.B16, V9.B16
930 AESE V2.B16, V10.B16
931 AESMC V10.B16, V10.B16
932 AESE V3.B16, V11.B16
933 AESMC V11.B16, V11.B16
934 AESE V4.B16, V12.B16
935 AESMC V12.B16, V12.B16
936 AESE V5.B16, V13.B16
937 AESMC V13.B16, V13.B16
938 AESE V6.B16, V14.B16
939 AESMC V14.B16, V14.B16
940 AESE V7.B16, V15.B16
941 AESMC V15.B16, V15.B16
942
943 AESE V0.B16, V8.B16
944 AESE V1.B16, V9.B16
945 AESE V2.B16, V10.B16
946 AESE V3.B16, V11.B16
947 AESE V4.B16, V12.B16
948 AESE V5.B16, V13.B16
949 AESE V6.B16, V14.B16
950 AESE V7.B16, V15.B16
951
952 VEOR V12.B16, V8.B16, V8.B16
953 VEOR V13.B16, V9.B16, V9.B16
954 VEOR V14.B16, V10.B16, V10.B16
955 VEOR V15.B16, V11.B16, V11.B16
956 VEOR V10.B16, V8.B16, V8.B16
957 VEOR V11.B16, V9.B16, V9.B16
958 VEOR V9.B16, V8.B16, V8.B16
959
960 VMOV V8.D[0], R0
961 RET
962
963 aes129plus:
964 PRFM (R0), PLDL1KEEP
965 VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
966 VLD1 (R4), [V5.B16, V6.B16, V7.B16]
967 AESE V30.B16, V1.B16
968 AESMC V1.B16, V1.B16
969 AESE V30.B16, V2.B16
970 AESMC V2.B16, V2.B16
971 AESE V30.B16, V3.B16
972 AESMC V3.B16, V3.B16
973 AESE V30.B16, V4.B16
974 AESMC V4.B16, V4.B16
975 AESE V30.B16, V5.B16
976 AESMC V5.B16, V5.B16
977 AESE V30.B16, V6.B16
978 AESMC V6.B16, V6.B16
979 AESE V30.B16, V7.B16
980 AESMC V7.B16, V7.B16
981 ADD R0, R2, R10
982 SUB $128, R10, R10
983 VLD1.P 64(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
984 VLD1 (R10), [V12.B16, V13.B16, V14.B16, V15.B16]
985 SUB $1, R2, R2
986 LSR $7, R2, R2
987
988 aesloop:
989 AESE V8.B16, V0.B16
990 AESMC V0.B16, V0.B16
991 AESE V9.B16, V1.B16
992 AESMC V1.B16, V1.B16
993 AESE V10.B16, V2.B16
994 AESMC V2.B16, V2.B16
995 AESE V11.B16, V3.B16
996 AESMC V3.B16, V3.B16
997 AESE V12.B16, V4.B16
998 AESMC V4.B16, V4.B16
999 AESE V13.B16, V5.B16
1000 AESMC V5.B16, V5.B16
1001 AESE V14.B16, V6.B16
1002 AESMC V6.B16, V6.B16
1003 AESE V15.B16, V7.B16
1004 AESMC V7.B16, V7.B16
1005
1006 VLD1.P 64(R0), [V8.B16, V9.B16, V10.B16, V11.B16]
1007 AESE V8.B16, V0.B16
1008 AESMC V0.B16, V0.B16
1009 AESE V9.B16, V1.B16
1010 AESMC V1.B16, V1.B16
1011 AESE V10.B16, V2.B16
1012 AESMC V2.B16, V2.B16
1013 AESE V11.B16, V3.B16
1014 AESMC V3.B16, V3.B16
1015
1016 VLD1.P 64(R0), [V12.B16, V13.B16, V14.B16, V15.B16]
1017 AESE V12.B16, V4.B16
1018 AESMC V4.B16, V4.B16
1019 AESE V13.B16, V5.B16
1020 AESMC V5.B16, V5.B16
1021 AESE V14.B16, V6.B16
1022 AESMC V6.B16, V6.B16
1023 AESE V15.B16, V7.B16
1024 AESMC V7.B16, V7.B16
1025 SUB $1, R2, R2
1026 CBNZ R2, aesloop
1027
1028 AESE V8.B16, V0.B16
1029 AESMC V0.B16, V0.B16
1030 AESE V9.B16, V1.B16
1031 AESMC V1.B16, V1.B16
1032 AESE V10.B16, V2.B16
1033 AESMC V2.B16, V2.B16
1034 AESE V11.B16, V3.B16
1035 AESMC V3.B16, V3.B16
1036 AESE V12.B16, V4.B16
1037 AESMC V4.B16, V4.B16
1038 AESE V13.B16, V5.B16
1039 AESMC V5.B16, V5.B16
1040 AESE V14.B16, V6.B16
1041 AESMC V6.B16, V6.B16
1042 AESE V15.B16, V7.B16
1043 AESMC V7.B16, V7.B16
1044
1045 AESE V8.B16, V0.B16
1046 AESMC V0.B16, V0.B16
1047 AESE V9.B16, V1.B16
1048 AESMC V1.B16, V1.B16
1049 AESE V10.B16, V2.B16
1050 AESMC V2.B16, V2.B16
1051 AESE V11.B16, V3.B16
1052 AESMC V3.B16, V3.B16
1053 AESE V12.B16, V4.B16
1054 AESMC V4.B16, V4.B16
1055 AESE V13.B16, V5.B16
1056 AESMC V5.B16, V5.B16
1057 AESE V14.B16, V6.B16
1058 AESMC V6.B16, V6.B16
1059 AESE V15.B16, V7.B16
1060 AESMC V7.B16, V7.B16
1061
1062 AESE V8.B16, V0.B16
1063 AESE V9.B16, V1.B16
1064 AESE V10.B16, V2.B16
1065 AESE V11.B16, V3.B16
1066 AESE V12.B16, V4.B16
1067 AESE V13.B16, V5.B16
1068 AESE V14.B16, V6.B16
1069 AESE V15.B16, V7.B16
1070
1071 VEOR V0.B16, V1.B16, V0.B16
1072 VEOR V2.B16, V3.B16, V2.B16
1073 VEOR V4.B16, V5.B16, V4.B16
1074 VEOR V6.B16, V7.B16, V6.B16
1075 VEOR V0.B16, V2.B16, V0.B16
1076 VEOR V4.B16, V6.B16, V4.B16
1077 VEOR V4.B16, V0.B16, V0.B16
1078
1079 VMOV V0.D[0], R0
1080 RET
1081
1082 // The Arm architecture provides a user space accessible counter-timer which
1083 // is incremented at a fixed but machine-specific rate. Software can (spin)
1084 // wait until the counter-timer reaches some desired value.
1085 //
1086 // Armv8.7-A introduced the WFET (FEAT_WFxT) instruction, which allows the
1087 // processor to enter a low power state for a set time, or until an event is
1088 // received.
1089 //
1090 // However, WFET is not used here because it is only available on newer hardware,
1091 // and we aim to maintain compatibility with older Armv8-A platforms that do not
1092 // support this feature.
1093 //
1094 // As a fallback, we can instead use the ISB instruction to decrease processor
1095 // activity and thus power consumption between checks of the counter-timer.
1096 // Note that we do not depend on the latency of the ISB instruction which is
1097 // implementation specific. Actual delay comes from comparing against a fresh
1098 // read of the counter-timer value.
1099 //
1100 // Read more in this Arm blog post:
1101 // https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/multi-threaded-applications-arm
1102
1103 TEXT runtime·procyieldAsm(SB),NOSPLIT,$0-0
1104 MOVWU cycles+0(FP), R0
1105 CBZ R0, done
1106 //Prevent speculation of subsequent counter/timer reads and memory accesses.
1107 ISB $15
1108 // If the delay is very short, just return.
1109 // Hardcode 18ns as the first ISB delay.
1110 CMP $18, R0
1111 BLS done
1112 // Adjust for overhead of initial ISB.
1113 SUB $18, R0, R0
1114 // Convert the delay from nanoseconds to counter/timer ticks.
1115 // Read the counter/timer frequency.
1116 // delay_ticks = (delay * CNTFRQ_EL0) / 1e9
1117 // With the below simplifications and adjustments,
1118 // we are usually within 2% of the correct value:
1119 // delay_ticks = (delay + delay / 16) * CNTFRQ_EL0 >> 30
1120 MRS CNTFRQ_EL0, R1
1121 ADD R0>>4, R0, R0
1122 MUL R1, R0, R0
1123 LSR $30, R0, R0
1124 CBZ R0, done
1125 // start = current counter/timer value
1126 MRS CNTVCT_EL0, R2
1127 delay:
1128 // Delay using ISB for all ticks.
1129 ISB $15
1130 // Substract and compare to handle counter roll-over.
1131 // counter_read() - start < delay_ticks
1132 MRS CNTVCT_EL0, R1
1133 SUB R2, R1, R1
1134 CMP R0, R1
1135 BCC delay
1136 done:
1137 RET
1138
1139 // Save state of caller into g->sched,
1140 // but using fake PC from systemstack_switch.
1141 // Must only be called from functions with no locals ($0)
1142 // or else unwinding from systemstack_switch is incorrect.
1143 // Smashes R0.
1144 TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
1145 MOVD $runtime·systemstack_switch(SB), R0
1146 ADD $8, R0 // get past prologue
1147 MOVD R0, (g_sched+gobuf_pc)(g)
1148 MOVD RSP, R0
1149 MOVD R0, (g_sched+gobuf_sp)(g)
1150 MOVD R29, (g_sched+gobuf_bp)(g)
1151 MOVD $0, (g_sched+gobuf_lr)(g)
1152 // Assert ctxt is zero. See func save.
1153 MOVD (g_sched+gobuf_ctxt)(g), R0
1154 CBZ R0, 2(PC)
1155 CALL runtime·abort(SB)
1156 RET
1157
1158 // func asmcgocall_no_g(fn, arg unsafe.Pointer)
1159 // Call fn(arg) aligned appropriately for the gcc ABI.
1160 // Called on a system stack, and there may be no g yet (during needm).
1161 TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-16
1162 MOVD fn+0(FP), R1
1163 MOVD arg+8(FP), R0
1164 SUB $16, RSP // skip over saved frame pointer below RSP
1165 BL (R1)
1166 ADD $16, RSP // skip over saved frame pointer below RSP
1167 RET
1168
1169 // func asmcgocall(fn, arg unsafe.Pointer) int32
1170 // Call fn(arg) on the scheduler stack,
1171 // aligned appropriately for the gcc ABI.
1172 // See cgocall.go for more details.
1173 TEXT ·asmcgocall(SB),NOSPLIT,$0-20
1174 CBZ g, nosave
1175
1176 // Figure out if we need to switch to m->g0 stack.
1177 // We get called to create new OS threads too, and those
1178 // come in on the m->g0 stack already. Or we might already
1179 // be on the m->gsignal stack.
1180 MOVD g_m(g), R8
1181 MOVD m_gsignal(R8), R3
1182 CMP R3, g
1183 BEQ nosave
1184 MOVD m_g0(R8), R3
1185 CMP R3, g
1186 BEQ nosave
1187
1188 // running on a user stack. Figure out if we're running
1189 // secret code and clear our registers if so.
1190 #ifdef GOEXPERIMENT_runtimesecret
1191 MOVW g_secret(g), R5
1192 CBZ R5, nosecret
1193 BL ·secretEraseRegisters(SB)
1194 // restore g0 back into R3
1195 MOVD g_m(g), R3
1196 MOVD m_g0(R3), R3
1197
1198 nosecret:
1199 #endif
1200 MOVD fn+0(FP), R1
1201 MOVD arg+8(FP), R0
1202 MOVD RSP, R2
1203 MOVD g, R4
1204
1205 // Switch to system stack.
1206 MOVD R0, R9 // gosave_systemstack_switch<> and save_g might clobber R0
1207 BL gosave_systemstack_switch<>(SB)
1208 MOVD R3, g
1209 BL runtime·save_g(SB)
1210 MOVD (g_sched+gobuf_sp)(g), R0
1211 MOVD R0, RSP
1212 MOVD (g_sched+gobuf_bp)(g), R29
1213 MOVD R9, R0
1214
1215 // Now on a scheduling stack (a pthread-created stack).
1216 // Save room for two of our pointers /*, plus 32 bytes of callee
1217 // save area that lives on the caller stack. */
1218 MOVD RSP, R13
1219 SUB $16, R13
1220 MOVD R13, RSP
1221 MOVD R4, 0(RSP) // save old g on stack
1222 MOVD (g_stack+stack_hi)(R4), R4
1223 SUB R2, R4
1224 MOVD R4, 8(RSP) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
1225 BL (R1)
1226 MOVD R0, R9
1227
1228 // Restore g, stack pointer. R0 is errno, so don't touch it
1229 MOVD 0(RSP), g
1230 BL runtime·save_g(SB)
1231 MOVD (g_stack+stack_hi)(g), R5
1232 MOVD 8(RSP), R6
1233 SUB R6, R5
1234 MOVD R9, R0
1235 MOVD R5, RSP
1236
1237 MOVW R0, ret+16(FP)
1238 RET
1239
1240 nosave:
1241 // Running on a system stack, perhaps even without a g.
1242 // Having no g can happen during thread creation or thread teardown
1243 // (see needm/dropm on Solaris, for example).
1244 // This code is like the above sequence but without saving/restoring g
1245 // and without worrying about the stack moving out from under us
1246 // (because we're on a system stack, not a goroutine stack).
1247 // The above code could be used directly if already on a system stack,
1248 // but then the only path through this code would be a rare case on Solaris.
1249 // Using this code for all "already on system stack" calls exercises it more,
1250 // which should help keep it correct.
1251 MOVD fn+0(FP), R1
1252 MOVD arg+8(FP), R0
1253 MOVD RSP, R2
1254 MOVD R2, R13
1255 SUB $16, R13
1256 MOVD R13, RSP
1257 MOVD $0, R4
1258 MOVD R4, 0(RSP) // Where above code stores g, in case someone looks during debugging.
1259 MOVD R2, 8(RSP) // Save original stack pointer.
1260 BL (R1)
1261 // Restore stack pointer.
1262 MOVD 8(RSP), R2
1263 MOVD R2, RSP
1264 MOVD R0, ret+16(FP)
1265 RET
1266
1267 // cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
1268 // See cgocall.go for more details.
1269 TEXT ·cgocallback(SB),NOSPLIT,$24-24
1270 NO_LOCAL_POINTERS
1271
1272 // Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
1273 // It is used to dropm while thread is exiting.
1274 MOVD fn+0(FP), R1
1275 CBNZ R1, loadg
1276 // Restore the g from frame.
1277 MOVD frame+8(FP), g
1278 B dropm
1279
1280 loadg:
1281 // Load g from thread-local storage.
1282 BL runtime·load_g(SB)
1283
1284 // If g is nil, Go did not create the current thread,
1285 // or if this thread never called into Go on pthread platforms.
1286 // Call needm to obtain one for temporary use.
1287 // In this case, we're running on the thread stack, so there's
1288 // lots of space, but the linker doesn't know. Hide the call from
1289 // the linker analysis by using an indirect call.
1290 CBZ g, needm
1291
1292 MOVD g_m(g), R8
1293 MOVD R8, savedm-8(SP)
1294 B havem
1295
1296 needm:
1297 MOVD g, savedm-8(SP) // g is zero, so is m.
1298 MOVD $runtime·needAndBindM(SB), R0
1299 BL (R0)
1300
1301 // Set m->g0->sched.sp = SP, so that if a panic happens
1302 // during the function we are about to execute, it will
1303 // have a valid SP to run on the g0 stack.
1304 // The next few lines (after the havem label)
1305 // will save this SP onto the stack and then write
1306 // the same SP back to m->sched.sp. That seems redundant,
1307 // but if an unrecovered panic happens, unwindm will
1308 // restore the g->sched.sp from the stack location
1309 // and then systemstack will try to use it. If we don't set it here,
1310 // that restored SP will be uninitialized (typically 0) and
1311 // will not be usable.
1312 MOVD g_m(g), R8
1313 MOVD m_g0(R8), R3
1314 MOVD RSP, R0
1315 MOVD R0, (g_sched+gobuf_sp)(R3)
1316 MOVD R29, (g_sched+gobuf_bp)(R3)
1317
1318 havem:
1319 // Now there's a valid m, and we're running on its m->g0.
1320 // Save current m->g0->sched.sp on stack and then set it to SP.
1321 // Save current sp in m->g0->sched.sp in preparation for
1322 // switch back to m->curg stack.
1323 // NOTE: unwindm knows that the saved g->sched.sp is at 16(RSP) aka savedsp-16(SP).
1324 // Beware that the frame size is actually 32+16.
1325 MOVD m_g0(R8), R3
1326 MOVD (g_sched+gobuf_sp)(R3), R4
1327 MOVD R4, savedsp-16(SP)
1328 MOVD RSP, R0
1329 MOVD R0, (g_sched+gobuf_sp)(R3)
1330
1331 // Switch to m->curg stack and call runtime.cgocallbackg.
1332 // Because we are taking over the execution of m->curg
1333 // but *not* resuming what had been running, we need to
1334 // save that information (m->curg->sched) so we can restore it.
1335 // We can restore m->curg->sched.sp easily, because calling
1336 // runtime.cgocallbackg leaves SP unchanged upon return.
1337 // To save m->curg->sched.pc, we push it onto the curg stack and
1338 // open a frame the same size as cgocallback's g0 frame.
1339 // Once we switch to the curg stack, the pushed PC will appear
1340 // to be the return PC of cgocallback, so that the traceback
1341 // will seamlessly trace back into the earlier calls.
1342 MOVD m_curg(R8), g
1343 BL runtime·save_g(SB)
1344 MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
1345 MOVD (g_sched+gobuf_pc)(g), R5
1346 MOVD R5, -48(R4)
1347 MOVD (g_sched+gobuf_bp)(g), R5
1348 MOVD R5, -56(R4)
1349 // Gather our arguments into registers.
1350 MOVD fn+0(FP), R1
1351 MOVD frame+8(FP), R2
1352 MOVD ctxt+16(FP), R3
1353 MOVD $-48(R4), R0 // maintain 16-byte SP alignment
1354 MOVD R0, RSP // switch stack
1355 MOVD R1, 8(RSP)
1356 MOVD R2, 16(RSP)
1357 MOVD R3, 24(RSP)
1358 MOVD $runtime·cgocallbackg(SB), R0
1359 CALL (R0) // indirect call to bypass nosplit check. We're on a different stack now.
1360
1361 // Restore g->sched (== m->curg->sched) from saved values.
1362 MOVD 0(RSP), R5
1363 MOVD R5, (g_sched+gobuf_pc)(g)
1364 MOVD RSP, R4
1365 ADD $48, R4, R4
1366 MOVD R4, (g_sched+gobuf_sp)(g)
1367
1368 // Switch back to m->g0's stack and restore m->g0->sched.sp.
1369 // (Unlike m->curg, the g0 goroutine never uses sched.pc,
1370 // so we do not have to restore it.)
1371 MOVD g_m(g), R8
1372 MOVD m_g0(R8), g
1373 BL runtime·save_g(SB)
1374 MOVD (g_sched+gobuf_sp)(g), R0
1375 MOVD R0, RSP
1376 MOVD savedsp-16(SP), R4
1377 MOVD R4, (g_sched+gobuf_sp)(g)
1378
1379 // If the m on entry was nil, we called needm above to borrow an m,
1380 // 1. for the duration of the call on non-pthread platforms,
1381 // 2. or the duration of the C thread alive on pthread platforms.
1382 // If the m on entry wasn't nil,
1383 // 1. the thread might be a Go thread,
1384 // 2. or it wasn't the first call from a C thread on pthread platforms,
1385 // since then we skip dropm to reuse the m in the first call.
1386 MOVD savedm-8(SP), R6
1387 CBNZ R6, droppedm
1388
1389 // Skip dropm to reuse it in the next call, when a pthread key has been created.
1390 MOVD _cgo_pthread_key_created(SB), R6
1391 // It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
1392 CBZ R6, dropm
1393 MOVD (R6), R6
1394 CBNZ R6, droppedm
1395
1396 dropm:
1397 MOVD $runtime·dropm(SB), R0
1398 BL (R0)
1399 droppedm:
1400
1401 // Done!
1402 RET
1403
1404 // Called from cgo wrappers, this function returns g->m->curg.stack.hi.
1405 // Must obey the gcc calling convention.
1406 TEXT _cgo_topofstack(SB),NOSPLIT,$24
1407 // g (R28) and REGTMP (R27) might be clobbered by load_g. They
1408 // are callee-save in the gcc calling convention, so save them.
1409 MOVD R27, savedR27-8(SP)
1410 MOVD g, saveG-16(SP)
1411
1412 BL runtime·load_g(SB)
1413 MOVD g_m(g), R0
1414 MOVD m_curg(R0), R0
1415 MOVD (g_stack+stack_hi)(R0), R0
1416
1417 MOVD saveG-16(SP), g
1418 MOVD savedR28-8(SP), R27
1419 RET
1420
1421 // void setg(G*); set g. for use by needm.
1422 TEXT runtime·setg(SB), NOSPLIT, $0-8
1423 MOVD gg+0(FP), g
1424 // This only happens if iscgo, so jump straight to save_g
1425 BL runtime·save_g(SB)
1426 RET
1427
1428 // void setg_gcc(G*); set g called from gcc
1429 TEXT setg_gcc<>(SB),NOSPLIT,$8
1430 MOVD R0, g
1431 MOVD R27, savedR27-8(SP)
1432 BL runtime·save_g(SB)
1433 MOVD savedR27-8(SP), R27
1434 RET
1435
1436 TEXT runtime·emptyfunc(SB),0,$0-0
1437 RET
1438
1439 TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
1440 MOVD ZR, R0
1441 MOVD (R0), R0
1442 UNDEF
1443
1444 // The top-most function running on a goroutine
1445 // returns to goexit+PCQuantum.
1446 TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
1447 MOVD R0, R0 // NOP
1448 BL runtime·goexit1(SB) // does not return
1449
1450 // This is called from .init_array and follows the platform, not Go, ABI.
1451 TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
1452 SUB $0x10, RSP
1453 MOVD R27, 8(RSP) // The access to global variables below implicitly uses R27, which is callee-save
1454 MOVD runtime·lastmoduledatap(SB), R1
1455 MOVD R0, moduledata_next(R1)
1456 MOVD R0, runtime·lastmoduledatap(SB)
1457 MOVD 8(RSP), R27
1458 ADD $0x10, RSP
1459 RET
1460
1461 TEXT ·checkASM(SB),NOSPLIT,$0-1
1462 MOVW $1, R3
1463 MOVB R3, ret+0(FP)
1464 RET
1465
1466 // gcWriteBarrier informs the GC about heap pointer writes.
1467 //
1468 // gcWriteBarrier does NOT follow the Go ABI. It accepts the
1469 // number of bytes of buffer needed in R25, and returns a pointer
1470 // to the buffer space in R25.
1471 // It clobbers condition codes.
1472 // It does not clobber any general-purpose registers except R27,
1473 // but may clobber others (e.g., floating point registers)
1474 // The act of CALLing gcWriteBarrier will clobber R30 (LR).
1475 TEXT gcWriteBarrier<>(SB),NOSPLIT,$200
1476 // Save the registers clobbered by the fast path.
1477 STP (R0, R1), 184(RSP)
1478 retry:
1479 MOVD g_m(g), R0
1480 MOVD m_p(R0), R0
1481 MOVD (p_wbBuf+wbBuf_next)(R0), R1
1482 MOVD (p_wbBuf+wbBuf_end)(R0), R27
1483 // Increment wbBuf.next position.
1484 ADD R25, R1
1485 // Is the buffer full?
1486 CMP R27, R1
1487 BHI flush
1488 // Commit to the larger buffer.
1489 MOVD R1, (p_wbBuf+wbBuf_next)(R0)
1490 // Make return value (the original next position)
1491 SUB R25, R1, R25
1492 // Restore registers.
1493 LDP 184(RSP), (R0, R1)
1494 RET
1495
1496 flush:
1497 // Save all general purpose registers since these could be
1498 // clobbered by wbBufFlush and were not saved by the caller.
1499 // R0 and R1 already saved
1500 STP (R2, R3), 1*8(RSP)
1501 STP (R4, R5), 3*8(RSP)
1502 STP (R6, R7), 5*8(RSP)
1503 STP (R8, R9), 7*8(RSP)
1504 STP (R10, R11), 9*8(RSP)
1505 STP (R12, R13), 11*8(RSP)
1506 STP (R14, R15), 13*8(RSP)
1507 // R16, R17 may be clobbered by linker trampoline
1508 // R18 is unused.
1509 STP (R19, R20), 15*8(RSP)
1510 STP (R21, R22), 17*8(RSP)
1511 STP (R23, R24), 19*8(RSP)
1512 STP (R25, R26), 21*8(RSP)
1513 // R27 is temp register.
1514 // R28 is g.
1515 // R29 is frame pointer (unused).
1516 // R30 is LR, which was saved by the prologue.
1517 // R31 is SP.
1518
1519 CALL runtime·wbBufFlush(SB)
1520 LDP 1*8(RSP), (R2, R3)
1521 LDP 3*8(RSP), (R4, R5)
1522 LDP 5*8(RSP), (R6, R7)
1523 LDP 7*8(RSP), (R8, R9)
1524 LDP 9*8(RSP), (R10, R11)
1525 LDP 11*8(RSP), (R12, R13)
1526 LDP 13*8(RSP), (R14, R15)
1527 LDP 15*8(RSP), (R19, R20)
1528 LDP 17*8(RSP), (R21, R22)
1529 LDP 19*8(RSP), (R23, R24)
1530 LDP 21*8(RSP), (R25, R26)
1531 JMP retry
1532
1533 TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT,$0
1534 MOVD $8, R25
1535 JMP gcWriteBarrier<>(SB)
1536 TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT,$0
1537 MOVD $16, R25
1538 JMP gcWriteBarrier<>(SB)
1539 TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT,$0
1540 MOVD $24, R25
1541 JMP gcWriteBarrier<>(SB)
1542 TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT,$0
1543 MOVD $32, R25
1544 JMP gcWriteBarrier<>(SB)
1545 TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT,$0
1546 MOVD $40, R25
1547 JMP gcWriteBarrier<>(SB)
1548 TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT,$0
1549 MOVD $48, R25
1550 JMP gcWriteBarrier<>(SB)
1551 TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT,$0
1552 MOVD $56, R25
1553 JMP gcWriteBarrier<>(SB)
1554 TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT,$0
1555 MOVD $64, R25
1556 JMP gcWriteBarrier<>(SB)
1557
1558 DATA debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
1559 GLOBL debugCallFrameTooLarge<>(SB), RODATA, $20 // Size duplicated below
1560
1561 // debugCallV2 is the entry point for debugger-injected function
1562 // calls on running goroutines. It informs the runtime that a
1563 // debug call has been injected and creates a call frame for the
1564 // debugger to fill in.
1565 //
1566 // To inject a function call, a debugger should:
1567 // 1. Check that the goroutine is in state _Grunning and that
1568 // there are at least 288 bytes free on the stack.
1569 // 2. Set SP as SP-16.
1570 // 3. Store the current LR in (SP) (using the SP after step 2).
1571 // 4. Store the current PC in the LR register.
1572 // 5. Write the desired argument frame size at SP-16
1573 // 6. Save all machine registers (including flags and fpsimd registers)
1574 // so they can be restored later by the debugger.
1575 // 7. Set the PC to debugCallV2 and resume execution.
1576 //
1577 // If the goroutine is in state _Grunnable, then it's not generally
1578 // safe to inject a call because it may return out via other runtime
1579 // operations. Instead, the debugger should unwind the stack to find
1580 // the return to non-runtime code, add a temporary breakpoint there,
1581 // and inject the call once that breakpoint is hit.
1582 //
1583 // If the goroutine is in any other state, it's not safe to inject a call.
1584 //
1585 // This function communicates back to the debugger by setting R20 and
1586 // invoking BRK to raise a breakpoint signal. Note that the signal PC of
1587 // the signal triggered by the BRK instruction is the PC where the signal
1588 // is trapped, not the next PC, so to resume execution, the debugger needs
1589 // to set the signal PC to PC+4. See the comments in the implementation for
1590 // the protocol the debugger is expected to follow. InjectDebugCall in the
1591 // runtime tests demonstrates this protocol.
1592 //
1593 // The debugger must ensure that any pointers passed to the function
1594 // obey escape analysis requirements. Specifically, it must not pass
1595 // a stack pointer to an escaping argument. debugCallV2 cannot check
1596 // this invariant.
1597 //
1598 // This is ABIInternal because Go code injects its PC directly into new
1599 // goroutine stacks.
1600 TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-0
1601 STP (R29, R30), -280(RSP)
1602 SUB $272, RSP, RSP
1603 SUB $8, RSP, R29
1604 // Save all registers that may contain pointers so they can be
1605 // conservatively scanned.
1606 //
1607 // We can't do anything that might clobber any of these
1608 // registers before this.
1609 STP (R27, g), (30*8)(RSP)
1610 STP (R25, R26), (28*8)(RSP)
1611 STP (R23, R24), (26*8)(RSP)
1612 STP (R21, R22), (24*8)(RSP)
1613 STP (R19, R20), (22*8)(RSP)
1614 STP (R16, R17), (20*8)(RSP)
1615 STP (R14, R15), (18*8)(RSP)
1616 STP (R12, R13), (16*8)(RSP)
1617 STP (R10, R11), (14*8)(RSP)
1618 STP (R8, R9), (12*8)(RSP)
1619 STP (R6, R7), (10*8)(RSP)
1620 STP (R4, R5), (8*8)(RSP)
1621 STP (R2, R3), (6*8)(RSP)
1622 STP (R0, R1), (4*8)(RSP)
1623
1624 // Perform a safe-point check.
1625 MOVD R30, 8(RSP) // Caller's PC
1626 CALL runtime·debugCallCheck(SB)
1627 MOVD 16(RSP), R0
1628 CBZ R0, good
1629
1630 // The safety check failed. Put the reason string at the top
1631 // of the stack.
1632 MOVD R0, 8(RSP)
1633 MOVD 24(RSP), R0
1634 MOVD R0, 16(RSP)
1635
1636 // Set R20 to 8 and invoke BRK. The debugger should get the
1637 // reason a call can't be injected from SP+8 and resume execution.
1638 MOVD $8, R20
1639 BREAK
1640 JMP restore
1641
1642 good:
1643 // Registers are saved and it's safe to make a call.
1644 // Open up a call frame, moving the stack if necessary.
1645 //
1646 // Once the frame is allocated, this will set R20 to 0 and
1647 // invoke BRK. The debugger should write the argument
1648 // frame for the call at SP+8, set up argument registers,
1649 // set the LR as the signal PC + 4, set the PC to the function
1650 // to call, set R26 to point to the closure (if a closure call),
1651 // and resume execution.
1652 //
1653 // If the function returns, this will set R20 to 1 and invoke
1654 // BRK. The debugger can then inspect any return value saved
1655 // on the stack at SP+8 and in registers. To resume execution,
1656 // the debugger should restore the LR from (SP).
1657 //
1658 // If the function panics, this will set R20 to 2 and invoke BRK.
1659 // The interface{} value of the panic will be at SP+8. The debugger
1660 // can inspect the panic value and resume execution again.
1661 #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE) \
1662 CMP $MAXSIZE, R0; \
1663 BGT 5(PC); \
1664 MOVD $NAME(SB), R0; \
1665 MOVD R0, 8(RSP); \
1666 CALL runtime·debugCallWrap(SB); \
1667 JMP restore
1668
1669 MOVD 256(RSP), R0 // the argument frame size
1670 DEBUG_CALL_DISPATCH(debugCall32<>, 32)
1671 DEBUG_CALL_DISPATCH(debugCall64<>, 64)
1672 DEBUG_CALL_DISPATCH(debugCall128<>, 128)
1673 DEBUG_CALL_DISPATCH(debugCall256<>, 256)
1674 DEBUG_CALL_DISPATCH(debugCall512<>, 512)
1675 DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
1676 DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
1677 DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
1678 DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
1679 DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
1680 DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
1681 DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
1682 // The frame size is too large. Report the error.
1683 MOVD $debugCallFrameTooLarge<>(SB), R0
1684 MOVD R0, 8(RSP)
1685 MOVD $20, R0
1686 MOVD R0, 16(RSP) // length of debugCallFrameTooLarge string
1687 MOVD $8, R20
1688 BREAK
1689 JMP restore
1690
1691 restore:
1692 // Calls and failures resume here.
1693 //
1694 // Set R20 to 16 and invoke BRK. The debugger should restore
1695 // all registers except for PC and RSP and resume execution.
1696 MOVD $16, R20
1697 BREAK
1698 // We must not modify flags after this point.
1699
1700 // Restore pointer-containing registers, which may have been
1701 // modified from the debugger's copy by stack copying.
1702 LDP (30*8)(RSP), (R27, g)
1703 LDP (28*8)(RSP), (R25, R26)
1704 LDP (26*8)(RSP), (R23, R24)
1705 LDP (24*8)(RSP), (R21, R22)
1706 LDP (22*8)(RSP), (R19, R20)
1707 LDP (20*8)(RSP), (R16, R17)
1708 LDP (18*8)(RSP), (R14, R15)
1709 LDP (16*8)(RSP), (R12, R13)
1710 LDP (14*8)(RSP), (R10, R11)
1711 LDP (12*8)(RSP), (R8, R9)
1712 LDP (10*8)(RSP), (R6, R7)
1713 LDP (8*8)(RSP), (R4, R5)
1714 LDP (6*8)(RSP), (R2, R3)
1715 LDP (4*8)(RSP), (R0, R1)
1716
1717 LDP -8(RSP), (R29, R27)
1718 ADD $288, RSP, RSP // Add 16 more bytes, see saveSigContext
1719 MOVD -16(RSP), R30 // restore old lr
1720 JMP (R27)
1721
1722 // runtime.debugCallCheck assumes that functions defined with the
1723 // DEBUG_CALL_FN macro are safe points to inject calls.
1724 #define DEBUG_CALL_FN(NAME,MAXSIZE) \
1725 TEXT NAME(SB),WRAPPER,$MAXSIZE-0; \
1726 NO_LOCAL_POINTERS; \
1727 MOVD $0, R20; \
1728 BREAK; \
1729 MOVD $1, R20; \
1730 BREAK; \
1731 RET
1732 DEBUG_CALL_FN(debugCall32<>, 32)
1733 DEBUG_CALL_FN(debugCall64<>, 64)
1734 DEBUG_CALL_FN(debugCall128<>, 128)
1735 DEBUG_CALL_FN(debugCall256<>, 256)
1736 DEBUG_CALL_FN(debugCall512<>, 512)
1737 DEBUG_CALL_FN(debugCall1024<>, 1024)
1738 DEBUG_CALL_FN(debugCall2048<>, 2048)
1739 DEBUG_CALL_FN(debugCall4096<>, 4096)
1740 DEBUG_CALL_FN(debugCall8192<>, 8192)
1741 DEBUG_CALL_FN(debugCall16384<>, 16384)
1742 DEBUG_CALL_FN(debugCall32768<>, 32768)
1743 DEBUG_CALL_FN(debugCall65536<>, 65536)
1744
1745 // func debugCallPanicked(val interface{})
1746 TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
1747 // Copy the panic value to the top of stack at SP+8.
1748 MOVD val_type+0(FP), R0
1749 MOVD R0, 8(RSP)
1750 MOVD val_data+8(FP), R0
1751 MOVD R0, 16(RSP)
1752 MOVD $2, R20
1753 BREAK
1754 RET
1755
1756 TEXT runtime·panicBounds<ABIInternal>(SB),NOSPLIT,$144-0
1757 NO_LOCAL_POINTERS
1758 // Save all 16 int registers that could have an index in them.
1759 // They may be pointers, but if they are they are dead.
1760 STP (R0, R1), 24(RSP)
1761 STP (R2, R3), 40(RSP)
1762 STP (R4, R5), 56(RSP)
1763 STP (R6, R7), 72(RSP)
1764 STP (R8, R9), 88(RSP)
1765 STP (R10, R11), 104(RSP)
1766 STP (R12, R13), 120(RSP)
1767 STP (R14, R15), 136(RSP)
1768 MOVD LR, R0 // PC immediately after call to panicBounds
1769 ADD $24, RSP, R1 // pointer to save area
1770 CALL runtime·panicBounds64<ABIInternal>(SB)
1771 RET
1772
1773 TEXT ·getfp<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
1774 MOVD R29, R0
1775 RET
1776
View as plain text