Text file src/runtime/asm_amd64.s

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  #include "go_asm.h"
     6  #include "go_tls.h"
     7  #include "funcdata.h"
     8  #include "textflag.h"
     9  #include "cgo/abi_amd64.h"
    10  
    11  // _rt0_amd64 is common startup code for most amd64 systems when using
    12  // internal linking. This is the entry point for the program from the
    13  // kernel for an ordinary -buildmode=exe program. The stack holds the
    14  // number of arguments and the C-style argv.
    15  TEXT _rt0_amd64(SB),NOSPLIT,$-8
    16  	MOVQ	0(SP), DI	// argc
    17  	LEAQ	8(SP), SI	// argv
    18  	JMP	runtime·rt0_go(SB)
    19  
    20  // main is common startup code for most amd64 systems when using
    21  // external linking. The C startup code will call the symbol "main"
    22  // passing argc and argv in the usual C ABI registers DI and SI.
    23  TEXT main(SB),NOSPLIT,$-8
    24  	JMP	runtime·rt0_go(SB)
    25  
    26  // _rt0_amd64_lib is common startup code for most amd64 systems when
    27  // using -buildmode=c-archive or -buildmode=c-shared. The linker will
    28  // arrange to invoke this function as a global constructor (for
    29  // c-archive) or when the shared library is loaded (for c-shared).
    30  // We expect argc and argv to be passed in the usual C ABI registers
    31  // DI and SI.
    32  TEXT _rt0_amd64_lib(SB),NOSPLIT|NOFRAME,$0
    33  	// Transition from C ABI to Go ABI.
    34  	PUSH_REGS_HOST_TO_ABI0()
    35  
    36  	MOVQ	DI, _rt0_amd64_lib_argc<>(SB)
    37  	MOVQ	SI, _rt0_amd64_lib_argv<>(SB)
    38  
    39  	// Synchronous initialization.
    40  	CALL	runtime·libpreinit(SB)
    41  
    42  	// Create a new thread to finish Go runtime initialization.
    43  	MOVQ	_cgo_sys_thread_create(SB), AX
    44  	TESTQ	AX, AX
    45  	JZ	nocgo
    46  
    47  	// We're calling back to C.
    48  	// Align stack per ELF ABI requirements.
    49  	MOVQ	SP, BX  // Callee-save in C ABI
    50  	ANDQ	$~15, SP
    51  	MOVQ	$_rt0_amd64_lib_go(SB), DI
    52  	MOVQ	$0, SI
    53  	CALL	AX
    54  	MOVQ	BX, SP
    55  	JMP	restore
    56  
    57  nocgo:
    58  	ADJSP	$16
    59  	MOVQ	$0x800000, 0(SP)		// stacksize
    60  	MOVQ	$_rt0_amd64_lib_go(SB), AX
    61  	MOVQ	AX, 8(SP)			// fn
    62  	CALL	runtime·newosproc0(SB)
    63  	ADJSP	$-16
    64  
    65  restore:
    66  	POP_REGS_HOST_TO_ABI0()
    67  	RET
    68  
    69  // _rt0_amd64_lib_go initializes the Go runtime.
    70  // This is started in a separate thread by _rt0_amd64_lib.
    71  TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0
    72  	MOVQ	_rt0_amd64_lib_argc<>(SB), DI
    73  	MOVQ	_rt0_amd64_lib_argv<>(SB), SI
    74  	JMP	runtime·rt0_go(SB)
    75  
    76  DATA _rt0_amd64_lib_argc<>(SB)/8, $0
    77  GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8
    78  DATA _rt0_amd64_lib_argv<>(SB)/8, $0
    79  GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8
    80  
    81  #ifdef GOAMD64_v2
    82  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v2 microarchitecture support.\n"
    83  #endif
    84  
    85  #ifdef GOAMD64_v3
    86  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v3 microarchitecture support.\n"
    87  #endif
    88  
    89  #ifdef GOAMD64_v4
    90  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v4 microarchitecture support.\n"
    91  #endif
    92  
    93  GLOBL bad_cpu_msg<>(SB), RODATA, $84
    94  
    95  // Define a list of AMD64 microarchitecture level features
    96  // https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
    97  
    98                       // SSE3     SSSE3    CMPXCHNG16 SSE4.1    SSE4.2    POPCNT
    99  #define V2_FEATURES_CX (1 << 0 | 1 << 9 | 1 << 13  | 1 << 19 | 1 << 20 | 1 << 23)
   100                           // LAHF/SAHF
   101  #define V2_EXT_FEATURES_CX (1 << 0)
   102                                        // FMA       MOVBE     OSXSAVE   AVX       F16C
   103  #define V3_FEATURES_CX (V2_FEATURES_CX | 1 << 12 | 1 << 22 | 1 << 27 | 1 << 28 | 1 << 29)
   104                                                // ABM (FOR LZNCT)
   105  #define V3_EXT_FEATURES_CX (V2_EXT_FEATURES_CX | 1 << 5)
   106                           // BMI1     AVX2     BMI2
   107  #define V3_EXT_FEATURES_BX (1 << 3 | 1 << 5 | 1 << 8)
   108                         // XMM      YMM
   109  #define V3_OS_SUPPORT_AX (1 << 1 | 1 << 2)
   110  
   111  #define V4_FEATURES_CX V3_FEATURES_CX
   112  
   113  #define V4_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   114                                                // AVX512F   AVX512DQ  AVX512CD  AVX512BW  AVX512VL
   115  #define V4_EXT_FEATURES_BX (V3_EXT_FEATURES_BX | 1 << 16 | 1 << 17 | 1 << 28 | 1 << 30 | 1 << 31)
   116                                            // OPMASK   ZMM
   117  #define V4_OS_SUPPORT_AX (V3_OS_SUPPORT_AX | 1 << 5 | (1 << 6 | 1 << 7))
   118  
   119  #ifdef GOAMD64_v2
   120  #define NEED_MAX_CPUID 0x80000001
   121  #define NEED_FEATURES_CX V2_FEATURES_CX
   122  #define NEED_EXT_FEATURES_CX V2_EXT_FEATURES_CX
   123  #endif
   124  
   125  #ifdef GOAMD64_v3
   126  #define NEED_MAX_CPUID 0x80000001
   127  #define NEED_FEATURES_CX V3_FEATURES_CX
   128  #define NEED_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   129  #define NEED_EXT_FEATURES_BX V3_EXT_FEATURES_BX
   130  #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   131  #endif
   132  
   133  #ifdef GOAMD64_v4
   134  #define NEED_MAX_CPUID 0x80000001
   135  #define NEED_FEATURES_CX V4_FEATURES_CX
   136  #define NEED_EXT_FEATURES_CX V4_EXT_FEATURES_CX
   137  #define NEED_EXT_FEATURES_BX V4_EXT_FEATURES_BX
   138  
   139  // Darwin requires a different approach to check AVX512 support, see CL 285572.
   140  #ifdef GOOS_darwin
   141  #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   142  // These values are from:
   143  // https://github.com/apple/darwin-xnu/blob/xnu-4570.1.46/osfmk/i386/cpu_capabilities.h
   144  #define commpage64_base_address         0x00007fffffe00000
   145  #define commpage64_cpu_capabilities64   (commpage64_base_address+0x010)
   146  #define commpage64_version              (commpage64_base_address+0x01E)
   147  #define AVX512F                         0x0000004000000000
   148  #define AVX512CD                        0x0000008000000000
   149  #define AVX512DQ                        0x0000010000000000
   150  #define AVX512BW                        0x0000020000000000
   151  #define AVX512VL                        0x0000100000000000
   152  #define NEED_DARWIN_SUPPORT             (AVX512F | AVX512DQ | AVX512CD | AVX512BW | AVX512VL)
   153  #else
   154  #define NEED_OS_SUPPORT_AX V4_OS_SUPPORT_AX
   155  #endif
   156  
   157  #endif
   158  
   159  TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME|TOPFRAME,$0
   160  	// copy arguments forward on an even stack
   161  	MOVQ	DI, AX		// argc
   162  	MOVQ	SI, BX		// argv
   163  	SUBQ	$(5*8), SP		// 3args 2auto
   164  	ANDQ	$~15, SP
   165  	MOVQ	AX, 24(SP)
   166  	MOVQ	BX, 32(SP)
   167  
   168  	// create istack out of the given (operating system) stack.
   169  	// _cgo_init may update stackguard.
   170  	MOVQ	$runtime·g0(SB), DI
   171  	LEAQ	(-64*1024)(SP), BX
   172  	MOVQ	BX, g_stackguard0(DI)
   173  	MOVQ	BX, g_stackguard1(DI)
   174  	MOVQ	BX, (g_stack+stack_lo)(DI)
   175  	MOVQ	SP, (g_stack+stack_hi)(DI)
   176  
   177  	// find out information about the processor we're on
   178  	MOVL	$0, AX
   179  	CPUID
   180  	CMPL	AX, $0
   181  	JE	nocpuinfo
   182  
   183  	CMPL	BX, $0x756E6547  // "Genu"
   184  	JNE	notintel
   185  	CMPL	DX, $0x49656E69  // "ineI"
   186  	JNE	notintel
   187  	CMPL	CX, $0x6C65746E  // "ntel"
   188  	JNE	notintel
   189  	MOVB	$1, runtime·isIntel(SB)
   190  
   191  notintel:
   192  	// Load EAX=1 cpuid flags
   193  	MOVL	$1, AX
   194  	CPUID
   195  	MOVL	AX, runtime·processorVersionInfo(SB)
   196  
   197  nocpuinfo:
   198  	// if there is an _cgo_init, call it.
   199  	MOVQ	_cgo_init(SB), AX
   200  	TESTQ	AX, AX
   201  	JZ	needtls
   202  	// arg 1: g0, already in DI
   203  	MOVQ	$setg_gcc<>(SB), SI // arg 2: setg_gcc
   204  	MOVQ	$0, DX	// arg 3, 4: not used when using platform's TLS
   205  	MOVQ	$0, CX
   206  #ifdef GOOS_android
   207  	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   208  	// arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF).
   209  	// Compensate for tls_g (+16).
   210  	MOVQ	-16(TLS), CX
   211  #endif
   212  #ifdef GOOS_windows
   213  	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   214  	// Adjust for the Win64 calling convention.
   215  	MOVQ	CX, R9 // arg 4
   216  	MOVQ	DX, R8 // arg 3
   217  	MOVQ	SI, DX // arg 2
   218  	MOVQ	DI, CX // arg 1
   219  #endif
   220  	CALL	AX
   221  
   222  	// update stackguard after _cgo_init
   223  	MOVQ	$runtime·g0(SB), CX
   224  	MOVQ	(g_stack+stack_lo)(CX), AX
   225  	ADDQ	$const_stackGuard, AX
   226  	MOVQ	AX, g_stackguard0(CX)
   227  	MOVQ	AX, g_stackguard1(CX)
   228  
   229  #ifndef GOOS_windows
   230  	JMP ok
   231  #endif
   232  needtls:
   233  #ifdef GOOS_plan9
   234  	// skip TLS setup on Plan 9
   235  	JMP ok
   236  #endif
   237  #ifdef GOOS_solaris
   238  	// skip TLS setup on Solaris
   239  	JMP ok
   240  #endif
   241  #ifdef GOOS_illumos
   242  	// skip TLS setup on illumos
   243  	JMP ok
   244  #endif
   245  #ifdef GOOS_darwin
   246  	// skip TLS setup on Darwin
   247  	JMP ok
   248  #endif
   249  #ifdef GOOS_openbsd
   250  	// skip TLS setup on OpenBSD
   251  	JMP ok
   252  #endif
   253  
   254  #ifdef GOOS_windows
   255  	CALL	runtime·wintls(SB)
   256  #endif
   257  
   258  	LEAQ	runtime·m0+m_tls(SB), DI
   259  	CALL	runtime·settls(SB)
   260  
   261  	// store through it, to make sure it works
   262  	get_tls(BX)
   263  	MOVQ	$0x123, g(BX)
   264  	MOVQ	runtime·m0+m_tls(SB), AX
   265  	CMPQ	AX, $0x123
   266  	JEQ 2(PC)
   267  	CALL	runtime·abort(SB)
   268  ok:
   269  	// set the per-goroutine and per-mach "registers"
   270  	get_tls(BX)
   271  	LEAQ	runtime·g0(SB), CX
   272  	MOVQ	CX, g(BX)
   273  	LEAQ	runtime·m0(SB), AX
   274  
   275  	// save m->g0 = g0
   276  	MOVQ	CX, m_g0(AX)
   277  	// save m0 to g0->m
   278  	MOVQ	AX, g_m(CX)
   279  
   280  	CLD				// convention is D is always left cleared
   281  
   282  	// Check GOAMD64 requirements
   283  	// We need to do this after setting up TLS, so that
   284  	// we can report an error if there is a failure. See issue 49586.
   285  #ifdef NEED_FEATURES_CX
   286  	MOVL	$0, AX
   287  	CPUID
   288  	CMPL	AX, $0
   289  	JE	bad_cpu
   290  	MOVL	$1, AX
   291  	CPUID
   292  	ANDL	$NEED_FEATURES_CX, CX
   293  	CMPL	CX, $NEED_FEATURES_CX
   294  	JNE	bad_cpu
   295  #endif
   296  
   297  #ifdef NEED_MAX_CPUID
   298  	MOVL	$0x80000000, AX
   299  	CPUID
   300  	CMPL	AX, $NEED_MAX_CPUID
   301  	JL	bad_cpu
   302  #endif
   303  
   304  #ifdef NEED_EXT_FEATURES_BX
   305  	MOVL	$7, AX
   306  	MOVL	$0, CX
   307  	CPUID
   308  	ANDL	$NEED_EXT_FEATURES_BX, BX
   309  	CMPL	BX, $NEED_EXT_FEATURES_BX
   310  	JNE	bad_cpu
   311  #endif
   312  
   313  #ifdef NEED_EXT_FEATURES_CX
   314  	MOVL	$0x80000001, AX
   315  	CPUID
   316  	ANDL	$NEED_EXT_FEATURES_CX, CX
   317  	CMPL	CX, $NEED_EXT_FEATURES_CX
   318  	JNE	bad_cpu
   319  #endif
   320  
   321  #ifdef NEED_OS_SUPPORT_AX
   322  	XORL    CX, CX
   323  	XGETBV
   324  	ANDL	$NEED_OS_SUPPORT_AX, AX
   325  	CMPL	AX, $NEED_OS_SUPPORT_AX
   326  	JNE	bad_cpu
   327  #endif
   328  
   329  #ifdef NEED_DARWIN_SUPPORT
   330  	MOVQ	$commpage64_version, BX
   331  	CMPW	(BX), $13  // cpu_capabilities64 undefined in versions < 13
   332  	JL	bad_cpu
   333  	MOVQ	$commpage64_cpu_capabilities64, BX
   334  	MOVQ	(BX), BX
   335  	MOVQ	$NEED_DARWIN_SUPPORT, CX
   336  	ANDQ	CX, BX
   337  	CMPQ	BX, CX
   338  	JNE	bad_cpu
   339  #endif
   340  
   341  	CALL	runtime·check(SB)
   342  
   343  	MOVL	24(SP), AX		// copy argc
   344  	MOVL	AX, 0(SP)
   345  	MOVQ	32(SP), AX		// copy argv
   346  	MOVQ	AX, 8(SP)
   347  	CALL	runtime·args(SB)
   348  	CALL	runtime·osinit(SB)
   349  	CALL	runtime·schedinit(SB)
   350  
   351  	// create a new goroutine to start program
   352  	MOVQ	$runtime·mainPC(SB), AX		// entry
   353  	PUSHQ	AX
   354  	CALL	runtime·newproc(SB)
   355  	POPQ	AX
   356  
   357  	// start this M
   358  	CALL	runtime·mstart(SB)
   359  
   360  	CALL	runtime·abort(SB)	// mstart should never return
   361  	RET
   362  
   363  bad_cpu: // show that the program requires a certain microarchitecture level.
   364  	MOVQ	$2, 0(SP)
   365  	MOVQ	$bad_cpu_msg<>(SB), AX
   366  	MOVQ	AX, 8(SP)
   367  	MOVQ	$84, 16(SP)
   368  	CALL	runtime·write(SB)
   369  	MOVQ	$1, 0(SP)
   370  	CALL	runtime·exit(SB)
   371  	CALL	runtime·abort(SB)
   372  	RET
   373  
   374  	// Prevent dead-code elimination of debugCallV2 and debugPinnerV1, which are
   375  	// intended to be called by debuggers.
   376  	MOVQ	$runtime·debugPinnerV1<ABIInternal>(SB), AX
   377  	MOVQ	$runtime·debugCallV2<ABIInternal>(SB), AX
   378  	RET
   379  
   380  // mainPC is a function value for runtime.main, to be passed to newproc.
   381  // The reference to runtime.main is made via ABIInternal, since the
   382  // actual function (not the ABI0 wrapper) is needed by newproc.
   383  DATA	runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
   384  GLOBL	runtime·mainPC(SB),RODATA,$8
   385  
   386  TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
   387  	BYTE	$0xcc
   388  	RET
   389  
   390  TEXT runtime·asminit(SB),NOSPLIT,$0-0
   391  	// No per-thread init.
   392  	RET
   393  
   394  TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME|NOFRAME,$0
   395  	CALL	runtime·mstart0(SB)
   396  	RET // not reached
   397  
   398  /*
   399   *  go-routine
   400   */
   401  
   402  // func gogo(buf *gobuf)
   403  // restore state from Gobuf; longjmp
   404  TEXT runtime·gogo(SB), NOSPLIT, $0-8
   405  	MOVQ	buf+0(FP), BX		// gobuf
   406  	MOVQ	gobuf_g(BX), DX
   407  	MOVQ	0(DX), CX		// make sure g != nil
   408  	JMP	gogo<>(SB)
   409  
   410  TEXT gogo<>(SB), NOSPLIT, $0
   411  	get_tls(CX)
   412  	MOVQ	DX, g(CX)
   413  	MOVQ	DX, R14		// set the g register
   414  	MOVQ	gobuf_sp(BX), SP	// restore SP
   415  	MOVQ	gobuf_ctxt(BX), DX
   416  	MOVQ	gobuf_bp(BX), BP
   417  	MOVQ	$0, gobuf_sp(BX)	// clear to help garbage collector
   418  	MOVQ	$0, gobuf_ctxt(BX)
   419  	MOVQ	$0, gobuf_bp(BX)
   420  	MOVQ	gobuf_pc(BX), BX
   421  	JMP	BX
   422  
   423  // func mcall(fn func(*g))
   424  // Switch to m->g0's stack, call fn(g).
   425  // Fn must never return. It should gogo(&g->sched)
   426  // to keep running g.
   427  TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT, $0-8
   428  	MOVQ	AX, DX	// DX = fn
   429  
   430  	// Save state in g->sched. The caller's SP and PC are restored by gogo to
   431  	// resume execution in the caller's frame (implicit return). The caller's BP
   432  	// is also restored to support frame pointer unwinding.
   433  	MOVQ	SP, BX	// hide (SP) reads from vet
   434  	MOVQ	8(BX), BX	// caller's PC
   435  	MOVQ	BX, (g_sched+gobuf_pc)(R14)
   436  	LEAQ	fn+0(FP), BX	// caller's SP
   437  	MOVQ	BX, (g_sched+gobuf_sp)(R14)
   438  	// Get the caller's frame pointer by dereferencing BP. Storing BP as it is
   439  	// can cause a frame pointer cycle, see CL 476235.
   440  	MOVQ	(BP), BX // caller's BP
   441  	MOVQ	BX, (g_sched+gobuf_bp)(R14)
   442  
   443  	// switch to m->g0 & its stack, call fn
   444  	MOVQ	g_m(R14), BX
   445  	MOVQ	m_g0(BX), SI	// SI = g.m.g0
   446  	CMPQ	SI, R14	// if g == m->g0 call badmcall
   447  	JNE	goodm
   448  	JMP	runtime·badmcall(SB)
   449  goodm:
   450  	MOVQ	R14, AX		// AX (and arg 0) = g
   451  	MOVQ	SI, R14		// g = g.m.g0
   452  	get_tls(CX)		// Set G in TLS
   453  	MOVQ	R14, g(CX)
   454  	MOVQ	(g_sched+gobuf_sp)(R14), SP	// sp = g0.sched.sp
   455  	PUSHQ	AX	// open up space for fn's arg spill slot
   456  	MOVQ	0(DX), R12
   457  	CALL	R12		// fn(g)
   458  	// The Windows native stack unwinder incorrectly classifies the next instruction
   459  	// as part of the function epilogue, producing a wrong call stack.
   460  	// Add a NOP to work around this issue. See go.dev/issue/67007.
   461  	BYTE	$0x90
   462  	POPQ	AX
   463  	JMP	runtime·badmcall2(SB)
   464  	RET
   465  
   466  // systemstack_switch is a dummy routine that systemstack leaves at the bottom
   467  // of the G stack. We need to distinguish the routine that
   468  // lives at the bottom of the G stack from the one that lives
   469  // at the top of the system stack because the one at the top of
   470  // the system stack terminates the stack walk (see topofstack()).
   471  // The frame layout needs to match systemstack
   472  // so that it can pretend to be systemstack_switch.
   473  TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
   474  	UNDEF
   475  	// Make sure this function is not leaf,
   476  	// so the frame is saved.
   477  	CALL	runtime·abort(SB)
   478  	RET
   479  
   480  // func systemstack(fn func())
   481  TEXT runtime·systemstack(SB), NOSPLIT, $0-8
   482  	MOVQ	fn+0(FP), DI	// DI = fn
   483  	get_tls(CX)
   484  	MOVQ	g(CX), AX	// AX = g
   485  	MOVQ	g_m(AX), BX	// BX = m
   486  
   487  	CMPQ	AX, m_gsignal(BX)
   488  	JEQ	noswitch
   489  
   490  	MOVQ	m_g0(BX), DX	// DX = g0
   491  	CMPQ	AX, DX
   492  	JEQ	noswitch
   493  
   494  	CMPQ	AX, m_curg(BX)
   495  	JNE	bad
   496  
   497  	// Switch stacks.
   498  	// The original frame pointer is stored in BP,
   499  	// which is useful for stack unwinding.
   500  	// Save our state in g->sched. Pretend to
   501  	// be systemstack_switch if the G stack is scanned.
   502  	CALL	gosave_systemstack_switch<>(SB)
   503  
   504  	// switch to g0
   505  	MOVQ	DX, g(CX)
   506  	MOVQ	DX, R14 // set the g register
   507  	MOVQ	(g_sched+gobuf_sp)(DX), SP
   508  
   509  	// call target function
   510  	MOVQ	DI, DX
   511  	MOVQ	0(DI), DI
   512  	CALL	DI
   513  
   514  	// switch back to g
   515  	get_tls(CX)
   516  	MOVQ	g(CX), AX
   517  	MOVQ	g_m(AX), BX
   518  	MOVQ	m_curg(BX), AX
   519  	MOVQ	AX, g(CX)
   520  	MOVQ	(g_sched+gobuf_sp)(AX), SP
   521  	MOVQ	(g_sched+gobuf_bp)(AX), BP
   522  	MOVQ	$0, (g_sched+gobuf_sp)(AX)
   523  	MOVQ	$0, (g_sched+gobuf_bp)(AX)
   524  	RET
   525  
   526  noswitch:
   527  	// already on m stack; tail call the function
   528  	// Using a tail call here cleans up tracebacks since we won't stop
   529  	// at an intermediate systemstack.
   530  	MOVQ	DI, DX
   531  	MOVQ	0(DI), DI
   532  	// The function epilogue is not called on a tail call.
   533  	// Pop BP from the stack to simulate it.
   534  	POPQ	BP
   535  	JMP	DI
   536  
   537  bad:
   538  	// Bad: g is not gsignal, not g0, not curg. What is it?
   539  	MOVQ	$runtime·badsystemstack(SB), AX
   540  	CALL	AX
   541  	INT	$3
   542  
   543  // func switchToCrashStack0(fn func())
   544  TEXT runtime·switchToCrashStack0<ABIInternal>(SB), NOSPLIT, $0-8
   545  	MOVQ	g_m(R14), BX // curm
   546  
   547  	// set g to gcrash
   548  	LEAQ	runtime·gcrash(SB), R14 // g = &gcrash
   549  	MOVQ	BX, g_m(R14)            // g.m = curm
   550  	MOVQ	R14, m_g0(BX)           // curm.g0 = g
   551  	get_tls(CX)
   552  	MOVQ	R14, g(CX)
   553  
   554  	// switch to crashstack
   555  	MOVQ	(g_stack+stack_hi)(R14), BX
   556  	SUBQ	$(4*8), BX
   557  	MOVQ	BX, SP
   558  
   559  	// call target function
   560  	MOVQ	AX, DX
   561  	MOVQ	0(AX), AX
   562  	CALL	AX
   563  
   564  	// should never return
   565  	CALL	runtime·abort(SB)
   566  	UNDEF
   567  
   568  /*
   569   * support for morestack
   570   */
   571  
   572  // Called during function prolog when more stack is needed.
   573  //
   574  // The traceback routines see morestack on a g0 as being
   575  // the top of a stack (for example, morestack calling newstack
   576  // calling the scheduler calling newm calling gc), so we must
   577  // record an argument size. For that purpose, it has no arguments.
   578  TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
   579  	// Cannot grow scheduler stack (m->g0).
   580  	get_tls(CX)
   581  	MOVQ	g(CX), DI     // DI = g
   582  	MOVQ	g_m(DI), BX   // BX = m
   583  
   584  	// Set g->sched to context in f.
   585  	MOVQ	0(SP), AX // f's PC
   586  	MOVQ	AX, (g_sched+gobuf_pc)(DI)
   587  	LEAQ	8(SP), AX // f's SP
   588  	MOVQ	AX, (g_sched+gobuf_sp)(DI)
   589  	MOVQ	BP, (g_sched+gobuf_bp)(DI)
   590  	MOVQ	DX, (g_sched+gobuf_ctxt)(DI)
   591  
   592  	MOVQ	m_g0(BX), SI  // SI = m.g0
   593  	CMPQ	DI, SI
   594  	JNE	3(PC)
   595  	CALL	runtime·badmorestackg0(SB)
   596  	CALL	runtime·abort(SB)
   597  
   598  	// Cannot grow signal stack (m->gsignal).
   599  	MOVQ	m_gsignal(BX), SI
   600  	CMPQ	DI, SI
   601  	JNE	3(PC)
   602  	CALL	runtime·badmorestackgsignal(SB)
   603  	CALL	runtime·abort(SB)
   604  
   605  	// Called from f.
   606  	// Set m->morebuf to f's caller.
   607  	NOP	SP	// tell vet SP changed - stop checking offsets
   608  	MOVQ	8(SP), AX	// f's caller's PC
   609  	MOVQ	AX, (m_morebuf+gobuf_pc)(BX)
   610  	LEAQ	16(SP), AX	// f's caller's SP
   611  	MOVQ	AX, (m_morebuf+gobuf_sp)(BX)
   612  	MOVQ	DI, (m_morebuf+gobuf_g)(BX)
   613  
   614  	// Call newstack on m->g0's stack.
   615  	MOVQ	m_g0(BX), BX
   616  	MOVQ	BX, g(CX)
   617  	MOVQ	(g_sched+gobuf_sp)(BX), SP
   618  	MOVQ	(g_sched+gobuf_bp)(BX), BP
   619  	CALL	runtime·newstack(SB)
   620  	CALL	runtime·abort(SB)	// crash if newstack returns
   621  	RET
   622  
   623  // morestack but not preserving ctxt.
   624  TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0
   625  	MOVL	$0, DX
   626  	JMP	runtime·morestack(SB)
   627  
   628  // spillArgs stores return values from registers to a *internal/abi.RegArgs in R12.
   629  TEXT ·spillArgs(SB),NOSPLIT,$0-0
   630  	MOVQ AX, 0(R12)
   631  	MOVQ BX, 8(R12)
   632  	MOVQ CX, 16(R12)
   633  	MOVQ DI, 24(R12)
   634  	MOVQ SI, 32(R12)
   635  	MOVQ R8, 40(R12)
   636  	MOVQ R9, 48(R12)
   637  	MOVQ R10, 56(R12)
   638  	MOVQ R11, 64(R12)
   639  	MOVQ X0, 72(R12)
   640  	MOVQ X1, 80(R12)
   641  	MOVQ X2, 88(R12)
   642  	MOVQ X3, 96(R12)
   643  	MOVQ X4, 104(R12)
   644  	MOVQ X5, 112(R12)
   645  	MOVQ X6, 120(R12)
   646  	MOVQ X7, 128(R12)
   647  	MOVQ X8, 136(R12)
   648  	MOVQ X9, 144(R12)
   649  	MOVQ X10, 152(R12)
   650  	MOVQ X11, 160(R12)
   651  	MOVQ X12, 168(R12)
   652  	MOVQ X13, 176(R12)
   653  	MOVQ X14, 184(R12)
   654  	RET
   655  
   656  // unspillArgs loads args into registers from a *internal/abi.RegArgs in R12.
   657  TEXT ·unspillArgs(SB),NOSPLIT,$0-0
   658  	MOVQ 0(R12), AX
   659  	MOVQ 8(R12), BX
   660  	MOVQ 16(R12), CX
   661  	MOVQ 24(R12), DI
   662  	MOVQ 32(R12), SI
   663  	MOVQ 40(R12), R8
   664  	MOVQ 48(R12), R9
   665  	MOVQ 56(R12), R10
   666  	MOVQ 64(R12), R11
   667  	MOVQ 72(R12), X0
   668  	MOVQ 80(R12), X1
   669  	MOVQ 88(R12), X2
   670  	MOVQ 96(R12), X3
   671  	MOVQ 104(R12), X4
   672  	MOVQ 112(R12), X5
   673  	MOVQ 120(R12), X6
   674  	MOVQ 128(R12), X7
   675  	MOVQ 136(R12), X8
   676  	MOVQ 144(R12), X9
   677  	MOVQ 152(R12), X10
   678  	MOVQ 160(R12), X11
   679  	MOVQ 168(R12), X12
   680  	MOVQ 176(R12), X13
   681  	MOVQ 184(R12), X14
   682  	RET
   683  
   684  // reflectcall: call a function with the given argument list
   685  // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
   686  // we don't have variable-sized frames, so we use a small number
   687  // of constant-sized-frame functions to encode a few bits of size in the pc.
   688  // Caution: ugly multiline assembly macros in your future!
   689  
   690  #define DISPATCH(NAME,MAXSIZE)		\
   691  	CMPQ	CX, $MAXSIZE;		\
   692  	JA	3(PC);			\
   693  	MOVQ	$NAME(SB), AX;		\
   694  	JMP	AX
   695  // Note: can't just "JMP NAME(SB)" - bad inlining results.
   696  
   697  TEXT ·reflectcall(SB), NOSPLIT, $0-48
   698  	MOVLQZX frameSize+32(FP), CX
   699  	DISPATCH(runtime·call16, 16)
   700  	DISPATCH(runtime·call32, 32)
   701  	DISPATCH(runtime·call64, 64)
   702  	DISPATCH(runtime·call128, 128)
   703  	DISPATCH(runtime·call256, 256)
   704  	DISPATCH(runtime·call512, 512)
   705  	DISPATCH(runtime·call1024, 1024)
   706  	DISPATCH(runtime·call2048, 2048)
   707  	DISPATCH(runtime·call4096, 4096)
   708  	DISPATCH(runtime·call8192, 8192)
   709  	DISPATCH(runtime·call16384, 16384)
   710  	DISPATCH(runtime·call32768, 32768)
   711  	DISPATCH(runtime·call65536, 65536)
   712  	DISPATCH(runtime·call131072, 131072)
   713  	DISPATCH(runtime·call262144, 262144)
   714  	DISPATCH(runtime·call524288, 524288)
   715  	DISPATCH(runtime·call1048576, 1048576)
   716  	DISPATCH(runtime·call2097152, 2097152)
   717  	DISPATCH(runtime·call4194304, 4194304)
   718  	DISPATCH(runtime·call8388608, 8388608)
   719  	DISPATCH(runtime·call16777216, 16777216)
   720  	DISPATCH(runtime·call33554432, 33554432)
   721  	DISPATCH(runtime·call67108864, 67108864)
   722  	DISPATCH(runtime·call134217728, 134217728)
   723  	DISPATCH(runtime·call268435456, 268435456)
   724  	DISPATCH(runtime·call536870912, 536870912)
   725  	DISPATCH(runtime·call1073741824, 1073741824)
   726  	MOVQ	$runtime·badreflectcall(SB), AX
   727  	JMP	AX
   728  
   729  #define CALLFN(NAME,MAXSIZE)			\
   730  TEXT NAME(SB), WRAPPER, $MAXSIZE-48;		\
   731  	NO_LOCAL_POINTERS;			\
   732  	/* copy arguments to stack */		\
   733  	MOVQ	stackArgs+16(FP), SI;		\
   734  	MOVLQZX stackArgsSize+24(FP), CX;		\
   735  	MOVQ	SP, DI;				\
   736  	REP;MOVSB;				\
   737  	/* set up argument registers */		\
   738  	MOVQ    regArgs+40(FP), R12;		\
   739  	CALL    ·unspillArgs(SB);		\
   740  	/* call function */			\
   741  	MOVQ	f+8(FP), DX;			\
   742  	PCDATA  $PCDATA_StackMapIndex, $0;	\
   743  	MOVQ	(DX), R12;			\
   744  	CALL	R12;				\
   745  	/* copy register return values back */		\
   746  	MOVQ    regArgs+40(FP), R12;		\
   747  	CALL    ·spillArgs(SB);		\
   748  	MOVLQZX	stackArgsSize+24(FP), CX;		\
   749  	MOVLQZX	stackRetOffset+28(FP), BX;		\
   750  	MOVQ	stackArgs+16(FP), DI;		\
   751  	MOVQ	stackArgsType+0(FP), DX;		\
   752  	MOVQ	SP, SI;				\
   753  	ADDQ	BX, DI;				\
   754  	ADDQ	BX, SI;				\
   755  	SUBQ	BX, CX;				\
   756  	CALL	callRet<>(SB);			\
   757  	RET
   758  
   759  // callRet copies return values back at the end of call*. This is a
   760  // separate function so it can allocate stack space for the arguments
   761  // to reflectcallmove. It does not follow the Go ABI; it expects its
   762  // arguments in registers.
   763  TEXT callRet<>(SB), NOSPLIT, $40-0
   764  	NO_LOCAL_POINTERS
   765  	MOVQ	DX, 0(SP)
   766  	MOVQ	DI, 8(SP)
   767  	MOVQ	SI, 16(SP)
   768  	MOVQ	CX, 24(SP)
   769  	MOVQ	R12, 32(SP)
   770  	CALL	runtime·reflectcallmove(SB)
   771  	RET
   772  
   773  CALLFN(·call16, 16)
   774  CALLFN(·call32, 32)
   775  CALLFN(·call64, 64)
   776  CALLFN(·call128, 128)
   777  CALLFN(·call256, 256)
   778  CALLFN(·call512, 512)
   779  CALLFN(·call1024, 1024)
   780  CALLFN(·call2048, 2048)
   781  CALLFN(·call4096, 4096)
   782  CALLFN(·call8192, 8192)
   783  CALLFN(·call16384, 16384)
   784  CALLFN(·call32768, 32768)
   785  CALLFN(·call65536, 65536)
   786  CALLFN(·call131072, 131072)
   787  CALLFN(·call262144, 262144)
   788  CALLFN(·call524288, 524288)
   789  CALLFN(·call1048576, 1048576)
   790  CALLFN(·call2097152, 2097152)
   791  CALLFN(·call4194304, 4194304)
   792  CALLFN(·call8388608, 8388608)
   793  CALLFN(·call16777216, 16777216)
   794  CALLFN(·call33554432, 33554432)
   795  CALLFN(·call67108864, 67108864)
   796  CALLFN(·call134217728, 134217728)
   797  CALLFN(·call268435456, 268435456)
   798  CALLFN(·call536870912, 536870912)
   799  CALLFN(·call1073741824, 1073741824)
   800  
   801  TEXT runtime·procyield(SB),NOSPLIT,$0-0
   802  	MOVL	cycles+0(FP), AX
   803  again:
   804  	PAUSE
   805  	SUBL	$1, AX
   806  	JNZ	again
   807  	RET
   808  
   809  
   810  TEXT ·publicationBarrier<ABIInternal>(SB),NOSPLIT,$0-0
   811  	// Stores are already ordered on x86, so this is just a
   812  	// compile barrier.
   813  	RET
   814  
   815  // Save state of caller into g->sched,
   816  // but using fake PC from systemstack_switch.
   817  // Must only be called from functions with frame pointer
   818  // and without locals ($0) or else unwinding from
   819  // systemstack_switch is incorrect.
   820  // Smashes R9.
   821  TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
   822  	// Take systemstack_switch PC and add 8 bytes to skip
   823  	// the prologue. The final location does not matter
   824  	// as long as we are between the prologue and the epilogue.
   825  	MOVQ	$runtime·systemstack_switch+8(SB), R9
   826  	MOVQ	R9, (g_sched+gobuf_pc)(R14)
   827  	LEAQ	8(SP), R9
   828  	MOVQ	R9, (g_sched+gobuf_sp)(R14)
   829  	MOVQ	BP, (g_sched+gobuf_bp)(R14)
   830  	// Assert ctxt is zero. See func save.
   831  	MOVQ	(g_sched+gobuf_ctxt)(R14), R9
   832  	TESTQ	R9, R9
   833  	JZ	2(PC)
   834  	CALL	runtime·abort(SB)
   835  	RET
   836  
   837  // func asmcgocall_no_g(fn, arg unsafe.Pointer)
   838  // Call fn(arg) aligned appropriately for the gcc ABI.
   839  // Called on a system stack, and there may be no g yet (during needm).
   840  TEXT ·asmcgocall_no_g(SB),NOSPLIT,$32-16
   841  	MOVQ	fn+0(FP), AX
   842  	MOVQ	arg+8(FP), BX
   843  	MOVQ	SP, DX
   844  	ANDQ	$~15, SP	// alignment
   845  	MOVQ	DX, 8(SP)
   846  	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   847  	MOVQ	BX, CX		// CX = first argument in Win64
   848  	CALL	AX
   849  	MOVQ	8(SP), DX
   850  	MOVQ	DX, SP
   851  	RET
   852  
   853  // asmcgocall_landingpad calls AX with BX as argument.
   854  // Must be called on the system stack.
   855  TEXT ·asmcgocall_landingpad(SB),NOSPLIT,$0-0
   856  #ifdef GOOS_windows
   857  	// Make sure we have enough room for 4 stack-backed fast-call
   858  	// registers as per Windows amd64 calling convention.
   859  	ADJSP	$32
   860  	// On Windows, asmcgocall_landingpad acts as landing pad for exceptions
   861  	// thrown in the cgo call. Exceptions that reach this function will be
   862  	// handled by runtime.sehtramp thanks to the SEH metadata added
   863  	// by the compiler.
   864  	// Note that runtime.sehtramp can't be attached directly to asmcgocall
   865  	// because its initial stack pointer can be outside the system stack bounds,
   866  	// and Windows stops the stack unwinding without calling the exception handler
   867  	// when it reaches that point.
   868  	MOVQ	BX, CX		// CX = first argument in Win64
   869  	CALL	AX
   870  	// The exception handler is not called if the next instruction is part of
   871  	// the epilogue, which includes the RET instruction, so we need to add a NOP here.
   872  	BYTE	$0x90
   873  	ADJSP	$-32
   874  	RET
   875  #endif
   876  	// Tail call AX on non-Windows, as the extra stack frame is not needed.
   877  	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   878  	JMP	AX
   879  
   880  // func asmcgocall(fn, arg unsafe.Pointer) int32
   881  // Call fn(arg) on the scheduler stack,
   882  // aligned appropriately for the gcc ABI.
   883  // See cgocall.go for more details.
   884  TEXT ·asmcgocall(SB),NOSPLIT,$0-20
   885  	MOVQ	fn+0(FP), AX
   886  	MOVQ	arg+8(FP), BX
   887  
   888  	MOVQ	SP, DX
   889  
   890  	// Figure out if we need to switch to m->g0 stack.
   891  	// We get called to create new OS threads too, and those
   892  	// come in on the m->g0 stack already. Or we might already
   893  	// be on the m->gsignal stack.
   894  	get_tls(CX)
   895  	MOVQ	g(CX), DI
   896  	CMPQ	DI, $0
   897  	JEQ	nosave
   898  	MOVQ	g_m(DI), R8
   899  	MOVQ	m_gsignal(R8), SI
   900  	CMPQ	DI, SI
   901  	JEQ	nosave
   902  	MOVQ	m_g0(R8), SI
   903  	CMPQ	DI, SI
   904  	JEQ	nosave
   905  
   906  	// Switch to system stack.
   907  	// The original frame pointer is stored in BP,
   908  	// which is useful for stack unwinding.
   909  	CALL	gosave_systemstack_switch<>(SB)
   910  	MOVQ	SI, g(CX)
   911  	MOVQ	(g_sched+gobuf_sp)(SI), SP
   912  
   913  	// Now on a scheduling stack (a pthread-created stack).
   914  	SUBQ	$16, SP
   915  	ANDQ	$~15, SP	// alignment for gcc ABI
   916  	MOVQ	DI, 8(SP)	// save g
   917  	MOVQ	(g_stack+stack_hi)(DI), DI
   918  	SUBQ	DX, DI
   919  	MOVQ	DI, 0(SP)	// save depth in stack (can't just save SP, as stack might be copied during a callback)
   920  	CALL	runtime·asmcgocall_landingpad(SB)
   921  
   922  	// Restore registers, g, stack pointer.
   923  	get_tls(CX)
   924  	MOVQ	8(SP), DI
   925  	MOVQ	(g_stack+stack_hi)(DI), SI
   926  	SUBQ	0(SP), SI
   927  	MOVQ	DI, g(CX)
   928  	MOVQ	SI, SP
   929  
   930  	MOVL	AX, ret+16(FP)
   931  	RET
   932  
   933  nosave:
   934  	// Running on a system stack, perhaps even without a g.
   935  	// Having no g can happen during thread creation or thread teardown
   936  	// (see needm/dropm on Solaris, for example).
   937  	// This code is like the above sequence but without saving/restoring g
   938  	// and without worrying about the stack moving out from under us
   939  	// (because we're on a system stack, not a goroutine stack).
   940  	// The above code could be used directly if already on a system stack,
   941  	// but then the only path through this code would be a rare case on Solaris.
   942  	// Using this code for all "already on system stack" calls exercises it more,
   943  	// which should help keep it correct.
   944  	SUBQ	$16, SP
   945  	ANDQ	$~15, SP
   946  	MOVQ	$0, 8(SP)		// where above code stores g, in case someone looks during debugging
   947  	MOVQ	DX, 0(SP)	// save original stack pointer
   948  	CALL	runtime·asmcgocall_landingpad(SB)
   949  	MOVQ	0(SP), SI	// restore original stack pointer
   950  	MOVQ	SI, SP
   951  	MOVL	AX, ret+16(FP)
   952  	RET
   953  
   954  #ifdef GOOS_windows
   955  // Dummy TLS that's used on Windows so that we don't crash trying
   956  // to restore the G register in needm. needm and its callees are
   957  // very careful never to actually use the G, the TLS just can't be
   958  // unset since we're in Go code.
   959  GLOBL zeroTLS<>(SB),RODATA,$const_tlsSize
   960  #endif
   961  
   962  // func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
   963  // See cgocall.go for more details.
   964  TEXT ·cgocallback(SB),NOSPLIT,$24-24
   965  	NO_LOCAL_POINTERS
   966  
   967  	// Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
   968  	// It is used to dropm while thread is exiting.
   969  	MOVQ	fn+0(FP), AX
   970  	CMPQ	AX, $0
   971  	JNE	loadg
   972  	// Restore the g from frame.
   973  	get_tls(CX)
   974  	MOVQ	frame+8(FP), BX
   975  	MOVQ	BX, g(CX)
   976  	JMP	dropm
   977  
   978  loadg:
   979  	// If g is nil, Go did not create the current thread,
   980  	// or if this thread never called into Go on pthread platforms.
   981  	// Call needm to obtain one m for temporary use.
   982  	// In this case, we're running on the thread stack, so there's
   983  	// lots of space, but the linker doesn't know. Hide the call from
   984  	// the linker analysis by using an indirect call through AX.
   985  	get_tls(CX)
   986  #ifdef GOOS_windows
   987  	MOVL	$0, BX
   988  	CMPQ	CX, $0
   989  	JEQ	2(PC)
   990  #endif
   991  	MOVQ	g(CX), BX
   992  	CMPQ	BX, $0
   993  	JEQ	needm
   994  	MOVQ	g_m(BX), BX
   995  	MOVQ	BX, savedm-8(SP)	// saved copy of oldm
   996  	JMP	havem
   997  needm:
   998  #ifdef GOOS_windows
   999  	// Set up a dummy TLS value. needm is careful not to use it,
  1000  	// but it needs to be there to prevent autogenerated code from
  1001  	// crashing when it loads from it.
  1002  	// We don't need to clear it or anything later because needm
  1003  	// will set up TLS properly.
  1004  	MOVQ	$zeroTLS<>(SB), DI
  1005  	CALL	runtime·settls(SB)
  1006  #endif
  1007  	// On some platforms (Windows) we cannot call needm through
  1008  	// an ABI wrapper because there's no TLS set up, and the ABI
  1009  	// wrapper will try to restore the G register (R14) from TLS.
  1010  	// Clear X15 because Go expects it and we're not calling
  1011  	// through a wrapper, but otherwise avoid setting the G
  1012  	// register in the wrapper and call needm directly. It
  1013  	// takes no arguments and doesn't return any values so
  1014  	// there's no need to handle that. Clear R14 so that there's
  1015  	// a bad value in there, in case needm tries to use it.
  1016  	XORPS	X15, X15
  1017  	XORQ    R14, R14
  1018  	MOVQ	$runtime·needAndBindM<ABIInternal>(SB), AX
  1019  	CALL	AX
  1020  	MOVQ	$0, savedm-8(SP)
  1021  	get_tls(CX)
  1022  	MOVQ	g(CX), BX
  1023  	MOVQ	g_m(BX), BX
  1024  
  1025  	// Set m->sched.sp = SP, so that if a panic happens
  1026  	// during the function we are about to execute, it will
  1027  	// have a valid SP to run on the g0 stack.
  1028  	// The next few lines (after the havem label)
  1029  	// will save this SP onto the stack and then write
  1030  	// the same SP back to m->sched.sp. That seems redundant,
  1031  	// but if an unrecovered panic happens, unwindm will
  1032  	// restore the g->sched.sp from the stack location
  1033  	// and then systemstack will try to use it. If we don't set it here,
  1034  	// that restored SP will be uninitialized (typically 0) and
  1035  	// will not be usable.
  1036  	MOVQ	m_g0(BX), SI
  1037  	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1038  
  1039  havem:
  1040  	// Now there's a valid m, and we're running on its m->g0.
  1041  	// Save current m->g0->sched.sp on stack and then set it to SP.
  1042  	// Save current sp in m->g0->sched.sp in preparation for
  1043  	// switch back to m->curg stack.
  1044  	// NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
  1045  	MOVQ	m_g0(BX), SI
  1046  	MOVQ	(g_sched+gobuf_sp)(SI), AX
  1047  	MOVQ	AX, 0(SP)
  1048  	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1049  
  1050  	// Switch to m->curg stack and call runtime.cgocallbackg.
  1051  	// Because we are taking over the execution of m->curg
  1052  	// but *not* resuming what had been running, we need to
  1053  	// save that information (m->curg->sched) so we can restore it.
  1054  	// We can restore m->curg->sched.sp easily, because calling
  1055  	// runtime.cgocallbackg leaves SP unchanged upon return.
  1056  	// To save m->curg->sched.pc, we push it onto the curg stack and
  1057  	// open a frame the same size as cgocallback's g0 frame.
  1058  	// Once we switch to the curg stack, the pushed PC will appear
  1059  	// to be the return PC of cgocallback, so that the traceback
  1060  	// will seamlessly trace back into the earlier calls.
  1061  	MOVQ	m_curg(BX), SI
  1062  	MOVQ	SI, g(CX)
  1063  	MOVQ	(g_sched+gobuf_sp)(SI), DI  // prepare stack as DI
  1064  	MOVQ	(g_sched+gobuf_pc)(SI), BX
  1065  	MOVQ	BX, -8(DI)  // "push" return PC on the g stack
  1066  	// Gather our arguments into registers.
  1067  	MOVQ	fn+0(FP), BX
  1068  	MOVQ	frame+8(FP), CX
  1069  	MOVQ	ctxt+16(FP), DX
  1070  	// Compute the size of the frame, including return PC and, if
  1071  	// GOEXPERIMENT=framepointer, the saved base pointer
  1072  	LEAQ	fn+0(FP), AX
  1073  	SUBQ	SP, AX   // AX is our actual frame size
  1074  	SUBQ	AX, DI   // Allocate the same frame size on the g stack
  1075  	MOVQ	DI, SP
  1076  
  1077  	MOVQ	BX, 0(SP)
  1078  	MOVQ	CX, 8(SP)
  1079  	MOVQ	DX, 16(SP)
  1080  	MOVQ	$runtime·cgocallbackg(SB), AX
  1081  	CALL	AX	// indirect call to bypass nosplit check. We're on a different stack now.
  1082  
  1083  	// Compute the size of the frame again. FP and SP have
  1084  	// completely different values here than they did above,
  1085  	// but only their difference matters.
  1086  	LEAQ	fn+0(FP), AX
  1087  	SUBQ	SP, AX
  1088  
  1089  	// Restore g->sched (== m->curg->sched) from saved values.
  1090  	get_tls(CX)
  1091  	MOVQ	g(CX), SI
  1092  	MOVQ	SP, DI
  1093  	ADDQ	AX, DI
  1094  	MOVQ	-8(DI), BX
  1095  	MOVQ	BX, (g_sched+gobuf_pc)(SI)
  1096  	MOVQ	DI, (g_sched+gobuf_sp)(SI)
  1097  
  1098  	// Switch back to m->g0's stack and restore m->g0->sched.sp.
  1099  	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
  1100  	// so we do not have to restore it.)
  1101  	MOVQ	g(CX), BX
  1102  	MOVQ	g_m(BX), BX
  1103  	MOVQ	m_g0(BX), SI
  1104  	MOVQ	SI, g(CX)
  1105  	MOVQ	(g_sched+gobuf_sp)(SI), SP
  1106  	MOVQ	0(SP), AX
  1107  	MOVQ	AX, (g_sched+gobuf_sp)(SI)
  1108  
  1109  	// If the m on entry was nil, we called needm above to borrow an m,
  1110  	// 1. for the duration of the call on non-pthread platforms,
  1111  	// 2. or the duration of the C thread alive on pthread platforms.
  1112  	// If the m on entry wasn't nil,
  1113  	// 1. the thread might be a Go thread,
  1114  	// 2. or it wasn't the first call from a C thread on pthread platforms,
  1115  	//    since then we skip dropm to reuse the m in the first call.
  1116  	MOVQ	savedm-8(SP), BX
  1117  	CMPQ	BX, $0
  1118  	JNE	done
  1119  
  1120  	// Skip dropm to reuse it in the next call, when a pthread key has been created.
  1121  	MOVQ	_cgo_pthread_key_created(SB), AX
  1122  	// It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
  1123  	CMPQ	AX, $0
  1124  	JEQ	dropm
  1125  	CMPQ	(AX), $0
  1126  	JNE	done
  1127  
  1128  dropm:
  1129  	MOVQ	$runtime·dropm(SB), AX
  1130  	CALL	AX
  1131  #ifdef GOOS_windows
  1132  	// We need to clear the TLS pointer in case the next
  1133  	// thread that comes into Go tries to reuse that space
  1134  	// but uses the same M.
  1135  	XORQ	DI, DI
  1136  	CALL	runtime·settls(SB)
  1137  #endif
  1138  done:
  1139  
  1140  	// Done!
  1141  	RET
  1142  
  1143  // func setg(gg *g)
  1144  // set g. for use by needm.
  1145  TEXT runtime·setg(SB), NOSPLIT, $0-8
  1146  	MOVQ	gg+0(FP), BX
  1147  	get_tls(CX)
  1148  	MOVQ	BX, g(CX)
  1149  	RET
  1150  
  1151  // void setg_gcc(G*); set g called from gcc.
  1152  TEXT setg_gcc<>(SB),NOSPLIT,$0
  1153  	get_tls(AX)
  1154  	MOVQ	DI, g(AX)
  1155  	MOVQ	DI, R14 // set the g register
  1156  	RET
  1157  
  1158  TEXT runtime·abort(SB),NOSPLIT,$0-0
  1159  	INT	$3
  1160  loop:
  1161  	JMP	loop
  1162  
  1163  // check that SP is in range [g->stack.lo, g->stack.hi)
  1164  TEXT runtime·stackcheck(SB), NOSPLIT|NOFRAME, $0-0
  1165  	get_tls(CX)
  1166  	MOVQ	g(CX), AX
  1167  	CMPQ	(g_stack+stack_hi)(AX), SP
  1168  	JHI	2(PC)
  1169  	CALL	runtime·abort(SB)
  1170  	CMPQ	SP, (g_stack+stack_lo)(AX)
  1171  	JHI	2(PC)
  1172  	CALL	runtime·abort(SB)
  1173  	RET
  1174  
  1175  // func cputicks() int64
  1176  TEXT runtime·cputicks(SB),NOSPLIT,$0-0
  1177  	CMPB	internal∕cpu·X86+const_offsetX86HasRDTSCP(SB), $1
  1178  	JNE	fences
  1179  	// Instruction stream serializing RDTSCP is supported.
  1180  	// RDTSCP is supported by Intel Nehalem (2008) and
  1181  	// AMD K8 Rev. F (2006) and newer.
  1182  	RDTSCP
  1183  done:
  1184  	SHLQ	$32, DX
  1185  	ADDQ	DX, AX
  1186  	MOVQ	AX, ret+0(FP)
  1187  	RET
  1188  fences:
  1189  	// MFENCE is instruction stream serializing and flushes the
  1190  	// store buffers on AMD. The serialization semantics of LFENCE on AMD
  1191  	// are dependent on MSR C001_1029 and CPU generation.
  1192  	// LFENCE on Intel does wait for all previous instructions to have executed.
  1193  	// Intel recommends MFENCE;LFENCE in its manuals before RDTSC to have all
  1194  	// previous instructions executed and all previous loads and stores to globally visible.
  1195  	// Using MFENCE;LFENCE here aligns the serializing properties without
  1196  	// runtime detection of CPU manufacturer.
  1197  	MFENCE
  1198  	LFENCE
  1199  	RDTSC
  1200  	JMP done
  1201  
  1202  // func memhash(p unsafe.Pointer, h, s uintptr) uintptr
  1203  // hash function using AES hardware instructions
  1204  TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT,$0-32
  1205  	// AX = ptr to data
  1206  	// BX = seed
  1207  	// CX = size
  1208  	CMPB	runtime·useAeshash(SB), $0
  1209  	JEQ	noaes
  1210  	JMP	aeshashbody<>(SB)
  1211  noaes:
  1212  	JMP	runtime·memhashFallback<ABIInternal>(SB)
  1213  
  1214  // func strhash(p unsafe.Pointer, h uintptr) uintptr
  1215  TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT,$0-24
  1216  	// AX = ptr to string struct
  1217  	// BX = seed
  1218  	CMPB	runtime·useAeshash(SB), $0
  1219  	JEQ	noaes
  1220  	MOVQ	8(AX), CX	// length of string
  1221  	MOVQ	(AX), AX	// string data
  1222  	JMP	aeshashbody<>(SB)
  1223  noaes:
  1224  	JMP	runtime·strhashFallback<ABIInternal>(SB)
  1225  
  1226  // AX: data
  1227  // BX: hash seed
  1228  // CX: length
  1229  // At return: AX = return value
  1230  TEXT aeshashbody<>(SB),NOSPLIT,$0-0
  1231  	// Fill an SSE register with our seeds.
  1232  	MOVQ	BX, X0				// 64 bits of per-table hash seed
  1233  	PINSRW	$4, CX, X0			// 16 bits of length
  1234  	PSHUFHW $0, X0, X0			// repeat length 4 times total
  1235  	MOVO	X0, X1				// save unscrambled seed
  1236  	PXOR	runtime·aeskeysched(SB), X0	// xor in per-process seed
  1237  	AESENC	X0, X0				// scramble seed
  1238  
  1239  	CMPQ	CX, $16
  1240  	JB	aes0to15
  1241  	JE	aes16
  1242  	CMPQ	CX, $32
  1243  	JBE	aes17to32
  1244  	CMPQ	CX, $64
  1245  	JBE	aes33to64
  1246  	CMPQ	CX, $128
  1247  	JBE	aes65to128
  1248  	JMP	aes129plus
  1249  
  1250  aes0to15:
  1251  	TESTQ	CX, CX
  1252  	JE	aes0
  1253  
  1254  	ADDQ	$16, AX
  1255  	TESTW	$0xff0, AX
  1256  	JE	endofpage
  1257  
  1258  	// 16 bytes loaded at this address won't cross
  1259  	// a page boundary, so we can load it directly.
  1260  	MOVOU	-16(AX), X1
  1261  	ADDQ	CX, CX
  1262  	MOVQ	$masks<>(SB), AX
  1263  	PAND	(AX)(CX*8), X1
  1264  final1:
  1265  	PXOR	X0, X1	// xor data with seed
  1266  	AESENC	X1, X1	// scramble combo 3 times
  1267  	AESENC	X1, X1
  1268  	AESENC	X1, X1
  1269  	MOVQ	X1, AX	// return X1
  1270  	RET
  1271  
  1272  endofpage:
  1273  	// address ends in 1111xxxx. Might be up against
  1274  	// a page boundary, so load ending at last byte.
  1275  	// Then shift bytes down using pshufb.
  1276  	MOVOU	-32(AX)(CX*1), X1
  1277  	ADDQ	CX, CX
  1278  	MOVQ	$shifts<>(SB), AX
  1279  	PSHUFB	(AX)(CX*8), X1
  1280  	JMP	final1
  1281  
  1282  aes0:
  1283  	// Return scrambled input seed
  1284  	AESENC	X0, X0
  1285  	MOVQ	X0, AX	// return X0
  1286  	RET
  1287  
  1288  aes16:
  1289  	MOVOU	(AX), X1
  1290  	JMP	final1
  1291  
  1292  aes17to32:
  1293  	// make second starting seed
  1294  	PXOR	runtime·aeskeysched+16(SB), X1
  1295  	AESENC	X1, X1
  1296  
  1297  	// load data to be hashed
  1298  	MOVOU	(AX), X2
  1299  	MOVOU	-16(AX)(CX*1), X3
  1300  
  1301  	// xor with seed
  1302  	PXOR	X0, X2
  1303  	PXOR	X1, X3
  1304  
  1305  	// scramble 3 times
  1306  	AESENC	X2, X2
  1307  	AESENC	X3, X3
  1308  	AESENC	X2, X2
  1309  	AESENC	X3, X3
  1310  	AESENC	X2, X2
  1311  	AESENC	X3, X3
  1312  
  1313  	// combine results
  1314  	PXOR	X3, X2
  1315  	MOVQ	X2, AX	// return X2
  1316  	RET
  1317  
  1318  aes33to64:
  1319  	// make 3 more starting seeds
  1320  	MOVO	X1, X2
  1321  	MOVO	X1, X3
  1322  	PXOR	runtime·aeskeysched+16(SB), X1
  1323  	PXOR	runtime·aeskeysched+32(SB), X2
  1324  	PXOR	runtime·aeskeysched+48(SB), X3
  1325  	AESENC	X1, X1
  1326  	AESENC	X2, X2
  1327  	AESENC	X3, X3
  1328  
  1329  	MOVOU	(AX), X4
  1330  	MOVOU	16(AX), X5
  1331  	MOVOU	-32(AX)(CX*1), X6
  1332  	MOVOU	-16(AX)(CX*1), X7
  1333  
  1334  	PXOR	X0, X4
  1335  	PXOR	X1, X5
  1336  	PXOR	X2, X6
  1337  	PXOR	X3, X7
  1338  
  1339  	AESENC	X4, X4
  1340  	AESENC	X5, X5
  1341  	AESENC	X6, X6
  1342  	AESENC	X7, X7
  1343  
  1344  	AESENC	X4, X4
  1345  	AESENC	X5, X5
  1346  	AESENC	X6, X6
  1347  	AESENC	X7, X7
  1348  
  1349  	AESENC	X4, X4
  1350  	AESENC	X5, X5
  1351  	AESENC	X6, X6
  1352  	AESENC	X7, X7
  1353  
  1354  	PXOR	X6, X4
  1355  	PXOR	X7, X5
  1356  	PXOR	X5, X4
  1357  	MOVQ	X4, AX	// return X4
  1358  	RET
  1359  
  1360  aes65to128:
  1361  	// make 7 more starting seeds
  1362  	MOVO	X1, X2
  1363  	MOVO	X1, X3
  1364  	MOVO	X1, X4
  1365  	MOVO	X1, X5
  1366  	MOVO	X1, X6
  1367  	MOVO	X1, X7
  1368  	PXOR	runtime·aeskeysched+16(SB), X1
  1369  	PXOR	runtime·aeskeysched+32(SB), X2
  1370  	PXOR	runtime·aeskeysched+48(SB), X3
  1371  	PXOR	runtime·aeskeysched+64(SB), X4
  1372  	PXOR	runtime·aeskeysched+80(SB), X5
  1373  	PXOR	runtime·aeskeysched+96(SB), X6
  1374  	PXOR	runtime·aeskeysched+112(SB), X7
  1375  	AESENC	X1, X1
  1376  	AESENC	X2, X2
  1377  	AESENC	X3, X3
  1378  	AESENC	X4, X4
  1379  	AESENC	X5, X5
  1380  	AESENC	X6, X6
  1381  	AESENC	X7, X7
  1382  
  1383  	// load data
  1384  	MOVOU	(AX), X8
  1385  	MOVOU	16(AX), X9
  1386  	MOVOU	32(AX), X10
  1387  	MOVOU	48(AX), X11
  1388  	MOVOU	-64(AX)(CX*1), X12
  1389  	MOVOU	-48(AX)(CX*1), X13
  1390  	MOVOU	-32(AX)(CX*1), X14
  1391  	MOVOU	-16(AX)(CX*1), X15
  1392  
  1393  	// xor with seed
  1394  	PXOR	X0, X8
  1395  	PXOR	X1, X9
  1396  	PXOR	X2, X10
  1397  	PXOR	X3, X11
  1398  	PXOR	X4, X12
  1399  	PXOR	X5, X13
  1400  	PXOR	X6, X14
  1401  	PXOR	X7, X15
  1402  
  1403  	// scramble 3 times
  1404  	AESENC	X8, X8
  1405  	AESENC	X9, X9
  1406  	AESENC	X10, X10
  1407  	AESENC	X11, X11
  1408  	AESENC	X12, X12
  1409  	AESENC	X13, X13
  1410  	AESENC	X14, X14
  1411  	AESENC	X15, X15
  1412  
  1413  	AESENC	X8, X8
  1414  	AESENC	X9, X9
  1415  	AESENC	X10, X10
  1416  	AESENC	X11, X11
  1417  	AESENC	X12, X12
  1418  	AESENC	X13, X13
  1419  	AESENC	X14, X14
  1420  	AESENC	X15, X15
  1421  
  1422  	AESENC	X8, X8
  1423  	AESENC	X9, X9
  1424  	AESENC	X10, X10
  1425  	AESENC	X11, X11
  1426  	AESENC	X12, X12
  1427  	AESENC	X13, X13
  1428  	AESENC	X14, X14
  1429  	AESENC	X15, X15
  1430  
  1431  	// combine results
  1432  	PXOR	X12, X8
  1433  	PXOR	X13, X9
  1434  	PXOR	X14, X10
  1435  	PXOR	X15, X11
  1436  	PXOR	X10, X8
  1437  	PXOR	X11, X9
  1438  	PXOR	X9, X8
  1439  	// X15 must be zero on return
  1440  	PXOR	X15, X15
  1441  	MOVQ	X8, AX	// return X8
  1442  	RET
  1443  
  1444  aes129plus:
  1445  	// make 7 more starting seeds
  1446  	MOVO	X1, X2
  1447  	MOVO	X1, X3
  1448  	MOVO	X1, X4
  1449  	MOVO	X1, X5
  1450  	MOVO	X1, X6
  1451  	MOVO	X1, X7
  1452  	PXOR	runtime·aeskeysched+16(SB), X1
  1453  	PXOR	runtime·aeskeysched+32(SB), X2
  1454  	PXOR	runtime·aeskeysched+48(SB), X3
  1455  	PXOR	runtime·aeskeysched+64(SB), X4
  1456  	PXOR	runtime·aeskeysched+80(SB), X5
  1457  	PXOR	runtime·aeskeysched+96(SB), X6
  1458  	PXOR	runtime·aeskeysched+112(SB), X7
  1459  	AESENC	X1, X1
  1460  	AESENC	X2, X2
  1461  	AESENC	X3, X3
  1462  	AESENC	X4, X4
  1463  	AESENC	X5, X5
  1464  	AESENC	X6, X6
  1465  	AESENC	X7, X7
  1466  
  1467  	// start with last (possibly overlapping) block
  1468  	MOVOU	-128(AX)(CX*1), X8
  1469  	MOVOU	-112(AX)(CX*1), X9
  1470  	MOVOU	-96(AX)(CX*1), X10
  1471  	MOVOU	-80(AX)(CX*1), X11
  1472  	MOVOU	-64(AX)(CX*1), X12
  1473  	MOVOU	-48(AX)(CX*1), X13
  1474  	MOVOU	-32(AX)(CX*1), X14
  1475  	MOVOU	-16(AX)(CX*1), X15
  1476  
  1477  	// xor in seed
  1478  	PXOR	X0, X8
  1479  	PXOR	X1, X9
  1480  	PXOR	X2, X10
  1481  	PXOR	X3, X11
  1482  	PXOR	X4, X12
  1483  	PXOR	X5, X13
  1484  	PXOR	X6, X14
  1485  	PXOR	X7, X15
  1486  
  1487  	// compute number of remaining 128-byte blocks
  1488  	DECQ	CX
  1489  	SHRQ	$7, CX
  1490  
  1491  	PCALIGN $16
  1492  aesloop:
  1493  	// scramble state
  1494  	AESENC	X8, X8
  1495  	AESENC	X9, X9
  1496  	AESENC	X10, X10
  1497  	AESENC	X11, X11
  1498  	AESENC	X12, X12
  1499  	AESENC	X13, X13
  1500  	AESENC	X14, X14
  1501  	AESENC	X15, X15
  1502  
  1503  	// scramble state, xor in a block
  1504  	MOVOU	(AX), X0
  1505  	MOVOU	16(AX), X1
  1506  	MOVOU	32(AX), X2
  1507  	MOVOU	48(AX), X3
  1508  	AESENC	X0, X8
  1509  	AESENC	X1, X9
  1510  	AESENC	X2, X10
  1511  	AESENC	X3, X11
  1512  	MOVOU	64(AX), X4
  1513  	MOVOU	80(AX), X5
  1514  	MOVOU	96(AX), X6
  1515  	MOVOU	112(AX), X7
  1516  	AESENC	X4, X12
  1517  	AESENC	X5, X13
  1518  	AESENC	X6, X14
  1519  	AESENC	X7, X15
  1520  
  1521  	ADDQ	$128, AX
  1522  	DECQ	CX
  1523  	JNE	aesloop
  1524  
  1525  	// 3 more scrambles to finish
  1526  	AESENC	X8, X8
  1527  	AESENC	X9, X9
  1528  	AESENC	X10, X10
  1529  	AESENC	X11, X11
  1530  	AESENC	X12, X12
  1531  	AESENC	X13, X13
  1532  	AESENC	X14, X14
  1533  	AESENC	X15, X15
  1534  	AESENC	X8, X8
  1535  	AESENC	X9, X9
  1536  	AESENC	X10, X10
  1537  	AESENC	X11, X11
  1538  	AESENC	X12, X12
  1539  	AESENC	X13, X13
  1540  	AESENC	X14, X14
  1541  	AESENC	X15, X15
  1542  	AESENC	X8, X8
  1543  	AESENC	X9, X9
  1544  	AESENC	X10, X10
  1545  	AESENC	X11, X11
  1546  	AESENC	X12, X12
  1547  	AESENC	X13, X13
  1548  	AESENC	X14, X14
  1549  	AESENC	X15, X15
  1550  
  1551  	PXOR	X12, X8
  1552  	PXOR	X13, X9
  1553  	PXOR	X14, X10
  1554  	PXOR	X15, X11
  1555  	PXOR	X10, X8
  1556  	PXOR	X11, X9
  1557  	PXOR	X9, X8
  1558  	// X15 must be zero on return
  1559  	PXOR	X15, X15
  1560  	MOVQ	X8, AX	// return X8
  1561  	RET
  1562  
  1563  // func memhash32(p unsafe.Pointer, h uintptr) uintptr
  1564  // ABIInternal for performance.
  1565  TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT,$0-24
  1566  	// AX = ptr to data
  1567  	// BX = seed
  1568  	CMPB	runtime·useAeshash(SB), $0
  1569  	JEQ	noaes
  1570  	MOVQ	BX, X0	// X0 = seed
  1571  	PINSRD	$2, (AX), X0	// data
  1572  	AESENC	runtime·aeskeysched+0(SB), X0
  1573  	AESENC	runtime·aeskeysched+16(SB), X0
  1574  	AESENC	runtime·aeskeysched+32(SB), X0
  1575  	MOVQ	X0, AX	// return X0
  1576  	RET
  1577  noaes:
  1578  	JMP	runtime·memhash32Fallback<ABIInternal>(SB)
  1579  
  1580  // func memhash64(p unsafe.Pointer, h uintptr) uintptr
  1581  // ABIInternal for performance.
  1582  TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT,$0-24
  1583  	// AX = ptr to data
  1584  	// BX = seed
  1585  	CMPB	runtime·useAeshash(SB), $0
  1586  	JEQ	noaes
  1587  	MOVQ	BX, X0	// X0 = seed
  1588  	PINSRQ	$1, (AX), X0	// data
  1589  	AESENC	runtime·aeskeysched+0(SB), X0
  1590  	AESENC	runtime·aeskeysched+16(SB), X0
  1591  	AESENC	runtime·aeskeysched+32(SB), X0
  1592  	MOVQ	X0, AX	// return X0
  1593  	RET
  1594  noaes:
  1595  	JMP	runtime·memhash64Fallback<ABIInternal>(SB)
  1596  
  1597  // simple mask to get rid of data in the high part of the register.
  1598  DATA masks<>+0x00(SB)/8, $0x0000000000000000
  1599  DATA masks<>+0x08(SB)/8, $0x0000000000000000
  1600  DATA masks<>+0x10(SB)/8, $0x00000000000000ff
  1601  DATA masks<>+0x18(SB)/8, $0x0000000000000000
  1602  DATA masks<>+0x20(SB)/8, $0x000000000000ffff
  1603  DATA masks<>+0x28(SB)/8, $0x0000000000000000
  1604  DATA masks<>+0x30(SB)/8, $0x0000000000ffffff
  1605  DATA masks<>+0x38(SB)/8, $0x0000000000000000
  1606  DATA masks<>+0x40(SB)/8, $0x00000000ffffffff
  1607  DATA masks<>+0x48(SB)/8, $0x0000000000000000
  1608  DATA masks<>+0x50(SB)/8, $0x000000ffffffffff
  1609  DATA masks<>+0x58(SB)/8, $0x0000000000000000
  1610  DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff
  1611  DATA masks<>+0x68(SB)/8, $0x0000000000000000
  1612  DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff
  1613  DATA masks<>+0x78(SB)/8, $0x0000000000000000
  1614  DATA masks<>+0x80(SB)/8, $0xffffffffffffffff
  1615  DATA masks<>+0x88(SB)/8, $0x0000000000000000
  1616  DATA masks<>+0x90(SB)/8, $0xffffffffffffffff
  1617  DATA masks<>+0x98(SB)/8, $0x00000000000000ff
  1618  DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff
  1619  DATA masks<>+0xa8(SB)/8, $0x000000000000ffff
  1620  DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff
  1621  DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff
  1622  DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff
  1623  DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff
  1624  DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff
  1625  DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff
  1626  DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff
  1627  DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff
  1628  DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff
  1629  DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff
  1630  GLOBL masks<>(SB),RODATA,$256
  1631  
  1632  // func checkASM() bool
  1633  TEXT ·checkASM(SB),NOSPLIT,$0-1
  1634  	// check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte
  1635  	MOVQ	$masks<>(SB), AX
  1636  	MOVQ	$shifts<>(SB), BX
  1637  	ORQ	BX, AX
  1638  	TESTQ	$15, AX
  1639  	SETEQ	ret+0(FP)
  1640  	RET
  1641  
  1642  // these are arguments to pshufb. They move data down from
  1643  // the high bytes of the register to the low bytes of the register.
  1644  // index is how many bytes to move.
  1645  DATA shifts<>+0x00(SB)/8, $0x0000000000000000
  1646  DATA shifts<>+0x08(SB)/8, $0x0000000000000000
  1647  DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f
  1648  DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff
  1649  DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e
  1650  DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff
  1651  DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d
  1652  DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff
  1653  DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c
  1654  DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff
  1655  DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b
  1656  DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff
  1657  DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a
  1658  DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff
  1659  DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09
  1660  DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff
  1661  DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908
  1662  DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff
  1663  DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807
  1664  DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f
  1665  DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706
  1666  DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e
  1667  DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605
  1668  DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d
  1669  DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504
  1670  DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c
  1671  DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403
  1672  DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b
  1673  DATA shifts<>+0xe0(SB)/8, $0x0908070605040302
  1674  DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a
  1675  DATA shifts<>+0xf0(SB)/8, $0x0807060504030201
  1676  DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09
  1677  GLOBL shifts<>(SB),RODATA,$256
  1678  
  1679  // Called from cgo wrappers, this function returns g->m->curg.stack.hi.
  1680  // Must obey the gcc calling convention.
  1681  TEXT _cgo_topofstack(SB),NOSPLIT,$0
  1682  	get_tls(CX)
  1683  	MOVQ	g(CX), AX
  1684  	MOVQ	g_m(AX), AX
  1685  	MOVQ	m_curg(AX), AX
  1686  	MOVQ	(g_stack+stack_hi)(AX), AX
  1687  	RET
  1688  
  1689  // The top-most function running on a goroutine
  1690  // returns to goexit+PCQuantum.
  1691  TEXT runtime·goexit(SB),NOSPLIT|TOPFRAME|NOFRAME,$0-0
  1692  	BYTE	$0x90	// NOP
  1693  	CALL	runtime·goexit1(SB)	// does not return
  1694  	// traceback from goexit1 must hit code range of goexit
  1695  	BYTE	$0x90	// NOP
  1696  
  1697  // This is called from .init_array and follows the platform, not Go, ABI.
  1698  TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
  1699  	PUSHQ	R15 // The access to global variables below implicitly uses R15, which is callee-save
  1700  	MOVQ	runtime·lastmoduledatap(SB), AX
  1701  	MOVQ	DI, moduledata_next(AX)
  1702  	MOVQ	DI, runtime·lastmoduledatap(SB)
  1703  	POPQ	R15
  1704  	RET
  1705  
  1706  // Initialize special registers then jump to sigpanic.
  1707  // This function is injected from the signal handler for panicking
  1708  // signals. It is quite painful to set X15 in the signal context,
  1709  // so we do it here.
  1710  TEXT ·sigpanic0(SB),NOSPLIT,$0-0
  1711  	get_tls(R14)
  1712  	MOVQ	g(R14), R14
  1713  	XORPS	X15, X15
  1714  	JMP	·sigpanic<ABIInternal>(SB)
  1715  
  1716  // gcWriteBarrier informs the GC about heap pointer writes.
  1717  //
  1718  // gcWriteBarrier returns space in a write barrier buffer which
  1719  // should be filled in by the caller.
  1720  // gcWriteBarrier does NOT follow the Go ABI. It accepts the
  1721  // number of bytes of buffer needed in R11, and returns a pointer
  1722  // to the buffer space in R11.
  1723  // It clobbers FLAGS. It does not clobber any general-purpose registers,
  1724  // but may clobber others (e.g., SSE registers).
  1725  // Typical use would be, when doing *(CX+88) = AX
  1726  //     CMPL    $0, runtime.writeBarrier(SB)
  1727  //     JEQ     dowrite
  1728  //     CALL    runtime.gcBatchBarrier2(SB)
  1729  //     MOVQ    AX, (R11)
  1730  //     MOVQ    88(CX), DX
  1731  //     MOVQ    DX, 8(R11)
  1732  // dowrite:
  1733  //     MOVQ    AX, 88(CX)
  1734  TEXT gcWriteBarrier<>(SB),NOSPLIT,$112
  1735  	// Save the registers clobbered by the fast path. This is slightly
  1736  	// faster than having the caller spill these.
  1737  	MOVQ	R12, 96(SP)
  1738  	MOVQ	R13, 104(SP)
  1739  retry:
  1740  	// TODO: Consider passing g.m.p in as an argument so they can be shared
  1741  	// across a sequence of write barriers.
  1742  	MOVQ	g_m(R14), R13
  1743  	MOVQ	m_p(R13), R13
  1744  	// Get current buffer write position.
  1745  	MOVQ	(p_wbBuf+wbBuf_next)(R13), R12	// original next position
  1746  	ADDQ	R11, R12			// new next position
  1747  	// Is the buffer full?
  1748  	CMPQ	R12, (p_wbBuf+wbBuf_end)(R13)
  1749  	JA	flush
  1750  	// Commit to the larger buffer.
  1751  	MOVQ	R12, (p_wbBuf+wbBuf_next)(R13)
  1752  	// Make return value (the original next position)
  1753  	SUBQ	R11, R12
  1754  	MOVQ	R12, R11
  1755  	// Restore registers.
  1756  	MOVQ	96(SP), R12
  1757  	MOVQ	104(SP), R13
  1758  	RET
  1759  
  1760  flush:
  1761  	// Save all general purpose registers since these could be
  1762  	// clobbered by wbBufFlush and were not saved by the caller.
  1763  	// It is possible for wbBufFlush to clobber other registers
  1764  	// (e.g., SSE registers), but the compiler takes care of saving
  1765  	// those in the caller if necessary. This strikes a balance
  1766  	// with registers that are likely to be used.
  1767  	//
  1768  	// We don't have type information for these, but all code under
  1769  	// here is NOSPLIT, so nothing will observe these.
  1770  	//
  1771  	// TODO: We could strike a different balance; e.g., saving X0
  1772  	// and not saving GP registers that are less likely to be used.
  1773  	MOVQ	DI, 0(SP)
  1774  	MOVQ	AX, 8(SP)
  1775  	MOVQ	BX, 16(SP)
  1776  	MOVQ	CX, 24(SP)
  1777  	MOVQ	DX, 32(SP)
  1778  	// DI already saved
  1779  	MOVQ	SI, 40(SP)
  1780  	MOVQ	BP, 48(SP)
  1781  	MOVQ	R8, 56(SP)
  1782  	MOVQ	R9, 64(SP)
  1783  	MOVQ	R10, 72(SP)
  1784  	MOVQ	R11, 80(SP)
  1785  	// R12 already saved
  1786  	// R13 already saved
  1787  	// R14 is g
  1788  	MOVQ	R15, 88(SP)
  1789  
  1790  	CALL	runtime·wbBufFlush(SB)
  1791  
  1792  	MOVQ	0(SP), DI
  1793  	MOVQ	8(SP), AX
  1794  	MOVQ	16(SP), BX
  1795  	MOVQ	24(SP), CX
  1796  	MOVQ	32(SP), DX
  1797  	MOVQ	40(SP), SI
  1798  	MOVQ	48(SP), BP
  1799  	MOVQ	56(SP), R8
  1800  	MOVQ	64(SP), R9
  1801  	MOVQ	72(SP), R10
  1802  	MOVQ	80(SP), R11
  1803  	MOVQ	88(SP), R15
  1804  	JMP	retry
  1805  
  1806  TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1807  	MOVL   $8, R11
  1808  	JMP     gcWriteBarrier<>(SB)
  1809  TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1810  	MOVL   $16, R11
  1811  	JMP     gcWriteBarrier<>(SB)
  1812  TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1813  	MOVL   $24, R11
  1814  	JMP     gcWriteBarrier<>(SB)
  1815  TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1816  	MOVL   $32, R11
  1817  	JMP     gcWriteBarrier<>(SB)
  1818  TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1819  	MOVL   $40, R11
  1820  	JMP     gcWriteBarrier<>(SB)
  1821  TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1822  	MOVL   $48, R11
  1823  	JMP     gcWriteBarrier<>(SB)
  1824  TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1825  	MOVL   $56, R11
  1826  	JMP     gcWriteBarrier<>(SB)
  1827  TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1828  	MOVL   $64, R11
  1829  	JMP     gcWriteBarrier<>(SB)
  1830  
  1831  DATA	debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
  1832  GLOBL	debugCallFrameTooLarge<>(SB), RODATA, $20	// Size duplicated below
  1833  
  1834  // debugCallV2 is the entry point for debugger-injected function
  1835  // calls on running goroutines. It informs the runtime that a
  1836  // debug call has been injected and creates a call frame for the
  1837  // debugger to fill in.
  1838  //
  1839  // To inject a function call, a debugger should:
  1840  // 1. Check that the goroutine is in state _Grunning and that
  1841  //    there are at least 256 bytes free on the stack.
  1842  // 2. Push the current PC on the stack (updating SP).
  1843  // 3. Write the desired argument frame size at SP-16 (using the SP
  1844  //    after step 2).
  1845  // 4. Save all machine registers (including flags and XMM registers)
  1846  //    so they can be restored later by the debugger.
  1847  // 5. Set the PC to debugCallV2 and resume execution.
  1848  //
  1849  // If the goroutine is in state _Grunnable, then it's not generally
  1850  // safe to inject a call because it may return out via other runtime
  1851  // operations. Instead, the debugger should unwind the stack to find
  1852  // the return to non-runtime code, add a temporary breakpoint there,
  1853  // and inject the call once that breakpoint is hit.
  1854  //
  1855  // If the goroutine is in any other state, it's not safe to inject a call.
  1856  //
  1857  // This function communicates back to the debugger by setting R12 and
  1858  // invoking INT3 to raise a breakpoint signal. See the comments in the
  1859  // implementation for the protocol the debugger is expected to
  1860  // follow. InjectDebugCall in the runtime tests demonstrates this protocol.
  1861  //
  1862  // The debugger must ensure that any pointers passed to the function
  1863  // obey escape analysis requirements. Specifically, it must not pass
  1864  // a stack pointer to an escaping argument. debugCallV2 cannot check
  1865  // this invariant.
  1866  //
  1867  // This is ABIInternal because Go code injects its PC directly into new
  1868  // goroutine stacks.
  1869  TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT,$152-0
  1870  	// Save all registers that may contain pointers so they can be
  1871  	// conservatively scanned.
  1872  	//
  1873  	// We can't do anything that might clobber any of these
  1874  	// registers before this.
  1875  	MOVQ	R15, r15-(14*8+8)(SP)
  1876  	MOVQ	R14, r14-(13*8+8)(SP)
  1877  	MOVQ	R13, r13-(12*8+8)(SP)
  1878  	MOVQ	R12, r12-(11*8+8)(SP)
  1879  	MOVQ	R11, r11-(10*8+8)(SP)
  1880  	MOVQ	R10, r10-(9*8+8)(SP)
  1881  	MOVQ	R9, r9-(8*8+8)(SP)
  1882  	MOVQ	R8, r8-(7*8+8)(SP)
  1883  	MOVQ	DI, di-(6*8+8)(SP)
  1884  	MOVQ	SI, si-(5*8+8)(SP)
  1885  	MOVQ	BP, bp-(4*8+8)(SP)
  1886  	MOVQ	BX, bx-(3*8+8)(SP)
  1887  	MOVQ	DX, dx-(2*8+8)(SP)
  1888  	// Save the frame size before we clobber it. Either of the last
  1889  	// saves could clobber this depending on whether there's a saved BP.
  1890  	MOVQ	frameSize-24(FP), DX	// aka -16(RSP) before prologue
  1891  	MOVQ	CX, cx-(1*8+8)(SP)
  1892  	MOVQ	AX, ax-(0*8+8)(SP)
  1893  
  1894  	// Save the argument frame size.
  1895  	MOVQ	DX, frameSize-128(SP)
  1896  
  1897  	// Perform a safe-point check.
  1898  	MOVQ	retpc-8(FP), AX	// Caller's PC
  1899  	MOVQ	AX, 0(SP)
  1900  	CALL	runtime·debugCallCheck(SB)
  1901  	MOVQ	8(SP), AX
  1902  	TESTQ	AX, AX
  1903  	JZ	good
  1904  	// The safety check failed. Put the reason string at the top
  1905  	// of the stack.
  1906  	MOVQ	AX, 0(SP)
  1907  	MOVQ	16(SP), AX
  1908  	MOVQ	AX, 8(SP)
  1909  	// Set R12 to 8 and invoke INT3. The debugger should get the
  1910  	// reason a call can't be injected from the top of the stack
  1911  	// and resume execution.
  1912  	MOVQ	$8, R12
  1913  	BYTE	$0xcc
  1914  	JMP	restore
  1915  
  1916  good:
  1917  	// Registers are saved and it's safe to make a call.
  1918  	// Open up a call frame, moving the stack if necessary.
  1919  	//
  1920  	// Once the frame is allocated, this will set R12 to 0 and
  1921  	// invoke INT3. The debugger should write the argument
  1922  	// frame for the call at SP, set up argument registers, push
  1923  	// the trapping PC on the stack, set the PC to the function to
  1924  	// call, set RDX to point to the closure (if a closure call),
  1925  	// and resume execution.
  1926  	//
  1927  	// If the function returns, this will set R12 to 1 and invoke
  1928  	// INT3. The debugger can then inspect any return value saved
  1929  	// on the stack at SP and in registers and resume execution again.
  1930  	//
  1931  	// If the function panics, this will set R12 to 2 and invoke INT3.
  1932  	// The interface{} value of the panic will be at SP. The debugger
  1933  	// can inspect the panic value and resume execution again.
  1934  #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE)	\
  1935  	CMPQ	AX, $MAXSIZE;			\
  1936  	JA	5(PC);				\
  1937  	MOVQ	$NAME(SB), AX;			\
  1938  	MOVQ	AX, 0(SP);			\
  1939  	CALL	runtime·debugCallWrap(SB);	\
  1940  	JMP	restore
  1941  
  1942  	MOVQ	frameSize-128(SP), AX
  1943  	DEBUG_CALL_DISPATCH(debugCall32<>, 32)
  1944  	DEBUG_CALL_DISPATCH(debugCall64<>, 64)
  1945  	DEBUG_CALL_DISPATCH(debugCall128<>, 128)
  1946  	DEBUG_CALL_DISPATCH(debugCall256<>, 256)
  1947  	DEBUG_CALL_DISPATCH(debugCall512<>, 512)
  1948  	DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
  1949  	DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
  1950  	DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
  1951  	DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
  1952  	DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
  1953  	DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
  1954  	DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
  1955  	// The frame size is too large. Report the error.
  1956  	MOVQ	$debugCallFrameTooLarge<>(SB), AX
  1957  	MOVQ	AX, 0(SP)
  1958  	MOVQ	$20, 8(SP) // length of debugCallFrameTooLarge string
  1959  	MOVQ	$8, R12
  1960  	BYTE	$0xcc
  1961  	JMP	restore
  1962  
  1963  restore:
  1964  	// Calls and failures resume here.
  1965  	//
  1966  	// Set R12 to 16 and invoke INT3. The debugger should restore
  1967  	// all registers except RIP and RSP and resume execution.
  1968  	MOVQ	$16, R12
  1969  	BYTE	$0xcc
  1970  	// We must not modify flags after this point.
  1971  
  1972  	// Restore pointer-containing registers, which may have been
  1973  	// modified from the debugger's copy by stack copying.
  1974  	MOVQ	ax-(0*8+8)(SP), AX
  1975  	MOVQ	cx-(1*8+8)(SP), CX
  1976  	MOVQ	dx-(2*8+8)(SP), DX
  1977  	MOVQ	bx-(3*8+8)(SP), BX
  1978  	MOVQ	bp-(4*8+8)(SP), BP
  1979  	MOVQ	si-(5*8+8)(SP), SI
  1980  	MOVQ	di-(6*8+8)(SP), DI
  1981  	MOVQ	r8-(7*8+8)(SP), R8
  1982  	MOVQ	r9-(8*8+8)(SP), R9
  1983  	MOVQ	r10-(9*8+8)(SP), R10
  1984  	MOVQ	r11-(10*8+8)(SP), R11
  1985  	MOVQ	r12-(11*8+8)(SP), R12
  1986  	MOVQ	r13-(12*8+8)(SP), R13
  1987  	MOVQ	r14-(13*8+8)(SP), R14
  1988  	MOVQ	r15-(14*8+8)(SP), R15
  1989  
  1990  	RET
  1991  
  1992  // runtime.debugCallCheck assumes that functions defined with the
  1993  // DEBUG_CALL_FN macro are safe points to inject calls.
  1994  #define DEBUG_CALL_FN(NAME,MAXSIZE)		\
  1995  TEXT NAME(SB),WRAPPER,$MAXSIZE-0;		\
  1996  	NO_LOCAL_POINTERS;			\
  1997  	MOVQ	$0, R12;				\
  1998  	BYTE	$0xcc;				\
  1999  	MOVQ	$1, R12;				\
  2000  	BYTE	$0xcc;				\
  2001  	RET
  2002  DEBUG_CALL_FN(debugCall32<>, 32)
  2003  DEBUG_CALL_FN(debugCall64<>, 64)
  2004  DEBUG_CALL_FN(debugCall128<>, 128)
  2005  DEBUG_CALL_FN(debugCall256<>, 256)
  2006  DEBUG_CALL_FN(debugCall512<>, 512)
  2007  DEBUG_CALL_FN(debugCall1024<>, 1024)
  2008  DEBUG_CALL_FN(debugCall2048<>, 2048)
  2009  DEBUG_CALL_FN(debugCall4096<>, 4096)
  2010  DEBUG_CALL_FN(debugCall8192<>, 8192)
  2011  DEBUG_CALL_FN(debugCall16384<>, 16384)
  2012  DEBUG_CALL_FN(debugCall32768<>, 32768)
  2013  DEBUG_CALL_FN(debugCall65536<>, 65536)
  2014  
  2015  // func debugCallPanicked(val interface{})
  2016  TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
  2017  	// Copy the panic value to the top of stack.
  2018  	MOVQ	val_type+0(FP), AX
  2019  	MOVQ	AX, 0(SP)
  2020  	MOVQ	val_data+8(FP), AX
  2021  	MOVQ	AX, 8(SP)
  2022  	MOVQ	$2, R12
  2023  	BYTE	$0xcc
  2024  	RET
  2025  
  2026  // Note: these functions use a special calling convention to save generated code space.
  2027  // Arguments are passed in registers, but the space for those arguments are allocated
  2028  // in the caller's stack frame. These stubs write the args into that stack space and
  2029  // then tail call to the corresponding runtime handler.
  2030  // The tail call makes these stubs disappear in backtraces.
  2031  // Defined as ABIInternal since they do not use the stack-based Go ABI.
  2032  TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16
  2033  	MOVQ	CX, BX
  2034  	JMP	runtime·goPanicIndex<ABIInternal>(SB)
  2035  TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16
  2036  	MOVQ	CX, BX
  2037  	JMP	runtime·goPanicIndexU<ABIInternal>(SB)
  2038  TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16
  2039  	MOVQ	CX, AX
  2040  	MOVQ	DX, BX
  2041  	JMP	runtime·goPanicSliceAlen<ABIInternal>(SB)
  2042  TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16
  2043  	MOVQ	CX, AX
  2044  	MOVQ	DX, BX
  2045  	JMP	runtime·goPanicSliceAlenU<ABIInternal>(SB)
  2046  TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16
  2047  	MOVQ	CX, AX
  2048  	MOVQ	DX, BX
  2049  	JMP	runtime·goPanicSliceAcap<ABIInternal>(SB)
  2050  TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16
  2051  	MOVQ	CX, AX
  2052  	MOVQ	DX, BX
  2053  	JMP	runtime·goPanicSliceAcapU<ABIInternal>(SB)
  2054  TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16
  2055  	MOVQ	CX, BX
  2056  	JMP	runtime·goPanicSliceB<ABIInternal>(SB)
  2057  TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16
  2058  	MOVQ	CX, BX
  2059  	JMP	runtime·goPanicSliceBU<ABIInternal>(SB)
  2060  TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16
  2061  	MOVQ	DX, AX
  2062  	JMP	runtime·goPanicSlice3Alen<ABIInternal>(SB)
  2063  TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16
  2064  	MOVQ	DX, AX
  2065  	JMP	runtime·goPanicSlice3AlenU<ABIInternal>(SB)
  2066  TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16
  2067  	MOVQ	DX, AX
  2068  	JMP	runtime·goPanicSlice3Acap<ABIInternal>(SB)
  2069  TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16
  2070  	MOVQ	DX, AX
  2071  	JMP	runtime·goPanicSlice3AcapU<ABIInternal>(SB)
  2072  TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16
  2073  	MOVQ	CX, AX
  2074  	MOVQ	DX, BX
  2075  	JMP	runtime·goPanicSlice3B<ABIInternal>(SB)
  2076  TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16
  2077  	MOVQ	CX, AX
  2078  	MOVQ	DX, BX
  2079  	JMP	runtime·goPanicSlice3BU<ABIInternal>(SB)
  2080  TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16
  2081  	MOVQ	CX, BX
  2082  	JMP	runtime·goPanicSlice3C<ABIInternal>(SB)
  2083  TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16
  2084  	MOVQ	CX, BX
  2085  	JMP	runtime·goPanicSlice3CU<ABIInternal>(SB)
  2086  TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16
  2087  	MOVQ	DX, AX
  2088  	JMP	runtime·goPanicSliceConvert<ABIInternal>(SB)
  2089  
  2090  #ifdef GOOS_android
  2091  // Use the free TLS_SLOT_APP slot #2 on Android Q.
  2092  // Earlier androids are set up in gcc_android.c.
  2093  DATA runtime·tls_g+0(SB)/8, $16
  2094  GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2095  #endif
  2096  #ifdef GOOS_windows
  2097  GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2098  #endif
  2099  
  2100  // The compiler and assembler's -spectre=ret mode rewrites
  2101  // all indirect CALL AX / JMP AX instructions to be
  2102  // CALL retpolineAX / JMP retpolineAX.
  2103  // See https://support.google.com/faqs/answer/7625886.
  2104  #define RETPOLINE(reg) \
  2105  	/*   CALL setup */     BYTE $0xE8; BYTE $(2+2); BYTE $0; BYTE $0; BYTE $0;	\
  2106  	/* nospec: */									\
  2107  	/*   PAUSE */           BYTE $0xF3; BYTE $0x90;					\
  2108  	/*   JMP nospec */      BYTE $0xEB; BYTE $-(2+2);				\
  2109  	/* setup: */									\
  2110  	/*   MOVQ AX, 0(SP) */  BYTE $0x48|((reg&8)>>1); BYTE $0x89;			\
  2111  	                        BYTE $0x04|((reg&7)<<3); BYTE $0x24;			\
  2112  	/*   RET */             BYTE $0xC3
  2113  
  2114  TEXT runtime·retpolineAX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(0)
  2115  TEXT runtime·retpolineCX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(1)
  2116  TEXT runtime·retpolineDX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(2)
  2117  TEXT runtime·retpolineBX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(3)
  2118  /* SP is 4, can't happen / magic encodings */
  2119  TEXT runtime·retpolineBP(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(5)
  2120  TEXT runtime·retpolineSI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(6)
  2121  TEXT runtime·retpolineDI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(7)
  2122  TEXT runtime·retpolineR8(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(8)
  2123  TEXT runtime·retpolineR9(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(9)
  2124  TEXT runtime·retpolineR10(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(10)
  2125  TEXT runtime·retpolineR11(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(11)
  2126  TEXT runtime·retpolineR12(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(12)
  2127  TEXT runtime·retpolineR13(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(13)
  2128  TEXT runtime·retpolineR14(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(14)
  2129  TEXT runtime·retpolineR15(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(15)
  2130  
  2131  TEXT ·getfp<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  2132  	MOVQ BP, AX
  2133  	RET
  2134  

View as plain text