Text file src/runtime/asm_amd64.s

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  #include "go_asm.h"
     6  #include "go_tls.h"
     7  #include "funcdata.h"
     8  #include "textflag.h"
     9  #include "cgo/abi_amd64.h"
    10  
    11  // _rt0_amd64 is common startup code for most amd64 systems when using
    12  // internal linking. This is the entry point for the program from the
    13  // kernel for an ordinary -buildmode=exe program. The stack holds the
    14  // number of arguments and the C-style argv.
    15  TEXT _rt0_amd64(SB),NOSPLIT,$-8
    16  	MOVQ	0(SP), DI	// argc
    17  	LEAQ	8(SP), SI	// argv
    18  	JMP	runtime·rt0_go(SB)
    19  
    20  // main is common startup code for most amd64 systems when using
    21  // external linking. The C startup code will call the symbol "main"
    22  // passing argc and argv in the usual C ABI registers DI and SI.
    23  TEXT main(SB),NOSPLIT,$-8
    24  	JMP	runtime·rt0_go(SB)
    25  
    26  // _rt0_amd64_lib is common startup code for most amd64 systems when
    27  // using -buildmode=c-archive or -buildmode=c-shared. The linker will
    28  // arrange to invoke this function as a global constructor (for
    29  // c-archive) or when the shared library is loaded (for c-shared).
    30  // We expect argc and argv to be passed in the usual C ABI registers
    31  // DI and SI.
    32  TEXT _rt0_amd64_lib(SB),NOSPLIT|NOFRAME,$0
    33  	// Transition from C ABI to Go ABI.
    34  	PUSH_REGS_HOST_TO_ABI0()
    35  
    36  	MOVQ	DI, _rt0_amd64_lib_argc<>(SB)
    37  	MOVQ	SI, _rt0_amd64_lib_argv<>(SB)
    38  
    39  	// Synchronous initialization.
    40  	CALL	runtime·libpreinit(SB)
    41  
    42  	// Create a new thread to finish Go runtime initialization.
    43  	MOVQ	_cgo_sys_thread_create(SB), AX
    44  	TESTQ	AX, AX
    45  	JZ	nocgo
    46  
    47  	// We're calling back to C.
    48  	// Align stack per ELF ABI requirements.
    49  	MOVQ	SP, BX  // Callee-save in C ABI
    50  	ANDQ	$~15, SP
    51  	MOVQ	$_rt0_amd64_lib_go(SB), DI
    52  	MOVQ	$0, SI
    53  	CALL	AX
    54  	MOVQ	BX, SP
    55  	JMP	restore
    56  
    57  nocgo:
    58  	ADJSP	$16
    59  	MOVQ	$0x800000, 0(SP)		// stacksize
    60  	MOVQ	$_rt0_amd64_lib_go(SB), AX
    61  	MOVQ	AX, 8(SP)			// fn
    62  	CALL	runtime·newosproc0(SB)
    63  	ADJSP	$-16
    64  
    65  restore:
    66  	POP_REGS_HOST_TO_ABI0()
    67  	RET
    68  
    69  // _rt0_amd64_lib_go initializes the Go runtime.
    70  // This is started in a separate thread by _rt0_amd64_lib.
    71  TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0
    72  	MOVQ	_rt0_amd64_lib_argc<>(SB), DI
    73  	MOVQ	_rt0_amd64_lib_argv<>(SB), SI
    74  	JMP	runtime·rt0_go(SB)
    75  
    76  DATA _rt0_amd64_lib_argc<>(SB)/8, $0
    77  GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8
    78  DATA _rt0_amd64_lib_argv<>(SB)/8, $0
    79  GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8
    80  
    81  #ifdef GOAMD64_v2
    82  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v2 microarchitecture support.\n"
    83  #endif
    84  
    85  #ifdef GOAMD64_v3
    86  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v3 microarchitecture support.\n"
    87  #endif
    88  
    89  #ifdef GOAMD64_v4
    90  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v4 microarchitecture support.\n"
    91  #endif
    92  
    93  GLOBL bad_cpu_msg<>(SB), RODATA, $84
    94  
    95  // Define a list of AMD64 microarchitecture level features
    96  // https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
    97  
    98                       // SSE3     SSSE3    CMPXCHNG16 SSE4.1    SSE4.2    POPCNT
    99  #define V2_FEATURES_CX (1 << 0 | 1 << 9 | 1 << 13  | 1 << 19 | 1 << 20 | 1 << 23)
   100                           // LAHF/SAHF
   101  #define V2_EXT_FEATURES_CX (1 << 0)
   102                                        // FMA       MOVBE     OSXSAVE   AVX       F16C
   103  #define V3_FEATURES_CX (V2_FEATURES_CX | 1 << 12 | 1 << 22 | 1 << 27 | 1 << 28 | 1 << 29)
   104                                                // ABM (FOR LZNCT)
   105  #define V3_EXT_FEATURES_CX (V2_EXT_FEATURES_CX | 1 << 5)
   106                           // BMI1     AVX2     BMI2
   107  #define V3_EXT_FEATURES_BX (1 << 3 | 1 << 5 | 1 << 8)
   108                         // XMM      YMM
   109  #define V3_OS_SUPPORT_AX (1 << 1 | 1 << 2)
   110  
   111  #define V4_FEATURES_CX V3_FEATURES_CX
   112  
   113  #define V4_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   114                                                // AVX512F   AVX512DQ  AVX512CD  AVX512BW  AVX512VL
   115  #define V4_EXT_FEATURES_BX (V3_EXT_FEATURES_BX | 1 << 16 | 1 << 17 | 1 << 28 | 1 << 30 | 1 << 31)
   116                                            // OPMASK   ZMM
   117  #define V4_OS_SUPPORT_AX (V3_OS_SUPPORT_AX | 1 << 5 | (1 << 6 | 1 << 7))
   118  
   119  #ifdef GOAMD64_v2
   120  #define NEED_MAX_CPUID 0x80000001
   121  #define NEED_FEATURES_CX V2_FEATURES_CX
   122  #define NEED_EXT_FEATURES_CX V2_EXT_FEATURES_CX
   123  #endif
   124  
   125  #ifdef GOAMD64_v3
   126  #define NEED_MAX_CPUID 0x80000001
   127  #define NEED_FEATURES_CX V3_FEATURES_CX
   128  #define NEED_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   129  #define NEED_EXT_FEATURES_BX V3_EXT_FEATURES_BX
   130  #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   131  #endif
   132  
   133  #ifdef GOAMD64_v4
   134  #define NEED_MAX_CPUID 0x80000001
   135  #define NEED_FEATURES_CX V4_FEATURES_CX
   136  #define NEED_EXT_FEATURES_CX V4_EXT_FEATURES_CX
   137  #define NEED_EXT_FEATURES_BX V4_EXT_FEATURES_BX
   138  
   139  // Darwin requires a different approach to check AVX512 support, see CL 285572.
   140  #ifdef GOOS_darwin
   141  #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   142  // These values are from:
   143  // https://github.com/apple/darwin-xnu/blob/xnu-4570.1.46/osfmk/i386/cpu_capabilities.h
   144  #define commpage64_base_address         0x00007fffffe00000
   145  #define commpage64_cpu_capabilities64   (commpage64_base_address+0x010)
   146  #define commpage64_version              (commpage64_base_address+0x01E)
   147  #define AVX512F                         0x0000004000000000
   148  #define AVX512CD                        0x0000008000000000
   149  #define AVX512DQ                        0x0000010000000000
   150  #define AVX512BW                        0x0000020000000000
   151  #define AVX512VL                        0x0000100000000000
   152  #define NEED_DARWIN_SUPPORT             (AVX512F | AVX512DQ | AVX512CD | AVX512BW | AVX512VL)
   153  #else
   154  #define NEED_OS_SUPPORT_AX V4_OS_SUPPORT_AX
   155  #endif
   156  
   157  #endif
   158  
   159  TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME|TOPFRAME,$0
   160  	// copy arguments forward on an even stack
   161  	MOVQ	DI, AX		// argc
   162  	MOVQ	SI, BX		// argv
   163  	SUBQ	$(5*8), SP		// 3args 2auto
   164  	ANDQ	$~15, SP
   165  	MOVQ	AX, 24(SP)
   166  	MOVQ	BX, 32(SP)
   167  
   168  	// create istack out of the given (operating system) stack.
   169  	// _cgo_init may update stackguard.
   170  	MOVQ	$runtime·g0(SB), DI
   171  	LEAQ	(-64*1024)(SP), BX
   172  	MOVQ	BX, g_stackguard0(DI)
   173  	MOVQ	BX, g_stackguard1(DI)
   174  	MOVQ	BX, (g_stack+stack_lo)(DI)
   175  	MOVQ	SP, (g_stack+stack_hi)(DI)
   176  
   177  	// find out information about the processor we're on
   178  	MOVL	$0, AX
   179  	CPUID
   180  	CMPL	AX, $0
   181  	JE	nocpuinfo
   182  
   183  	CMPL	BX, $0x756E6547  // "Genu"
   184  	JNE	notintel
   185  	CMPL	DX, $0x49656E69  // "ineI"
   186  	JNE	notintel
   187  	CMPL	CX, $0x6C65746E  // "ntel"
   188  	JNE	notintel
   189  	MOVB	$1, runtime·isIntel(SB)
   190  
   191  notintel:
   192  	// Load EAX=1 cpuid flags
   193  	MOVL	$1, AX
   194  	CPUID
   195  	MOVL	AX, runtime·processorVersionInfo(SB)
   196  
   197  nocpuinfo:
   198  	// if there is an _cgo_init, call it.
   199  	MOVQ	_cgo_init(SB), AX
   200  	TESTQ	AX, AX
   201  	JZ	needtls
   202  	// arg 1: g0, already in DI
   203  	MOVQ	$setg_gcc<>(SB), SI // arg 2: setg_gcc
   204  	MOVQ	$0, DX	// arg 3, 4: not used when using platform's TLS
   205  	MOVQ	$0, CX
   206  #ifdef GOOS_android
   207  	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   208  	// arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF).
   209  	// Compensate for tls_g (+16).
   210  	MOVQ	-16(TLS), CX
   211  #endif
   212  #ifdef GOOS_windows
   213  	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   214  	// Adjust for the Win64 calling convention.
   215  	MOVQ	CX, R9 // arg 4
   216  	MOVQ	DX, R8 // arg 3
   217  	MOVQ	SI, DX // arg 2
   218  	MOVQ	DI, CX // arg 1
   219  #endif
   220  	CALL	AX
   221  
   222  	// update stackguard after _cgo_init
   223  	MOVQ	$runtime·g0(SB), CX
   224  	MOVQ	(g_stack+stack_lo)(CX), AX
   225  	ADDQ	$const_stackGuard, AX
   226  	MOVQ	AX, g_stackguard0(CX)
   227  	MOVQ	AX, g_stackguard1(CX)
   228  
   229  #ifndef GOOS_windows
   230  	JMP ok
   231  #endif
   232  needtls:
   233  #ifdef GOOS_plan9
   234  	// skip TLS setup on Plan 9
   235  	JMP ok
   236  #endif
   237  #ifdef GOOS_solaris
   238  	// skip TLS setup on Solaris
   239  	JMP ok
   240  #endif
   241  #ifdef GOOS_illumos
   242  	// skip TLS setup on illumos
   243  	JMP ok
   244  #endif
   245  #ifdef GOOS_darwin
   246  	// skip TLS setup on Darwin
   247  	JMP ok
   248  #endif
   249  #ifdef GOOS_openbsd
   250  	// skip TLS setup on OpenBSD
   251  	JMP ok
   252  #endif
   253  
   254  #ifdef GOOS_windows
   255  	CALL	runtime·wintls(SB)
   256  #endif
   257  
   258  	LEAQ	runtime·m0+m_tls(SB), DI
   259  	CALL	runtime·settls(SB)
   260  
   261  	// store through it, to make sure it works
   262  	get_tls(BX)
   263  	MOVQ	$0x123, g(BX)
   264  	MOVQ	runtime·m0+m_tls(SB), AX
   265  	CMPQ	AX, $0x123
   266  	JEQ 2(PC)
   267  	CALL	runtime·abort(SB)
   268  ok:
   269  	// set the per-goroutine and per-mach "registers"
   270  	get_tls(BX)
   271  	LEAQ	runtime·g0(SB), CX
   272  	MOVQ	CX, g(BX)
   273  	LEAQ	runtime·m0(SB), AX
   274  
   275  	// save m->g0 = g0
   276  	MOVQ	CX, m_g0(AX)
   277  	// save m0 to g0->m
   278  	MOVQ	AX, g_m(CX)
   279  
   280  	CLD				// convention is D is always left cleared
   281  
   282  	// Check GOAMD64 requirements
   283  	// We need to do this after setting up TLS, so that
   284  	// we can report an error if there is a failure. See issue 49586.
   285  #ifdef NEED_FEATURES_CX
   286  	MOVL	$0, AX
   287  	CPUID
   288  	CMPL	AX, $0
   289  	JE	bad_cpu
   290  	MOVL	$1, AX
   291  	CPUID
   292  	ANDL	$NEED_FEATURES_CX, CX
   293  	CMPL	CX, $NEED_FEATURES_CX
   294  	JNE	bad_cpu
   295  #endif
   296  
   297  #ifdef NEED_MAX_CPUID
   298  	MOVL	$0x80000000, AX
   299  	CPUID
   300  	CMPL	AX, $NEED_MAX_CPUID
   301  	JL	bad_cpu
   302  #endif
   303  
   304  #ifdef NEED_EXT_FEATURES_BX
   305  	MOVL	$7, AX
   306  	MOVL	$0, CX
   307  	CPUID
   308  	ANDL	$NEED_EXT_FEATURES_BX, BX
   309  	CMPL	BX, $NEED_EXT_FEATURES_BX
   310  	JNE	bad_cpu
   311  #endif
   312  
   313  #ifdef NEED_EXT_FEATURES_CX
   314  	MOVL	$0x80000001, AX
   315  	CPUID
   316  	ANDL	$NEED_EXT_FEATURES_CX, CX
   317  	CMPL	CX, $NEED_EXT_FEATURES_CX
   318  	JNE	bad_cpu
   319  #endif
   320  
   321  #ifdef NEED_OS_SUPPORT_AX
   322  	XORL    CX, CX
   323  	XGETBV
   324  	ANDL	$NEED_OS_SUPPORT_AX, AX
   325  	CMPL	AX, $NEED_OS_SUPPORT_AX
   326  	JNE	bad_cpu
   327  #endif
   328  
   329  #ifdef NEED_DARWIN_SUPPORT
   330  	MOVQ	$commpage64_version, BX
   331  	CMPW	(BX), $13  // cpu_capabilities64 undefined in versions < 13
   332  	JL	bad_cpu
   333  	MOVQ	$commpage64_cpu_capabilities64, BX
   334  	MOVQ	(BX), BX
   335  	MOVQ	$NEED_DARWIN_SUPPORT, CX
   336  	ANDQ	CX, BX
   337  	CMPQ	BX, CX
   338  	JNE	bad_cpu
   339  #endif
   340  
   341  	CALL	runtime·check(SB)
   342  
   343  	MOVL	24(SP), AX		// copy argc
   344  	MOVL	AX, 0(SP)
   345  	MOVQ	32(SP), AX		// copy argv
   346  	MOVQ	AX, 8(SP)
   347  	CALL	runtime·args(SB)
   348  	CALL	runtime·osinit(SB)
   349  	CALL	runtime·schedinit(SB)
   350  
   351  	// create a new goroutine to start program
   352  	MOVQ	$runtime·mainPC(SB), AX		// entry
   353  	PUSHQ	AX
   354  	CALL	runtime·newproc(SB)
   355  	POPQ	AX
   356  
   357  	// start this M
   358  	CALL	runtime·mstart(SB)
   359  
   360  	CALL	runtime·abort(SB)	// mstart should never return
   361  	RET
   362  
   363  bad_cpu: // show that the program requires a certain microarchitecture level.
   364  	MOVQ	$2, 0(SP)
   365  	MOVQ	$bad_cpu_msg<>(SB), AX
   366  	MOVQ	AX, 8(SP)
   367  	MOVQ	$84, 16(SP)
   368  	CALL	runtime·write(SB)
   369  	MOVQ	$1, 0(SP)
   370  	CALL	runtime·exit(SB)
   371  	CALL	runtime·abort(SB)
   372  	RET
   373  
   374  	// Prevent dead-code elimination of debugCallV2 and debugPinnerV1, which are
   375  	// intended to be called by debuggers.
   376  	MOVQ	$runtime·debugPinnerV1<ABIInternal>(SB), AX
   377  	MOVQ	$runtime·debugCallV2<ABIInternal>(SB), AX
   378  	RET
   379  
   380  // mainPC is a function value for runtime.main, to be passed to newproc.
   381  // The reference to runtime.main is made via ABIInternal, since the
   382  // actual function (not the ABI0 wrapper) is needed by newproc.
   383  DATA	runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
   384  GLOBL	runtime·mainPC(SB),RODATA,$8
   385  
   386  TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
   387  	BYTE	$0xcc
   388  	RET
   389  
   390  TEXT runtime·asminit(SB),NOSPLIT,$0-0
   391  	// No per-thread init.
   392  	RET
   393  
   394  TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME|NOFRAME,$0
   395  	CALL	runtime·mstart0(SB)
   396  	RET // not reached
   397  
   398  /*
   399   *  go-routine
   400   */
   401  
   402  // func gogo(buf *gobuf)
   403  // restore state from Gobuf; longjmp
   404  TEXT runtime·gogo(SB), NOSPLIT, $0-8
   405  	MOVQ	buf+0(FP), BX		// gobuf
   406  	MOVQ	gobuf_g(BX), DX
   407  	MOVQ	0(DX), CX		// make sure g != nil
   408  	JMP	gogo<>(SB)
   409  
   410  TEXT gogo<>(SB), NOSPLIT, $0
   411  	get_tls(CX)
   412  	MOVQ	DX, g(CX)
   413  	MOVQ	DX, R14		// set the g register
   414  	MOVQ	gobuf_sp(BX), SP	// restore SP
   415  	MOVQ	gobuf_ctxt(BX), DX
   416  	MOVQ	gobuf_bp(BX), BP
   417  	MOVQ	$0, gobuf_sp(BX)	// clear to help garbage collector
   418  	MOVQ	$0, gobuf_ctxt(BX)
   419  	MOVQ	$0, gobuf_bp(BX)
   420  	MOVQ	gobuf_pc(BX), BX
   421  	JMP	BX
   422  
   423  // func mcall(fn func(*g))
   424  // Switch to m->g0's stack, call fn(g).
   425  // Fn must never return. It should gogo(&g->sched)
   426  // to keep running g.
   427  TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT, $0-8
   428  	MOVQ	AX, DX	// DX = fn
   429  
   430  	// Save state in g->sched. The caller's SP and PC are restored by gogo to
   431  	// resume execution in the caller's frame (implicit return). The caller's BP
   432  	// is also restored to support frame pointer unwinding.
   433  	MOVQ	SP, BX	// hide (SP) reads from vet
   434  	MOVQ	8(BX), BX	// caller's PC
   435  	MOVQ	BX, (g_sched+gobuf_pc)(R14)
   436  	LEAQ	fn+0(FP), BX	// caller's SP
   437  	MOVQ	BX, (g_sched+gobuf_sp)(R14)
   438  	// Get the caller's frame pointer by dereferencing BP. Storing BP as it is
   439  	// can cause a frame pointer cycle, see CL 476235.
   440  	MOVQ	(BP), BX // caller's BP
   441  	MOVQ	BX, (g_sched+gobuf_bp)(R14)
   442  
   443  	// switch to m->g0 & its stack, call fn
   444  	MOVQ	g_m(R14), BX
   445  	MOVQ	m_g0(BX), SI	// SI = g.m.g0
   446  	CMPQ	SI, R14	// if g == m->g0 call badmcall
   447  	JNE	goodm
   448  	JMP	runtime·badmcall(SB)
   449  goodm:
   450  	MOVQ	R14, AX		// AX (and arg 0) = g
   451  	MOVQ	SI, R14		// g = g.m.g0
   452  	get_tls(CX)		// Set G in TLS
   453  	MOVQ	R14, g(CX)
   454  	MOVQ	(g_sched+gobuf_sp)(R14), SP	// sp = g0.sched.sp
   455  	MOVQ	$0, BP	// clear frame pointer, as caller may execute on another M
   456  	PUSHQ	AX	// open up space for fn's arg spill slot
   457  	MOVQ	0(DX), R12
   458  	CALL	R12		// fn(g)
   459  	// The Windows native stack unwinder incorrectly classifies the next instruction
   460  	// as part of the function epilogue, producing a wrong call stack.
   461  	// Add a NOP to work around this issue. See go.dev/issue/67007.
   462  	BYTE	$0x90
   463  	POPQ	AX
   464  	JMP	runtime·badmcall2(SB)
   465  	RET
   466  
   467  // systemstack_switch is a dummy routine that systemstack leaves at the bottom
   468  // of the G stack. We need to distinguish the routine that
   469  // lives at the bottom of the G stack from the one that lives
   470  // at the top of the system stack because the one at the top of
   471  // the system stack terminates the stack walk (see topofstack()).
   472  // The frame layout needs to match systemstack
   473  // so that it can pretend to be systemstack_switch.
   474  TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
   475  	UNDEF
   476  	// Make sure this function is not leaf,
   477  	// so the frame is saved.
   478  	CALL	runtime·abort(SB)
   479  	RET
   480  
   481  // func systemstack(fn func())
   482  TEXT runtime·systemstack(SB), NOSPLIT, $0-8
   483  	MOVQ	fn+0(FP), DI	// DI = fn
   484  	get_tls(CX)
   485  	MOVQ	g(CX), AX	// AX = g
   486  	MOVQ	g_m(AX), BX	// BX = m
   487  
   488  	CMPQ	AX, m_gsignal(BX)
   489  	JEQ	noswitch
   490  
   491  	MOVQ	m_g0(BX), DX	// DX = g0
   492  	CMPQ	AX, DX
   493  	JEQ	noswitch
   494  
   495  	CMPQ	AX, m_curg(BX)
   496  	JNE	bad
   497  
   498  	// Switch stacks.
   499  	// The original frame pointer is stored in BP,
   500  	// which is useful for stack unwinding.
   501  	// Save our state in g->sched. Pretend to
   502  	// be systemstack_switch if the G stack is scanned.
   503  	CALL	gosave_systemstack_switch<>(SB)
   504  
   505  	// switch to g0
   506  	MOVQ	DX, g(CX)
   507  	MOVQ	DX, R14 // set the g register
   508  	MOVQ	(g_sched+gobuf_sp)(DX), SP
   509  
   510  	// call target function
   511  	MOVQ	DI, DX
   512  	MOVQ	0(DI), DI
   513  	CALL	DI
   514  
   515  	// switch back to g
   516  	get_tls(CX)
   517  	MOVQ	g(CX), AX
   518  	MOVQ	g_m(AX), BX
   519  	MOVQ	m_curg(BX), AX
   520  	MOVQ	AX, g(CX)
   521  	MOVQ	(g_sched+gobuf_sp)(AX), SP
   522  	MOVQ	(g_sched+gobuf_bp)(AX), BP
   523  	MOVQ	$0, (g_sched+gobuf_sp)(AX)
   524  	MOVQ	$0, (g_sched+gobuf_bp)(AX)
   525  	RET
   526  
   527  noswitch:
   528  	// already on m stack; tail call the function
   529  	// Using a tail call here cleans up tracebacks since we won't stop
   530  	// at an intermediate systemstack.
   531  	MOVQ	DI, DX
   532  	MOVQ	0(DI), DI
   533  	// The function epilogue is not called on a tail call.
   534  	// Pop BP from the stack to simulate it.
   535  	POPQ	BP
   536  	JMP	DI
   537  
   538  bad:
   539  	// Bad: g is not gsignal, not g0, not curg. What is it?
   540  	MOVQ	$runtime·badsystemstack(SB), AX
   541  	CALL	AX
   542  	INT	$3
   543  
   544  // func switchToCrashStack0(fn func())
   545  TEXT runtime·switchToCrashStack0<ABIInternal>(SB), NOSPLIT, $0-8
   546  	MOVQ	g_m(R14), BX // curm
   547  
   548  	// set g to gcrash
   549  	LEAQ	runtime·gcrash(SB), R14 // g = &gcrash
   550  	MOVQ	BX, g_m(R14)            // g.m = curm
   551  	MOVQ	R14, m_g0(BX)           // curm.g0 = g
   552  	get_tls(CX)
   553  	MOVQ	R14, g(CX)
   554  
   555  	// switch to crashstack
   556  	MOVQ	(g_stack+stack_hi)(R14), BX
   557  	SUBQ	$(4*8), BX
   558  	MOVQ	BX, SP
   559  
   560  	// call target function
   561  	MOVQ	AX, DX
   562  	MOVQ	0(AX), AX
   563  	CALL	AX
   564  
   565  	// should never return
   566  	CALL	runtime·abort(SB)
   567  	UNDEF
   568  
   569  /*
   570   * support for morestack
   571   */
   572  
   573  // Called during function prolog when more stack is needed.
   574  //
   575  // The traceback routines see morestack on a g0 as being
   576  // the top of a stack (for example, morestack calling newstack
   577  // calling the scheduler calling newm calling gc), so we must
   578  // record an argument size. For that purpose, it has no arguments.
   579  TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
   580  	// Cannot grow scheduler stack (m->g0).
   581  	get_tls(CX)
   582  	MOVQ	g(CX), DI     // DI = g
   583  	MOVQ	g_m(DI), BX   // BX = m
   584  
   585  	// Set g->sched to context in f.
   586  	MOVQ	0(SP), AX // f's PC
   587  	MOVQ	AX, (g_sched+gobuf_pc)(DI)
   588  	LEAQ	8(SP), AX // f's SP
   589  	MOVQ	AX, (g_sched+gobuf_sp)(DI)
   590  	MOVQ	BP, (g_sched+gobuf_bp)(DI)
   591  	MOVQ	DX, (g_sched+gobuf_ctxt)(DI)
   592  
   593  	MOVQ	m_g0(BX), SI  // SI = m.g0
   594  	CMPQ	DI, SI
   595  	JNE	3(PC)
   596  	CALL	runtime·badmorestackg0(SB)
   597  	CALL	runtime·abort(SB)
   598  
   599  	// Cannot grow signal stack (m->gsignal).
   600  	MOVQ	m_gsignal(BX), SI
   601  	CMPQ	DI, SI
   602  	JNE	3(PC)
   603  	CALL	runtime·badmorestackgsignal(SB)
   604  	CALL	runtime·abort(SB)
   605  
   606  	// Called from f.
   607  	// Set m->morebuf to f's caller.
   608  	NOP	SP	// tell vet SP changed - stop checking offsets
   609  	MOVQ	8(SP), AX	// f's caller's PC
   610  	MOVQ	AX, (m_morebuf+gobuf_pc)(BX)
   611  	LEAQ	16(SP), AX	// f's caller's SP
   612  	MOVQ	AX, (m_morebuf+gobuf_sp)(BX)
   613  	MOVQ	DI, (m_morebuf+gobuf_g)(BX)
   614  
   615  	// Call newstack on m->g0's stack.
   616  	MOVQ	m_g0(BX), BX
   617  	MOVQ	BX, g(CX)
   618  	MOVQ	(g_sched+gobuf_sp)(BX), SP
   619  	MOVQ	$0, BP			// clear frame pointer, as caller may execute on another M
   620  	CALL	runtime·newstack(SB)
   621  	CALL	runtime·abort(SB)	// crash if newstack returns
   622  	RET
   623  
   624  // morestack but not preserving ctxt.
   625  TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0
   626  	MOVL	$0, DX
   627  	JMP	runtime·morestack(SB)
   628  
   629  // spillArgs stores return values from registers to a *internal/abi.RegArgs in R12.
   630  TEXT ·spillArgs(SB),NOSPLIT,$0-0
   631  	MOVQ AX, 0(R12)
   632  	MOVQ BX, 8(R12)
   633  	MOVQ CX, 16(R12)
   634  	MOVQ DI, 24(R12)
   635  	MOVQ SI, 32(R12)
   636  	MOVQ R8, 40(R12)
   637  	MOVQ R9, 48(R12)
   638  	MOVQ R10, 56(R12)
   639  	MOVQ R11, 64(R12)
   640  	MOVQ X0, 72(R12)
   641  	MOVQ X1, 80(R12)
   642  	MOVQ X2, 88(R12)
   643  	MOVQ X3, 96(R12)
   644  	MOVQ X4, 104(R12)
   645  	MOVQ X5, 112(R12)
   646  	MOVQ X6, 120(R12)
   647  	MOVQ X7, 128(R12)
   648  	MOVQ X8, 136(R12)
   649  	MOVQ X9, 144(R12)
   650  	MOVQ X10, 152(R12)
   651  	MOVQ X11, 160(R12)
   652  	MOVQ X12, 168(R12)
   653  	MOVQ X13, 176(R12)
   654  	MOVQ X14, 184(R12)
   655  	RET
   656  
   657  // unspillArgs loads args into registers from a *internal/abi.RegArgs in R12.
   658  TEXT ·unspillArgs(SB),NOSPLIT,$0-0
   659  	MOVQ 0(R12), AX
   660  	MOVQ 8(R12), BX
   661  	MOVQ 16(R12), CX
   662  	MOVQ 24(R12), DI
   663  	MOVQ 32(R12), SI
   664  	MOVQ 40(R12), R8
   665  	MOVQ 48(R12), R9
   666  	MOVQ 56(R12), R10
   667  	MOVQ 64(R12), R11
   668  	MOVQ 72(R12), X0
   669  	MOVQ 80(R12), X1
   670  	MOVQ 88(R12), X2
   671  	MOVQ 96(R12), X3
   672  	MOVQ 104(R12), X4
   673  	MOVQ 112(R12), X5
   674  	MOVQ 120(R12), X6
   675  	MOVQ 128(R12), X7
   676  	MOVQ 136(R12), X8
   677  	MOVQ 144(R12), X9
   678  	MOVQ 152(R12), X10
   679  	MOVQ 160(R12), X11
   680  	MOVQ 168(R12), X12
   681  	MOVQ 176(R12), X13
   682  	MOVQ 184(R12), X14
   683  	RET
   684  
   685  // reflectcall: call a function with the given argument list
   686  // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
   687  // we don't have variable-sized frames, so we use a small number
   688  // of constant-sized-frame functions to encode a few bits of size in the pc.
   689  // Caution: ugly multiline assembly macros in your future!
   690  
   691  #define DISPATCH(NAME,MAXSIZE)		\
   692  	CMPQ	CX, $MAXSIZE;		\
   693  	JA	3(PC);			\
   694  	MOVQ	$NAME(SB), AX;		\
   695  	JMP	AX
   696  // Note: can't just "JMP NAME(SB)" - bad inlining results.
   697  
   698  TEXT ·reflectcall(SB), NOSPLIT, $0-48
   699  	MOVLQZX frameSize+32(FP), CX
   700  	DISPATCH(runtime·call16, 16)
   701  	DISPATCH(runtime·call32, 32)
   702  	DISPATCH(runtime·call64, 64)
   703  	DISPATCH(runtime·call128, 128)
   704  	DISPATCH(runtime·call256, 256)
   705  	DISPATCH(runtime·call512, 512)
   706  	DISPATCH(runtime·call1024, 1024)
   707  	DISPATCH(runtime·call2048, 2048)
   708  	DISPATCH(runtime·call4096, 4096)
   709  	DISPATCH(runtime·call8192, 8192)
   710  	DISPATCH(runtime·call16384, 16384)
   711  	DISPATCH(runtime·call32768, 32768)
   712  	DISPATCH(runtime·call65536, 65536)
   713  	DISPATCH(runtime·call131072, 131072)
   714  	DISPATCH(runtime·call262144, 262144)
   715  	DISPATCH(runtime·call524288, 524288)
   716  	DISPATCH(runtime·call1048576, 1048576)
   717  	DISPATCH(runtime·call2097152, 2097152)
   718  	DISPATCH(runtime·call4194304, 4194304)
   719  	DISPATCH(runtime·call8388608, 8388608)
   720  	DISPATCH(runtime·call16777216, 16777216)
   721  	DISPATCH(runtime·call33554432, 33554432)
   722  	DISPATCH(runtime·call67108864, 67108864)
   723  	DISPATCH(runtime·call134217728, 134217728)
   724  	DISPATCH(runtime·call268435456, 268435456)
   725  	DISPATCH(runtime·call536870912, 536870912)
   726  	DISPATCH(runtime·call1073741824, 1073741824)
   727  	MOVQ	$runtime·badreflectcall(SB), AX
   728  	JMP	AX
   729  
   730  #define CALLFN(NAME,MAXSIZE)			\
   731  TEXT NAME(SB), WRAPPER, $MAXSIZE-48;		\
   732  	NO_LOCAL_POINTERS;			\
   733  	/* copy arguments to stack */		\
   734  	MOVQ	stackArgs+16(FP), SI;		\
   735  	MOVLQZX stackArgsSize+24(FP), CX;		\
   736  	MOVQ	SP, DI;				\
   737  	REP;MOVSB;				\
   738  	/* set up argument registers */		\
   739  	MOVQ    regArgs+40(FP), R12;		\
   740  	CALL    ·unspillArgs(SB);		\
   741  	/* call function */			\
   742  	MOVQ	f+8(FP), DX;			\
   743  	PCDATA  $PCDATA_StackMapIndex, $0;	\
   744  	MOVQ	(DX), R12;			\
   745  	CALL	R12;				\
   746  	/* copy register return values back */		\
   747  	MOVQ    regArgs+40(FP), R12;		\
   748  	CALL    ·spillArgs(SB);		\
   749  	MOVLQZX	stackArgsSize+24(FP), CX;		\
   750  	MOVLQZX	stackRetOffset+28(FP), BX;		\
   751  	MOVQ	stackArgs+16(FP), DI;		\
   752  	MOVQ	stackArgsType+0(FP), DX;		\
   753  	MOVQ	SP, SI;				\
   754  	ADDQ	BX, DI;				\
   755  	ADDQ	BX, SI;				\
   756  	SUBQ	BX, CX;				\
   757  	CALL	callRet<>(SB);			\
   758  	RET
   759  
   760  // callRet copies return values back at the end of call*. This is a
   761  // separate function so it can allocate stack space for the arguments
   762  // to reflectcallmove. It does not follow the Go ABI; it expects its
   763  // arguments in registers.
   764  TEXT callRet<>(SB), NOSPLIT, $40-0
   765  	NO_LOCAL_POINTERS
   766  	MOVQ	DX, 0(SP)
   767  	MOVQ	DI, 8(SP)
   768  	MOVQ	SI, 16(SP)
   769  	MOVQ	CX, 24(SP)
   770  	MOVQ	R12, 32(SP)
   771  	CALL	runtime·reflectcallmove(SB)
   772  	RET
   773  
   774  CALLFN(·call16, 16)
   775  CALLFN(·call32, 32)
   776  CALLFN(·call64, 64)
   777  CALLFN(·call128, 128)
   778  CALLFN(·call256, 256)
   779  CALLFN(·call512, 512)
   780  CALLFN(·call1024, 1024)
   781  CALLFN(·call2048, 2048)
   782  CALLFN(·call4096, 4096)
   783  CALLFN(·call8192, 8192)
   784  CALLFN(·call16384, 16384)
   785  CALLFN(·call32768, 32768)
   786  CALLFN(·call65536, 65536)
   787  CALLFN(·call131072, 131072)
   788  CALLFN(·call262144, 262144)
   789  CALLFN(·call524288, 524288)
   790  CALLFN(·call1048576, 1048576)
   791  CALLFN(·call2097152, 2097152)
   792  CALLFN(·call4194304, 4194304)
   793  CALLFN(·call8388608, 8388608)
   794  CALLFN(·call16777216, 16777216)
   795  CALLFN(·call33554432, 33554432)
   796  CALLFN(·call67108864, 67108864)
   797  CALLFN(·call134217728, 134217728)
   798  CALLFN(·call268435456, 268435456)
   799  CALLFN(·call536870912, 536870912)
   800  CALLFN(·call1073741824, 1073741824)
   801  
   802  TEXT runtime·procyield(SB),NOSPLIT,$0-0
   803  	MOVL	cycles+0(FP), AX
   804  again:
   805  	PAUSE
   806  	SUBL	$1, AX
   807  	JNZ	again
   808  	RET
   809  
   810  
   811  TEXT ·publicationBarrier<ABIInternal>(SB),NOSPLIT,$0-0
   812  	// Stores are already ordered on x86, so this is just a
   813  	// compile barrier.
   814  	RET
   815  
   816  // Save state of caller into g->sched,
   817  // but using fake PC from systemstack_switch.
   818  // Must only be called from functions with frame pointer
   819  // and without locals ($0) or else unwinding from
   820  // systemstack_switch is incorrect.
   821  // Smashes R9.
   822  TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
   823  	// Take systemstack_switch PC and add 8 bytes to skip
   824  	// the prologue. The final location does not matter
   825  	// as long as we are between the prologue and the epilogue.
   826  	MOVQ	$runtime·systemstack_switch+8(SB), R9
   827  	MOVQ	R9, (g_sched+gobuf_pc)(R14)
   828  	LEAQ	8(SP), R9
   829  	MOVQ	R9, (g_sched+gobuf_sp)(R14)
   830  	MOVQ	BP, (g_sched+gobuf_bp)(R14)
   831  	// Assert ctxt is zero. See func save.
   832  	MOVQ	(g_sched+gobuf_ctxt)(R14), R9
   833  	TESTQ	R9, R9
   834  	JZ	2(PC)
   835  	CALL	runtime·abort(SB)
   836  	RET
   837  
   838  // func asmcgocall_no_g(fn, arg unsafe.Pointer)
   839  // Call fn(arg) aligned appropriately for the gcc ABI.
   840  // Called on a system stack, and there may be no g yet (during needm).
   841  TEXT ·asmcgocall_no_g(SB),NOSPLIT,$32-16
   842  	MOVQ	fn+0(FP), AX
   843  	MOVQ	arg+8(FP), BX
   844  	MOVQ	SP, DX
   845  	ANDQ	$~15, SP	// alignment
   846  	MOVQ	DX, 8(SP)
   847  	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   848  	MOVQ	BX, CX		// CX = first argument in Win64
   849  	CALL	AX
   850  	MOVQ	8(SP), DX
   851  	MOVQ	DX, SP
   852  	RET
   853  
   854  // asmcgocall_landingpad calls AX with BX as argument.
   855  // Must be called on the system stack.
   856  TEXT ·asmcgocall_landingpad(SB),NOSPLIT,$0-0
   857  #ifdef GOOS_windows
   858  	// Make sure we have enough room for 4 stack-backed fast-call
   859  	// registers as per Windows amd64 calling convention.
   860  	ADJSP	$32
   861  	// On Windows, asmcgocall_landingpad acts as landing pad for exceptions
   862  	// thrown in the cgo call. Exceptions that reach this function will be
   863  	// handled by runtime.sehtramp thanks to the SEH metadata added
   864  	// by the compiler.
   865  	// Note that runtime.sehtramp can't be attached directly to asmcgocall
   866  	// because its initial stack pointer can be outside the system stack bounds,
   867  	// and Windows stops the stack unwinding without calling the exception handler
   868  	// when it reaches that point.
   869  	MOVQ	BX, CX		// CX = first argument in Win64
   870  	CALL	AX
   871  	// The exception handler is not called if the next instruction is part of
   872  	// the epilogue, which includes the RET instruction, so we need to add a NOP here.
   873  	BYTE	$0x90
   874  	ADJSP	$-32
   875  	RET
   876  #endif
   877  	// Tail call AX on non-Windows, as the extra stack frame is not needed.
   878  	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   879  	JMP	AX
   880  
   881  // func asmcgocall(fn, arg unsafe.Pointer) int32
   882  // Call fn(arg) on the scheduler stack,
   883  // aligned appropriately for the gcc ABI.
   884  // See cgocall.go for more details.
   885  TEXT ·asmcgocall(SB),NOSPLIT,$0-20
   886  	MOVQ	fn+0(FP), AX
   887  	MOVQ	arg+8(FP), BX
   888  
   889  	MOVQ	SP, DX
   890  
   891  	// Figure out if we need to switch to m->g0 stack.
   892  	// We get called to create new OS threads too, and those
   893  	// come in on the m->g0 stack already. Or we might already
   894  	// be on the m->gsignal stack.
   895  	get_tls(CX)
   896  	MOVQ	g(CX), DI
   897  	CMPQ	DI, $0
   898  	JEQ	nosave
   899  	MOVQ	g_m(DI), R8
   900  	MOVQ	m_gsignal(R8), SI
   901  	CMPQ	DI, SI
   902  	JEQ	nosave
   903  	MOVQ	m_g0(R8), SI
   904  	CMPQ	DI, SI
   905  	JEQ	nosave
   906  
   907  	// Switch to system stack.
   908  	// The original frame pointer is stored in BP,
   909  	// which is useful for stack unwinding.
   910  	CALL	gosave_systemstack_switch<>(SB)
   911  	MOVQ	SI, g(CX)
   912  	MOVQ	(g_sched+gobuf_sp)(SI), SP
   913  
   914  	// Now on a scheduling stack (a pthread-created stack).
   915  	SUBQ	$16, SP
   916  	ANDQ	$~15, SP	// alignment for gcc ABI
   917  	MOVQ	DI, 8(SP)	// save g
   918  	MOVQ	(g_stack+stack_hi)(DI), DI
   919  	SUBQ	DX, DI
   920  	MOVQ	DI, 0(SP)	// save depth in stack (can't just save SP, as stack might be copied during a callback)
   921  	CALL	runtime·asmcgocall_landingpad(SB)
   922  
   923  	// Restore registers, g, stack pointer.
   924  	get_tls(CX)
   925  	MOVQ	8(SP), DI
   926  	MOVQ	(g_stack+stack_hi)(DI), SI
   927  	SUBQ	0(SP), SI
   928  	MOVQ	DI, g(CX)
   929  	MOVQ	SI, SP
   930  
   931  	MOVL	AX, ret+16(FP)
   932  	RET
   933  
   934  nosave:
   935  	// Running on a system stack, perhaps even without a g.
   936  	// Having no g can happen during thread creation or thread teardown
   937  	// (see needm/dropm on Solaris, for example).
   938  	// This code is like the above sequence but without saving/restoring g
   939  	// and without worrying about the stack moving out from under us
   940  	// (because we're on a system stack, not a goroutine stack).
   941  	// The above code could be used directly if already on a system stack,
   942  	// but then the only path through this code would be a rare case on Solaris.
   943  	// Using this code for all "already on system stack" calls exercises it more,
   944  	// which should help keep it correct.
   945  	SUBQ	$16, SP
   946  	ANDQ	$~15, SP
   947  	MOVQ	$0, 8(SP)		// where above code stores g, in case someone looks during debugging
   948  	MOVQ	DX, 0(SP)	// save original stack pointer
   949  	CALL	runtime·asmcgocall_landingpad(SB)
   950  	MOVQ	0(SP), SI	// restore original stack pointer
   951  	MOVQ	SI, SP
   952  	MOVL	AX, ret+16(FP)
   953  	RET
   954  
   955  #ifdef GOOS_windows
   956  // Dummy TLS that's used on Windows so that we don't crash trying
   957  // to restore the G register in needm. needm and its callees are
   958  // very careful never to actually use the G, the TLS just can't be
   959  // unset since we're in Go code.
   960  GLOBL zeroTLS<>(SB),RODATA,$const_tlsSize
   961  #endif
   962  
   963  // func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
   964  // See cgocall.go for more details.
   965  TEXT ·cgocallback(SB),NOSPLIT,$24-24
   966  	NO_LOCAL_POINTERS
   967  
   968  	// Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
   969  	// It is used to dropm while thread is exiting.
   970  	MOVQ	fn+0(FP), AX
   971  	CMPQ	AX, $0
   972  	JNE	loadg
   973  	// Restore the g from frame.
   974  	get_tls(CX)
   975  	MOVQ	frame+8(FP), BX
   976  	MOVQ	BX, g(CX)
   977  	JMP	dropm
   978  
   979  loadg:
   980  	// If g is nil, Go did not create the current thread,
   981  	// or if this thread never called into Go on pthread platforms.
   982  	// Call needm to obtain one m for temporary use.
   983  	// In this case, we're running on the thread stack, so there's
   984  	// lots of space, but the linker doesn't know. Hide the call from
   985  	// the linker analysis by using an indirect call through AX.
   986  	get_tls(CX)
   987  #ifdef GOOS_windows
   988  	MOVL	$0, BX
   989  	CMPQ	CX, $0
   990  	JEQ	2(PC)
   991  #endif
   992  	MOVQ	g(CX), BX
   993  	CMPQ	BX, $0
   994  	JEQ	needm
   995  	MOVQ	g_m(BX), BX
   996  	MOVQ	BX, savedm-8(SP)	// saved copy of oldm
   997  	JMP	havem
   998  needm:
   999  #ifdef GOOS_windows
  1000  	// Set up a dummy TLS value. needm is careful not to use it,
  1001  	// but it needs to be there to prevent autogenerated code from
  1002  	// crashing when it loads from it.
  1003  	// We don't need to clear it or anything later because needm
  1004  	// will set up TLS properly.
  1005  	MOVQ	$zeroTLS<>(SB), DI
  1006  	CALL	runtime·settls(SB)
  1007  #endif
  1008  	// On some platforms (Windows) we cannot call needm through
  1009  	// an ABI wrapper because there's no TLS set up, and the ABI
  1010  	// wrapper will try to restore the G register (R14) from TLS.
  1011  	// Clear X15 because Go expects it and we're not calling
  1012  	// through a wrapper, but otherwise avoid setting the G
  1013  	// register in the wrapper and call needm directly. It
  1014  	// takes no arguments and doesn't return any values so
  1015  	// there's no need to handle that. Clear R14 so that there's
  1016  	// a bad value in there, in case needm tries to use it.
  1017  	XORPS	X15, X15
  1018  	XORQ    R14, R14
  1019  	MOVQ	$runtime·needAndBindM<ABIInternal>(SB), AX
  1020  	CALL	AX
  1021  	MOVQ	$0, savedm-8(SP)
  1022  	get_tls(CX)
  1023  	MOVQ	g(CX), BX
  1024  	MOVQ	g_m(BX), BX
  1025  
  1026  	// Set m->sched.sp = SP, so that if a panic happens
  1027  	// during the function we are about to execute, it will
  1028  	// have a valid SP to run on the g0 stack.
  1029  	// The next few lines (after the havem label)
  1030  	// will save this SP onto the stack and then write
  1031  	// the same SP back to m->sched.sp. That seems redundant,
  1032  	// but if an unrecovered panic happens, unwindm will
  1033  	// restore the g->sched.sp from the stack location
  1034  	// and then systemstack will try to use it. If we don't set it here,
  1035  	// that restored SP will be uninitialized (typically 0) and
  1036  	// will not be usable.
  1037  	MOVQ	m_g0(BX), SI
  1038  	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1039  
  1040  havem:
  1041  	// Now there's a valid m, and we're running on its m->g0.
  1042  	// Save current m->g0->sched.sp on stack and then set it to SP.
  1043  	// Save current sp in m->g0->sched.sp in preparation for
  1044  	// switch back to m->curg stack.
  1045  	// NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
  1046  	MOVQ	m_g0(BX), SI
  1047  	MOVQ	(g_sched+gobuf_sp)(SI), AX
  1048  	MOVQ	AX, 0(SP)
  1049  	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1050  
  1051  	// Switch to m->curg stack and call runtime.cgocallbackg.
  1052  	// Because we are taking over the execution of m->curg
  1053  	// but *not* resuming what had been running, we need to
  1054  	// save that information (m->curg->sched) so we can restore it.
  1055  	// We can restore m->curg->sched.sp easily, because calling
  1056  	// runtime.cgocallbackg leaves SP unchanged upon return.
  1057  	// To save m->curg->sched.pc, we push it onto the curg stack and
  1058  	// open a frame the same size as cgocallback's g0 frame.
  1059  	// Once we switch to the curg stack, the pushed PC will appear
  1060  	// to be the return PC of cgocallback, so that the traceback
  1061  	// will seamlessly trace back into the earlier calls.
  1062  	MOVQ	m_curg(BX), SI
  1063  	MOVQ	SI, g(CX)
  1064  	MOVQ	(g_sched+gobuf_sp)(SI), DI  // prepare stack as DI
  1065  	MOVQ	(g_sched+gobuf_pc)(SI), BX
  1066  	MOVQ	BX, -8(DI)  // "push" return PC on the g stack
  1067  	// Gather our arguments into registers.
  1068  	MOVQ	fn+0(FP), BX
  1069  	MOVQ	frame+8(FP), CX
  1070  	MOVQ	ctxt+16(FP), DX
  1071  	// Compute the size of the frame, including return PC and, if
  1072  	// GOEXPERIMENT=framepointer, the saved base pointer
  1073  	LEAQ	fn+0(FP), AX
  1074  	SUBQ	SP, AX   // AX is our actual frame size
  1075  	SUBQ	AX, DI   // Allocate the same frame size on the g stack
  1076  	MOVQ	DI, SP
  1077  
  1078  	MOVQ	BX, 0(SP)
  1079  	MOVQ	CX, 8(SP)
  1080  	MOVQ	DX, 16(SP)
  1081  	MOVQ	$runtime·cgocallbackg(SB), AX
  1082  	CALL	AX	// indirect call to bypass nosplit check. We're on a different stack now.
  1083  
  1084  	// Compute the size of the frame again. FP and SP have
  1085  	// completely different values here than they did above,
  1086  	// but only their difference matters.
  1087  	LEAQ	fn+0(FP), AX
  1088  	SUBQ	SP, AX
  1089  
  1090  	// Restore g->sched (== m->curg->sched) from saved values.
  1091  	get_tls(CX)
  1092  	MOVQ	g(CX), SI
  1093  	MOVQ	SP, DI
  1094  	ADDQ	AX, DI
  1095  	MOVQ	-8(DI), BX
  1096  	MOVQ	BX, (g_sched+gobuf_pc)(SI)
  1097  	MOVQ	DI, (g_sched+gobuf_sp)(SI)
  1098  
  1099  	// Switch back to m->g0's stack and restore m->g0->sched.sp.
  1100  	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
  1101  	// so we do not have to restore it.)
  1102  	MOVQ	g(CX), BX
  1103  	MOVQ	g_m(BX), BX
  1104  	MOVQ	m_g0(BX), SI
  1105  	MOVQ	SI, g(CX)
  1106  	MOVQ	(g_sched+gobuf_sp)(SI), SP
  1107  	MOVQ	0(SP), AX
  1108  	MOVQ	AX, (g_sched+gobuf_sp)(SI)
  1109  
  1110  	// If the m on entry was nil, we called needm above to borrow an m,
  1111  	// 1. for the duration of the call on non-pthread platforms,
  1112  	// 2. or the duration of the C thread alive on pthread platforms.
  1113  	// If the m on entry wasn't nil,
  1114  	// 1. the thread might be a Go thread,
  1115  	// 2. or it wasn't the first call from a C thread on pthread platforms,
  1116  	//    since then we skip dropm to reuse the m in the first call.
  1117  	MOVQ	savedm-8(SP), BX
  1118  	CMPQ	BX, $0
  1119  	JNE	done
  1120  
  1121  	// Skip dropm to reuse it in the next call, when a pthread key has been created.
  1122  	MOVQ	_cgo_pthread_key_created(SB), AX
  1123  	// It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
  1124  	CMPQ	AX, $0
  1125  	JEQ	dropm
  1126  	CMPQ	(AX), $0
  1127  	JNE	done
  1128  
  1129  dropm:
  1130  	MOVQ	$runtime·dropm(SB), AX
  1131  	CALL	AX
  1132  #ifdef GOOS_windows
  1133  	// We need to clear the TLS pointer in case the next
  1134  	// thread that comes into Go tries to reuse that space
  1135  	// but uses the same M.
  1136  	XORQ	DI, DI
  1137  	CALL	runtime·settls(SB)
  1138  #endif
  1139  done:
  1140  
  1141  	// Done!
  1142  	RET
  1143  
  1144  // func setg(gg *g)
  1145  // set g. for use by needm.
  1146  TEXT runtime·setg(SB), NOSPLIT, $0-8
  1147  	MOVQ	gg+0(FP), BX
  1148  	get_tls(CX)
  1149  	MOVQ	BX, g(CX)
  1150  	RET
  1151  
  1152  // void setg_gcc(G*); set g called from gcc.
  1153  TEXT setg_gcc<>(SB),NOSPLIT,$0
  1154  	get_tls(AX)
  1155  	MOVQ	DI, g(AX)
  1156  	MOVQ	DI, R14 // set the g register
  1157  	RET
  1158  
  1159  TEXT runtime·abort(SB),NOSPLIT,$0-0
  1160  	INT	$3
  1161  loop:
  1162  	JMP	loop
  1163  
  1164  // check that SP is in range [g->stack.lo, g->stack.hi)
  1165  TEXT runtime·stackcheck(SB), NOSPLIT|NOFRAME, $0-0
  1166  	get_tls(CX)
  1167  	MOVQ	g(CX), AX
  1168  	CMPQ	(g_stack+stack_hi)(AX), SP
  1169  	JHI	2(PC)
  1170  	CALL	runtime·abort(SB)
  1171  	CMPQ	SP, (g_stack+stack_lo)(AX)
  1172  	JHI	2(PC)
  1173  	CALL	runtime·abort(SB)
  1174  	RET
  1175  
  1176  // func cputicks() int64
  1177  TEXT runtime·cputicks(SB),NOSPLIT,$0-0
  1178  	CMPB	internal∕cpu·X86+const_offsetX86HasRDTSCP(SB), $1
  1179  	JNE	fences
  1180  	// Instruction stream serializing RDTSCP is supported.
  1181  	// RDTSCP is supported by Intel Nehalem (2008) and
  1182  	// AMD K8 Rev. F (2006) and newer.
  1183  	RDTSCP
  1184  done:
  1185  	SHLQ	$32, DX
  1186  	ADDQ	DX, AX
  1187  	MOVQ	AX, ret+0(FP)
  1188  	RET
  1189  fences:
  1190  	// MFENCE is instruction stream serializing and flushes the
  1191  	// store buffers on AMD. The serialization semantics of LFENCE on AMD
  1192  	// are dependent on MSR C001_1029 and CPU generation.
  1193  	// LFENCE on Intel does wait for all previous instructions to have executed.
  1194  	// Intel recommends MFENCE;LFENCE in its manuals before RDTSC to have all
  1195  	// previous instructions executed and all previous loads and stores to globally visible.
  1196  	// Using MFENCE;LFENCE here aligns the serializing properties without
  1197  	// runtime detection of CPU manufacturer.
  1198  	MFENCE
  1199  	LFENCE
  1200  	RDTSC
  1201  	JMP done
  1202  
  1203  // func memhash(p unsafe.Pointer, h, s uintptr) uintptr
  1204  // hash function using AES hardware instructions
  1205  TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT,$0-32
  1206  	// AX = ptr to data
  1207  	// BX = seed
  1208  	// CX = size
  1209  	CMPB	runtime·useAeshash(SB), $0
  1210  	JEQ	noaes
  1211  	JMP	aeshashbody<>(SB)
  1212  noaes:
  1213  	JMP	runtime·memhashFallback<ABIInternal>(SB)
  1214  
  1215  // func strhash(p unsafe.Pointer, h uintptr) uintptr
  1216  TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT,$0-24
  1217  	// AX = ptr to string struct
  1218  	// BX = seed
  1219  	CMPB	runtime·useAeshash(SB), $0
  1220  	JEQ	noaes
  1221  	MOVQ	8(AX), CX	// length of string
  1222  	MOVQ	(AX), AX	// string data
  1223  	JMP	aeshashbody<>(SB)
  1224  noaes:
  1225  	JMP	runtime·strhashFallback<ABIInternal>(SB)
  1226  
  1227  // AX: data
  1228  // BX: hash seed
  1229  // CX: length
  1230  // At return: AX = return value
  1231  TEXT aeshashbody<>(SB),NOSPLIT,$0-0
  1232  	// Fill an SSE register with our seeds.
  1233  	MOVQ	BX, X0				// 64 bits of per-table hash seed
  1234  	PINSRW	$4, CX, X0			// 16 bits of length
  1235  	PSHUFHW $0, X0, X0			// repeat length 4 times total
  1236  	MOVO	X0, X1				// save unscrambled seed
  1237  	PXOR	runtime·aeskeysched(SB), X0	// xor in per-process seed
  1238  	AESENC	X0, X0				// scramble seed
  1239  
  1240  	CMPQ	CX, $16
  1241  	JB	aes0to15
  1242  	JE	aes16
  1243  	CMPQ	CX, $32
  1244  	JBE	aes17to32
  1245  	CMPQ	CX, $64
  1246  	JBE	aes33to64
  1247  	CMPQ	CX, $128
  1248  	JBE	aes65to128
  1249  	JMP	aes129plus
  1250  
  1251  aes0to15:
  1252  	TESTQ	CX, CX
  1253  	JE	aes0
  1254  
  1255  	ADDQ	$16, AX
  1256  	TESTW	$0xff0, AX
  1257  	JE	endofpage
  1258  
  1259  	// 16 bytes loaded at this address won't cross
  1260  	// a page boundary, so we can load it directly.
  1261  	MOVOU	-16(AX), X1
  1262  	ADDQ	CX, CX
  1263  	MOVQ	$masks<>(SB), AX
  1264  	PAND	(AX)(CX*8), X1
  1265  final1:
  1266  	PXOR	X0, X1	// xor data with seed
  1267  	AESENC	X1, X1	// scramble combo 3 times
  1268  	AESENC	X1, X1
  1269  	AESENC	X1, X1
  1270  	MOVQ	X1, AX	// return X1
  1271  	RET
  1272  
  1273  endofpage:
  1274  	// address ends in 1111xxxx. Might be up against
  1275  	// a page boundary, so load ending at last byte.
  1276  	// Then shift bytes down using pshufb.
  1277  	MOVOU	-32(AX)(CX*1), X1
  1278  	ADDQ	CX, CX
  1279  	MOVQ	$shifts<>(SB), AX
  1280  	PSHUFB	(AX)(CX*8), X1
  1281  	JMP	final1
  1282  
  1283  aes0:
  1284  	// Return scrambled input seed
  1285  	AESENC	X0, X0
  1286  	MOVQ	X0, AX	// return X0
  1287  	RET
  1288  
  1289  aes16:
  1290  	MOVOU	(AX), X1
  1291  	JMP	final1
  1292  
  1293  aes17to32:
  1294  	// make second starting seed
  1295  	PXOR	runtime·aeskeysched+16(SB), X1
  1296  	AESENC	X1, X1
  1297  
  1298  	// load data to be hashed
  1299  	MOVOU	(AX), X2
  1300  	MOVOU	-16(AX)(CX*1), X3
  1301  
  1302  	// xor with seed
  1303  	PXOR	X0, X2
  1304  	PXOR	X1, X3
  1305  
  1306  	// scramble 3 times
  1307  	AESENC	X2, X2
  1308  	AESENC	X3, X3
  1309  	AESENC	X2, X2
  1310  	AESENC	X3, X3
  1311  	AESENC	X2, X2
  1312  	AESENC	X3, X3
  1313  
  1314  	// combine results
  1315  	PXOR	X3, X2
  1316  	MOVQ	X2, AX	// return X2
  1317  	RET
  1318  
  1319  aes33to64:
  1320  	// make 3 more starting seeds
  1321  	MOVO	X1, X2
  1322  	MOVO	X1, X3
  1323  	PXOR	runtime·aeskeysched+16(SB), X1
  1324  	PXOR	runtime·aeskeysched+32(SB), X2
  1325  	PXOR	runtime·aeskeysched+48(SB), X3
  1326  	AESENC	X1, X1
  1327  	AESENC	X2, X2
  1328  	AESENC	X3, X3
  1329  
  1330  	MOVOU	(AX), X4
  1331  	MOVOU	16(AX), X5
  1332  	MOVOU	-32(AX)(CX*1), X6
  1333  	MOVOU	-16(AX)(CX*1), X7
  1334  
  1335  	PXOR	X0, X4
  1336  	PXOR	X1, X5
  1337  	PXOR	X2, X6
  1338  	PXOR	X3, X7
  1339  
  1340  	AESENC	X4, X4
  1341  	AESENC	X5, X5
  1342  	AESENC	X6, X6
  1343  	AESENC	X7, X7
  1344  
  1345  	AESENC	X4, X4
  1346  	AESENC	X5, X5
  1347  	AESENC	X6, X6
  1348  	AESENC	X7, X7
  1349  
  1350  	AESENC	X4, X4
  1351  	AESENC	X5, X5
  1352  	AESENC	X6, X6
  1353  	AESENC	X7, X7
  1354  
  1355  	PXOR	X6, X4
  1356  	PXOR	X7, X5
  1357  	PXOR	X5, X4
  1358  	MOVQ	X4, AX	// return X4
  1359  	RET
  1360  
  1361  aes65to128:
  1362  	// make 7 more starting seeds
  1363  	MOVO	X1, X2
  1364  	MOVO	X1, X3
  1365  	MOVO	X1, X4
  1366  	MOVO	X1, X5
  1367  	MOVO	X1, X6
  1368  	MOVO	X1, X7
  1369  	PXOR	runtime·aeskeysched+16(SB), X1
  1370  	PXOR	runtime·aeskeysched+32(SB), X2
  1371  	PXOR	runtime·aeskeysched+48(SB), X3
  1372  	PXOR	runtime·aeskeysched+64(SB), X4
  1373  	PXOR	runtime·aeskeysched+80(SB), X5
  1374  	PXOR	runtime·aeskeysched+96(SB), X6
  1375  	PXOR	runtime·aeskeysched+112(SB), X7
  1376  	AESENC	X1, X1
  1377  	AESENC	X2, X2
  1378  	AESENC	X3, X3
  1379  	AESENC	X4, X4
  1380  	AESENC	X5, X5
  1381  	AESENC	X6, X6
  1382  	AESENC	X7, X7
  1383  
  1384  	// load data
  1385  	MOVOU	(AX), X8
  1386  	MOVOU	16(AX), X9
  1387  	MOVOU	32(AX), X10
  1388  	MOVOU	48(AX), X11
  1389  	MOVOU	-64(AX)(CX*1), X12
  1390  	MOVOU	-48(AX)(CX*1), X13
  1391  	MOVOU	-32(AX)(CX*1), X14
  1392  	MOVOU	-16(AX)(CX*1), X15
  1393  
  1394  	// xor with seed
  1395  	PXOR	X0, X8
  1396  	PXOR	X1, X9
  1397  	PXOR	X2, X10
  1398  	PXOR	X3, X11
  1399  	PXOR	X4, X12
  1400  	PXOR	X5, X13
  1401  	PXOR	X6, X14
  1402  	PXOR	X7, X15
  1403  
  1404  	// scramble 3 times
  1405  	AESENC	X8, X8
  1406  	AESENC	X9, X9
  1407  	AESENC	X10, X10
  1408  	AESENC	X11, X11
  1409  	AESENC	X12, X12
  1410  	AESENC	X13, X13
  1411  	AESENC	X14, X14
  1412  	AESENC	X15, X15
  1413  
  1414  	AESENC	X8, X8
  1415  	AESENC	X9, X9
  1416  	AESENC	X10, X10
  1417  	AESENC	X11, X11
  1418  	AESENC	X12, X12
  1419  	AESENC	X13, X13
  1420  	AESENC	X14, X14
  1421  	AESENC	X15, X15
  1422  
  1423  	AESENC	X8, X8
  1424  	AESENC	X9, X9
  1425  	AESENC	X10, X10
  1426  	AESENC	X11, X11
  1427  	AESENC	X12, X12
  1428  	AESENC	X13, X13
  1429  	AESENC	X14, X14
  1430  	AESENC	X15, X15
  1431  
  1432  	// combine results
  1433  	PXOR	X12, X8
  1434  	PXOR	X13, X9
  1435  	PXOR	X14, X10
  1436  	PXOR	X15, X11
  1437  	PXOR	X10, X8
  1438  	PXOR	X11, X9
  1439  	PXOR	X9, X8
  1440  	// X15 must be zero on return
  1441  	PXOR	X15, X15
  1442  	MOVQ	X8, AX	// return X8
  1443  	RET
  1444  
  1445  aes129plus:
  1446  	// make 7 more starting seeds
  1447  	MOVO	X1, X2
  1448  	MOVO	X1, X3
  1449  	MOVO	X1, X4
  1450  	MOVO	X1, X5
  1451  	MOVO	X1, X6
  1452  	MOVO	X1, X7
  1453  	PXOR	runtime·aeskeysched+16(SB), X1
  1454  	PXOR	runtime·aeskeysched+32(SB), X2
  1455  	PXOR	runtime·aeskeysched+48(SB), X3
  1456  	PXOR	runtime·aeskeysched+64(SB), X4
  1457  	PXOR	runtime·aeskeysched+80(SB), X5
  1458  	PXOR	runtime·aeskeysched+96(SB), X6
  1459  	PXOR	runtime·aeskeysched+112(SB), X7
  1460  	AESENC	X1, X1
  1461  	AESENC	X2, X2
  1462  	AESENC	X3, X3
  1463  	AESENC	X4, X4
  1464  	AESENC	X5, X5
  1465  	AESENC	X6, X6
  1466  	AESENC	X7, X7
  1467  
  1468  	// start with last (possibly overlapping) block
  1469  	MOVOU	-128(AX)(CX*1), X8
  1470  	MOVOU	-112(AX)(CX*1), X9
  1471  	MOVOU	-96(AX)(CX*1), X10
  1472  	MOVOU	-80(AX)(CX*1), X11
  1473  	MOVOU	-64(AX)(CX*1), X12
  1474  	MOVOU	-48(AX)(CX*1), X13
  1475  	MOVOU	-32(AX)(CX*1), X14
  1476  	MOVOU	-16(AX)(CX*1), X15
  1477  
  1478  	// xor in seed
  1479  	PXOR	X0, X8
  1480  	PXOR	X1, X9
  1481  	PXOR	X2, X10
  1482  	PXOR	X3, X11
  1483  	PXOR	X4, X12
  1484  	PXOR	X5, X13
  1485  	PXOR	X6, X14
  1486  	PXOR	X7, X15
  1487  
  1488  	// compute number of remaining 128-byte blocks
  1489  	DECQ	CX
  1490  	SHRQ	$7, CX
  1491  
  1492  	PCALIGN $16
  1493  aesloop:
  1494  	// scramble state
  1495  	AESENC	X8, X8
  1496  	AESENC	X9, X9
  1497  	AESENC	X10, X10
  1498  	AESENC	X11, X11
  1499  	AESENC	X12, X12
  1500  	AESENC	X13, X13
  1501  	AESENC	X14, X14
  1502  	AESENC	X15, X15
  1503  
  1504  	// scramble state, xor in a block
  1505  	MOVOU	(AX), X0
  1506  	MOVOU	16(AX), X1
  1507  	MOVOU	32(AX), X2
  1508  	MOVOU	48(AX), X3
  1509  	AESENC	X0, X8
  1510  	AESENC	X1, X9
  1511  	AESENC	X2, X10
  1512  	AESENC	X3, X11
  1513  	MOVOU	64(AX), X4
  1514  	MOVOU	80(AX), X5
  1515  	MOVOU	96(AX), X6
  1516  	MOVOU	112(AX), X7
  1517  	AESENC	X4, X12
  1518  	AESENC	X5, X13
  1519  	AESENC	X6, X14
  1520  	AESENC	X7, X15
  1521  
  1522  	ADDQ	$128, AX
  1523  	DECQ	CX
  1524  	JNE	aesloop
  1525  
  1526  	// 3 more scrambles to finish
  1527  	AESENC	X8, X8
  1528  	AESENC	X9, X9
  1529  	AESENC	X10, X10
  1530  	AESENC	X11, X11
  1531  	AESENC	X12, X12
  1532  	AESENC	X13, X13
  1533  	AESENC	X14, X14
  1534  	AESENC	X15, X15
  1535  	AESENC	X8, X8
  1536  	AESENC	X9, X9
  1537  	AESENC	X10, X10
  1538  	AESENC	X11, X11
  1539  	AESENC	X12, X12
  1540  	AESENC	X13, X13
  1541  	AESENC	X14, X14
  1542  	AESENC	X15, X15
  1543  	AESENC	X8, X8
  1544  	AESENC	X9, X9
  1545  	AESENC	X10, X10
  1546  	AESENC	X11, X11
  1547  	AESENC	X12, X12
  1548  	AESENC	X13, X13
  1549  	AESENC	X14, X14
  1550  	AESENC	X15, X15
  1551  
  1552  	PXOR	X12, X8
  1553  	PXOR	X13, X9
  1554  	PXOR	X14, X10
  1555  	PXOR	X15, X11
  1556  	PXOR	X10, X8
  1557  	PXOR	X11, X9
  1558  	PXOR	X9, X8
  1559  	// X15 must be zero on return
  1560  	PXOR	X15, X15
  1561  	MOVQ	X8, AX	// return X8
  1562  	RET
  1563  
  1564  // func memhash32(p unsafe.Pointer, h uintptr) uintptr
  1565  // ABIInternal for performance.
  1566  TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT,$0-24
  1567  	// AX = ptr to data
  1568  	// BX = seed
  1569  	CMPB	runtime·useAeshash(SB), $0
  1570  	JEQ	noaes
  1571  	MOVQ	BX, X0	// X0 = seed
  1572  	PINSRD	$2, (AX), X0	// data
  1573  	AESENC	runtime·aeskeysched+0(SB), X0
  1574  	AESENC	runtime·aeskeysched+16(SB), X0
  1575  	AESENC	runtime·aeskeysched+32(SB), X0
  1576  	MOVQ	X0, AX	// return X0
  1577  	RET
  1578  noaes:
  1579  	JMP	runtime·memhash32Fallback<ABIInternal>(SB)
  1580  
  1581  // func memhash64(p unsafe.Pointer, h uintptr) uintptr
  1582  // ABIInternal for performance.
  1583  TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT,$0-24
  1584  	// AX = ptr to data
  1585  	// BX = seed
  1586  	CMPB	runtime·useAeshash(SB), $0
  1587  	JEQ	noaes
  1588  	MOVQ	BX, X0	// X0 = seed
  1589  	PINSRQ	$1, (AX), X0	// data
  1590  	AESENC	runtime·aeskeysched+0(SB), X0
  1591  	AESENC	runtime·aeskeysched+16(SB), X0
  1592  	AESENC	runtime·aeskeysched+32(SB), X0
  1593  	MOVQ	X0, AX	// return X0
  1594  	RET
  1595  noaes:
  1596  	JMP	runtime·memhash64Fallback<ABIInternal>(SB)
  1597  
  1598  // simple mask to get rid of data in the high part of the register.
  1599  DATA masks<>+0x00(SB)/8, $0x0000000000000000
  1600  DATA masks<>+0x08(SB)/8, $0x0000000000000000
  1601  DATA masks<>+0x10(SB)/8, $0x00000000000000ff
  1602  DATA masks<>+0x18(SB)/8, $0x0000000000000000
  1603  DATA masks<>+0x20(SB)/8, $0x000000000000ffff
  1604  DATA masks<>+0x28(SB)/8, $0x0000000000000000
  1605  DATA masks<>+0x30(SB)/8, $0x0000000000ffffff
  1606  DATA masks<>+0x38(SB)/8, $0x0000000000000000
  1607  DATA masks<>+0x40(SB)/8, $0x00000000ffffffff
  1608  DATA masks<>+0x48(SB)/8, $0x0000000000000000
  1609  DATA masks<>+0x50(SB)/8, $0x000000ffffffffff
  1610  DATA masks<>+0x58(SB)/8, $0x0000000000000000
  1611  DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff
  1612  DATA masks<>+0x68(SB)/8, $0x0000000000000000
  1613  DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff
  1614  DATA masks<>+0x78(SB)/8, $0x0000000000000000
  1615  DATA masks<>+0x80(SB)/8, $0xffffffffffffffff
  1616  DATA masks<>+0x88(SB)/8, $0x0000000000000000
  1617  DATA masks<>+0x90(SB)/8, $0xffffffffffffffff
  1618  DATA masks<>+0x98(SB)/8, $0x00000000000000ff
  1619  DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff
  1620  DATA masks<>+0xa8(SB)/8, $0x000000000000ffff
  1621  DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff
  1622  DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff
  1623  DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff
  1624  DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff
  1625  DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff
  1626  DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff
  1627  DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff
  1628  DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff
  1629  DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff
  1630  DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff
  1631  GLOBL masks<>(SB),RODATA,$256
  1632  
  1633  // func checkASM() bool
  1634  TEXT ·checkASM(SB),NOSPLIT,$0-1
  1635  	// check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte
  1636  	MOVQ	$masks<>(SB), AX
  1637  	MOVQ	$shifts<>(SB), BX
  1638  	ORQ	BX, AX
  1639  	TESTQ	$15, AX
  1640  	SETEQ	ret+0(FP)
  1641  	RET
  1642  
  1643  // these are arguments to pshufb. They move data down from
  1644  // the high bytes of the register to the low bytes of the register.
  1645  // index is how many bytes to move.
  1646  DATA shifts<>+0x00(SB)/8, $0x0000000000000000
  1647  DATA shifts<>+0x08(SB)/8, $0x0000000000000000
  1648  DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f
  1649  DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff
  1650  DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e
  1651  DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff
  1652  DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d
  1653  DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff
  1654  DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c
  1655  DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff
  1656  DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b
  1657  DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff
  1658  DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a
  1659  DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff
  1660  DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09
  1661  DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff
  1662  DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908
  1663  DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff
  1664  DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807
  1665  DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f
  1666  DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706
  1667  DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e
  1668  DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605
  1669  DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d
  1670  DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504
  1671  DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c
  1672  DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403
  1673  DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b
  1674  DATA shifts<>+0xe0(SB)/8, $0x0908070605040302
  1675  DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a
  1676  DATA shifts<>+0xf0(SB)/8, $0x0807060504030201
  1677  DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09
  1678  GLOBL shifts<>(SB),RODATA,$256
  1679  
  1680  // Called from cgo wrappers, this function returns g->m->curg.stack.hi.
  1681  // Must obey the gcc calling convention.
  1682  TEXT _cgo_topofstack(SB),NOSPLIT,$0
  1683  	get_tls(CX)
  1684  	MOVQ	g(CX), AX
  1685  	MOVQ	g_m(AX), AX
  1686  	MOVQ	m_curg(AX), AX
  1687  	MOVQ	(g_stack+stack_hi)(AX), AX
  1688  	RET
  1689  
  1690  // The top-most function running on a goroutine
  1691  // returns to goexit+PCQuantum.
  1692  TEXT runtime·goexit(SB),NOSPLIT|TOPFRAME|NOFRAME,$0-0
  1693  	BYTE	$0x90	// NOP
  1694  	CALL	runtime·goexit1(SB)	// does not return
  1695  	// traceback from goexit1 must hit code range of goexit
  1696  	BYTE	$0x90	// NOP
  1697  
  1698  // This is called from .init_array and follows the platform, not Go, ABI.
  1699  TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
  1700  	PUSHQ	R15 // The access to global variables below implicitly uses R15, which is callee-save
  1701  	MOVQ	runtime·lastmoduledatap(SB), AX
  1702  	MOVQ	DI, moduledata_next(AX)
  1703  	MOVQ	DI, runtime·lastmoduledatap(SB)
  1704  	POPQ	R15
  1705  	RET
  1706  
  1707  // Initialize special registers then jump to sigpanic.
  1708  // This function is injected from the signal handler for panicking
  1709  // signals. It is quite painful to set X15 in the signal context,
  1710  // so we do it here.
  1711  TEXT ·sigpanic0(SB),NOSPLIT,$0-0
  1712  	get_tls(R14)
  1713  	MOVQ	g(R14), R14
  1714  	XORPS	X15, X15
  1715  	JMP	·sigpanic<ABIInternal>(SB)
  1716  
  1717  // gcWriteBarrier informs the GC about heap pointer writes.
  1718  //
  1719  // gcWriteBarrier returns space in a write barrier buffer which
  1720  // should be filled in by the caller.
  1721  // gcWriteBarrier does NOT follow the Go ABI. It accepts the
  1722  // number of bytes of buffer needed in R11, and returns a pointer
  1723  // to the buffer space in R11.
  1724  // It clobbers FLAGS. It does not clobber any general-purpose registers,
  1725  // but may clobber others (e.g., SSE registers).
  1726  // Typical use would be, when doing *(CX+88) = AX
  1727  //     CMPL    $0, runtime.writeBarrier(SB)
  1728  //     JEQ     dowrite
  1729  //     CALL    runtime.gcBatchBarrier2(SB)
  1730  //     MOVQ    AX, (R11)
  1731  //     MOVQ    88(CX), DX
  1732  //     MOVQ    DX, 8(R11)
  1733  // dowrite:
  1734  //     MOVQ    AX, 88(CX)
  1735  TEXT gcWriteBarrier<>(SB),NOSPLIT,$112
  1736  	// Save the registers clobbered by the fast path. This is slightly
  1737  	// faster than having the caller spill these.
  1738  	MOVQ	R12, 96(SP)
  1739  	MOVQ	R13, 104(SP)
  1740  retry:
  1741  	// TODO: Consider passing g.m.p in as an argument so they can be shared
  1742  	// across a sequence of write barriers.
  1743  	MOVQ	g_m(R14), R13
  1744  	MOVQ	m_p(R13), R13
  1745  	// Get current buffer write position.
  1746  	MOVQ	(p_wbBuf+wbBuf_next)(R13), R12	// original next position
  1747  	ADDQ	R11, R12			// new next position
  1748  	// Is the buffer full?
  1749  	CMPQ	R12, (p_wbBuf+wbBuf_end)(R13)
  1750  	JA	flush
  1751  	// Commit to the larger buffer.
  1752  	MOVQ	R12, (p_wbBuf+wbBuf_next)(R13)
  1753  	// Make return value (the original next position)
  1754  	SUBQ	R11, R12
  1755  	MOVQ	R12, R11
  1756  	// Restore registers.
  1757  	MOVQ	96(SP), R12
  1758  	MOVQ	104(SP), R13
  1759  	RET
  1760  
  1761  flush:
  1762  	// Save all general purpose registers since these could be
  1763  	// clobbered by wbBufFlush and were not saved by the caller.
  1764  	// It is possible for wbBufFlush to clobber other registers
  1765  	// (e.g., SSE registers), but the compiler takes care of saving
  1766  	// those in the caller if necessary. This strikes a balance
  1767  	// with registers that are likely to be used.
  1768  	//
  1769  	// We don't have type information for these, but all code under
  1770  	// here is NOSPLIT, so nothing will observe these.
  1771  	//
  1772  	// TODO: We could strike a different balance; e.g., saving X0
  1773  	// and not saving GP registers that are less likely to be used.
  1774  	MOVQ	DI, 0(SP)
  1775  	MOVQ	AX, 8(SP)
  1776  	MOVQ	BX, 16(SP)
  1777  	MOVQ	CX, 24(SP)
  1778  	MOVQ	DX, 32(SP)
  1779  	// DI already saved
  1780  	MOVQ	SI, 40(SP)
  1781  	MOVQ	BP, 48(SP)
  1782  	MOVQ	R8, 56(SP)
  1783  	MOVQ	R9, 64(SP)
  1784  	MOVQ	R10, 72(SP)
  1785  	MOVQ	R11, 80(SP)
  1786  	// R12 already saved
  1787  	// R13 already saved
  1788  	// R14 is g
  1789  	MOVQ	R15, 88(SP)
  1790  
  1791  	CALL	runtime·wbBufFlush(SB)
  1792  
  1793  	MOVQ	0(SP), DI
  1794  	MOVQ	8(SP), AX
  1795  	MOVQ	16(SP), BX
  1796  	MOVQ	24(SP), CX
  1797  	MOVQ	32(SP), DX
  1798  	MOVQ	40(SP), SI
  1799  	MOVQ	48(SP), BP
  1800  	MOVQ	56(SP), R8
  1801  	MOVQ	64(SP), R9
  1802  	MOVQ	72(SP), R10
  1803  	MOVQ	80(SP), R11
  1804  	MOVQ	88(SP), R15
  1805  	JMP	retry
  1806  
  1807  TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1808  	MOVL   $8, R11
  1809  	JMP     gcWriteBarrier<>(SB)
  1810  TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1811  	MOVL   $16, R11
  1812  	JMP     gcWriteBarrier<>(SB)
  1813  TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1814  	MOVL   $24, R11
  1815  	JMP     gcWriteBarrier<>(SB)
  1816  TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1817  	MOVL   $32, R11
  1818  	JMP     gcWriteBarrier<>(SB)
  1819  TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1820  	MOVL   $40, R11
  1821  	JMP     gcWriteBarrier<>(SB)
  1822  TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1823  	MOVL   $48, R11
  1824  	JMP     gcWriteBarrier<>(SB)
  1825  TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1826  	MOVL   $56, R11
  1827  	JMP     gcWriteBarrier<>(SB)
  1828  TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1829  	MOVL   $64, R11
  1830  	JMP     gcWriteBarrier<>(SB)
  1831  
  1832  DATA	debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
  1833  GLOBL	debugCallFrameTooLarge<>(SB), RODATA, $20	// Size duplicated below
  1834  
  1835  // debugCallV2 is the entry point for debugger-injected function
  1836  // calls on running goroutines. It informs the runtime that a
  1837  // debug call has been injected and creates a call frame for the
  1838  // debugger to fill in.
  1839  //
  1840  // To inject a function call, a debugger should:
  1841  // 1. Check that the goroutine is in state _Grunning and that
  1842  //    there are at least 256 bytes free on the stack.
  1843  // 2. Push the current PC on the stack (updating SP).
  1844  // 3. Write the desired argument frame size at SP-16 (using the SP
  1845  //    after step 2).
  1846  // 4. Save all machine registers (including flags and XMM registers)
  1847  //    so they can be restored later by the debugger.
  1848  // 5. Set the PC to debugCallV2 and resume execution.
  1849  //
  1850  // If the goroutine is in state _Grunnable, then it's not generally
  1851  // safe to inject a call because it may return out via other runtime
  1852  // operations. Instead, the debugger should unwind the stack to find
  1853  // the return to non-runtime code, add a temporary breakpoint there,
  1854  // and inject the call once that breakpoint is hit.
  1855  //
  1856  // If the goroutine is in any other state, it's not safe to inject a call.
  1857  //
  1858  // This function communicates back to the debugger by setting R12 and
  1859  // invoking INT3 to raise a breakpoint signal. See the comments in the
  1860  // implementation for the protocol the debugger is expected to
  1861  // follow. InjectDebugCall in the runtime tests demonstrates this protocol.
  1862  //
  1863  // The debugger must ensure that any pointers passed to the function
  1864  // obey escape analysis requirements. Specifically, it must not pass
  1865  // a stack pointer to an escaping argument. debugCallV2 cannot check
  1866  // this invariant.
  1867  //
  1868  // This is ABIInternal because Go code injects its PC directly into new
  1869  // goroutine stacks.
  1870  TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT,$152-0
  1871  	// Save all registers that may contain pointers so they can be
  1872  	// conservatively scanned.
  1873  	//
  1874  	// We can't do anything that might clobber any of these
  1875  	// registers before this.
  1876  	MOVQ	R15, r15-(14*8+8)(SP)
  1877  	MOVQ	R14, r14-(13*8+8)(SP)
  1878  	MOVQ	R13, r13-(12*8+8)(SP)
  1879  	MOVQ	R12, r12-(11*8+8)(SP)
  1880  	MOVQ	R11, r11-(10*8+8)(SP)
  1881  	MOVQ	R10, r10-(9*8+8)(SP)
  1882  	MOVQ	R9, r9-(8*8+8)(SP)
  1883  	MOVQ	R8, r8-(7*8+8)(SP)
  1884  	MOVQ	DI, di-(6*8+8)(SP)
  1885  	MOVQ	SI, si-(5*8+8)(SP)
  1886  	MOVQ	BP, bp-(4*8+8)(SP)
  1887  	MOVQ	BX, bx-(3*8+8)(SP)
  1888  	MOVQ	DX, dx-(2*8+8)(SP)
  1889  	// Save the frame size before we clobber it. Either of the last
  1890  	// saves could clobber this depending on whether there's a saved BP.
  1891  	MOVQ	frameSize-24(FP), DX	// aka -16(RSP) before prologue
  1892  	MOVQ	CX, cx-(1*8+8)(SP)
  1893  	MOVQ	AX, ax-(0*8+8)(SP)
  1894  
  1895  	// Save the argument frame size.
  1896  	MOVQ	DX, frameSize-128(SP)
  1897  
  1898  	// Perform a safe-point check.
  1899  	MOVQ	retpc-8(FP), AX	// Caller's PC
  1900  	MOVQ	AX, 0(SP)
  1901  	CALL	runtime·debugCallCheck(SB)
  1902  	MOVQ	8(SP), AX
  1903  	TESTQ	AX, AX
  1904  	JZ	good
  1905  	// The safety check failed. Put the reason string at the top
  1906  	// of the stack.
  1907  	MOVQ	AX, 0(SP)
  1908  	MOVQ	16(SP), AX
  1909  	MOVQ	AX, 8(SP)
  1910  	// Set R12 to 8 and invoke INT3. The debugger should get the
  1911  	// reason a call can't be injected from the top of the stack
  1912  	// and resume execution.
  1913  	MOVQ	$8, R12
  1914  	BYTE	$0xcc
  1915  	JMP	restore
  1916  
  1917  good:
  1918  	// Registers are saved and it's safe to make a call.
  1919  	// Open up a call frame, moving the stack if necessary.
  1920  	//
  1921  	// Once the frame is allocated, this will set R12 to 0 and
  1922  	// invoke INT3. The debugger should write the argument
  1923  	// frame for the call at SP, set up argument registers, push
  1924  	// the trapping PC on the stack, set the PC to the function to
  1925  	// call, set RDX to point to the closure (if a closure call),
  1926  	// and resume execution.
  1927  	//
  1928  	// If the function returns, this will set R12 to 1 and invoke
  1929  	// INT3. The debugger can then inspect any return value saved
  1930  	// on the stack at SP and in registers and resume execution again.
  1931  	//
  1932  	// If the function panics, this will set R12 to 2 and invoke INT3.
  1933  	// The interface{} value of the panic will be at SP. The debugger
  1934  	// can inspect the panic value and resume execution again.
  1935  #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE)	\
  1936  	CMPQ	AX, $MAXSIZE;			\
  1937  	JA	5(PC);				\
  1938  	MOVQ	$NAME(SB), AX;			\
  1939  	MOVQ	AX, 0(SP);			\
  1940  	CALL	runtime·debugCallWrap(SB);	\
  1941  	JMP	restore
  1942  
  1943  	MOVQ	frameSize-128(SP), AX
  1944  	DEBUG_CALL_DISPATCH(debugCall32<>, 32)
  1945  	DEBUG_CALL_DISPATCH(debugCall64<>, 64)
  1946  	DEBUG_CALL_DISPATCH(debugCall128<>, 128)
  1947  	DEBUG_CALL_DISPATCH(debugCall256<>, 256)
  1948  	DEBUG_CALL_DISPATCH(debugCall512<>, 512)
  1949  	DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
  1950  	DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
  1951  	DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
  1952  	DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
  1953  	DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
  1954  	DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
  1955  	DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
  1956  	// The frame size is too large. Report the error.
  1957  	MOVQ	$debugCallFrameTooLarge<>(SB), AX
  1958  	MOVQ	AX, 0(SP)
  1959  	MOVQ	$20, 8(SP) // length of debugCallFrameTooLarge string
  1960  	MOVQ	$8, R12
  1961  	BYTE	$0xcc
  1962  	JMP	restore
  1963  
  1964  restore:
  1965  	// Calls and failures resume here.
  1966  	//
  1967  	// Set R12 to 16 and invoke INT3. The debugger should restore
  1968  	// all registers except RIP and RSP and resume execution.
  1969  	MOVQ	$16, R12
  1970  	BYTE	$0xcc
  1971  	// We must not modify flags after this point.
  1972  
  1973  	// Restore pointer-containing registers, which may have been
  1974  	// modified from the debugger's copy by stack copying.
  1975  	MOVQ	ax-(0*8+8)(SP), AX
  1976  	MOVQ	cx-(1*8+8)(SP), CX
  1977  	MOVQ	dx-(2*8+8)(SP), DX
  1978  	MOVQ	bx-(3*8+8)(SP), BX
  1979  	MOVQ	bp-(4*8+8)(SP), BP
  1980  	MOVQ	si-(5*8+8)(SP), SI
  1981  	MOVQ	di-(6*8+8)(SP), DI
  1982  	MOVQ	r8-(7*8+8)(SP), R8
  1983  	MOVQ	r9-(8*8+8)(SP), R9
  1984  	MOVQ	r10-(9*8+8)(SP), R10
  1985  	MOVQ	r11-(10*8+8)(SP), R11
  1986  	MOVQ	r12-(11*8+8)(SP), R12
  1987  	MOVQ	r13-(12*8+8)(SP), R13
  1988  	MOVQ	r14-(13*8+8)(SP), R14
  1989  	MOVQ	r15-(14*8+8)(SP), R15
  1990  
  1991  	RET
  1992  
  1993  // runtime.debugCallCheck assumes that functions defined with the
  1994  // DEBUG_CALL_FN macro are safe points to inject calls.
  1995  #define DEBUG_CALL_FN(NAME,MAXSIZE)		\
  1996  TEXT NAME(SB),WRAPPER,$MAXSIZE-0;		\
  1997  	NO_LOCAL_POINTERS;			\
  1998  	MOVQ	$0, R12;				\
  1999  	BYTE	$0xcc;				\
  2000  	MOVQ	$1, R12;				\
  2001  	BYTE	$0xcc;				\
  2002  	RET
  2003  DEBUG_CALL_FN(debugCall32<>, 32)
  2004  DEBUG_CALL_FN(debugCall64<>, 64)
  2005  DEBUG_CALL_FN(debugCall128<>, 128)
  2006  DEBUG_CALL_FN(debugCall256<>, 256)
  2007  DEBUG_CALL_FN(debugCall512<>, 512)
  2008  DEBUG_CALL_FN(debugCall1024<>, 1024)
  2009  DEBUG_CALL_FN(debugCall2048<>, 2048)
  2010  DEBUG_CALL_FN(debugCall4096<>, 4096)
  2011  DEBUG_CALL_FN(debugCall8192<>, 8192)
  2012  DEBUG_CALL_FN(debugCall16384<>, 16384)
  2013  DEBUG_CALL_FN(debugCall32768<>, 32768)
  2014  DEBUG_CALL_FN(debugCall65536<>, 65536)
  2015  
  2016  // func debugCallPanicked(val interface{})
  2017  TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
  2018  	// Copy the panic value to the top of stack.
  2019  	MOVQ	val_type+0(FP), AX
  2020  	MOVQ	AX, 0(SP)
  2021  	MOVQ	val_data+8(FP), AX
  2022  	MOVQ	AX, 8(SP)
  2023  	MOVQ	$2, R12
  2024  	BYTE	$0xcc
  2025  	RET
  2026  
  2027  // Note: these functions use a special calling convention to save generated code space.
  2028  // Arguments are passed in registers, but the space for those arguments are allocated
  2029  // in the caller's stack frame. These stubs write the args into that stack space and
  2030  // then tail call to the corresponding runtime handler.
  2031  // The tail call makes these stubs disappear in backtraces.
  2032  // Defined as ABIInternal since they do not use the stack-based Go ABI.
  2033  TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16
  2034  	MOVQ	CX, BX
  2035  	JMP	runtime·goPanicIndex<ABIInternal>(SB)
  2036  TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16
  2037  	MOVQ	CX, BX
  2038  	JMP	runtime·goPanicIndexU<ABIInternal>(SB)
  2039  TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16
  2040  	MOVQ	CX, AX
  2041  	MOVQ	DX, BX
  2042  	JMP	runtime·goPanicSliceAlen<ABIInternal>(SB)
  2043  TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16
  2044  	MOVQ	CX, AX
  2045  	MOVQ	DX, BX
  2046  	JMP	runtime·goPanicSliceAlenU<ABIInternal>(SB)
  2047  TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16
  2048  	MOVQ	CX, AX
  2049  	MOVQ	DX, BX
  2050  	JMP	runtime·goPanicSliceAcap<ABIInternal>(SB)
  2051  TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16
  2052  	MOVQ	CX, AX
  2053  	MOVQ	DX, BX
  2054  	JMP	runtime·goPanicSliceAcapU<ABIInternal>(SB)
  2055  TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16
  2056  	MOVQ	CX, BX
  2057  	JMP	runtime·goPanicSliceB<ABIInternal>(SB)
  2058  TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16
  2059  	MOVQ	CX, BX
  2060  	JMP	runtime·goPanicSliceBU<ABIInternal>(SB)
  2061  TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16
  2062  	MOVQ	DX, AX
  2063  	JMP	runtime·goPanicSlice3Alen<ABIInternal>(SB)
  2064  TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16
  2065  	MOVQ	DX, AX
  2066  	JMP	runtime·goPanicSlice3AlenU<ABIInternal>(SB)
  2067  TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16
  2068  	MOVQ	DX, AX
  2069  	JMP	runtime·goPanicSlice3Acap<ABIInternal>(SB)
  2070  TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16
  2071  	MOVQ	DX, AX
  2072  	JMP	runtime·goPanicSlice3AcapU<ABIInternal>(SB)
  2073  TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16
  2074  	MOVQ	CX, AX
  2075  	MOVQ	DX, BX
  2076  	JMP	runtime·goPanicSlice3B<ABIInternal>(SB)
  2077  TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16
  2078  	MOVQ	CX, AX
  2079  	MOVQ	DX, BX
  2080  	JMP	runtime·goPanicSlice3BU<ABIInternal>(SB)
  2081  TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16
  2082  	MOVQ	CX, BX
  2083  	JMP	runtime·goPanicSlice3C<ABIInternal>(SB)
  2084  TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16
  2085  	MOVQ	CX, BX
  2086  	JMP	runtime·goPanicSlice3CU<ABIInternal>(SB)
  2087  TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16
  2088  	MOVQ	DX, AX
  2089  	JMP	runtime·goPanicSliceConvert<ABIInternal>(SB)
  2090  
  2091  #ifdef GOOS_android
  2092  // Use the free TLS_SLOT_APP slot #2 on Android Q.
  2093  // Earlier androids are set up in gcc_android.c.
  2094  DATA runtime·tls_g+0(SB)/8, $16
  2095  GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2096  #endif
  2097  #ifdef GOOS_windows
  2098  GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2099  #endif
  2100  
  2101  // The compiler and assembler's -spectre=ret mode rewrites
  2102  // all indirect CALL AX / JMP AX instructions to be
  2103  // CALL retpolineAX / JMP retpolineAX.
  2104  // See https://support.google.com/faqs/answer/7625886.
  2105  #define RETPOLINE(reg) \
  2106  	/*   CALL setup */     BYTE $0xE8; BYTE $(2+2); BYTE $0; BYTE $0; BYTE $0;	\
  2107  	/* nospec: */									\
  2108  	/*   PAUSE */           BYTE $0xF3; BYTE $0x90;					\
  2109  	/*   JMP nospec */      BYTE $0xEB; BYTE $-(2+2);				\
  2110  	/* setup: */									\
  2111  	/*   MOVQ AX, 0(SP) */  BYTE $0x48|((reg&8)>>1); BYTE $0x89;			\
  2112  	                        BYTE $0x04|((reg&7)<<3); BYTE $0x24;			\
  2113  	/*   RET */             BYTE $0xC3
  2114  
  2115  TEXT runtime·retpolineAX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(0)
  2116  TEXT runtime·retpolineCX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(1)
  2117  TEXT runtime·retpolineDX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(2)
  2118  TEXT runtime·retpolineBX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(3)
  2119  /* SP is 4, can't happen / magic encodings */
  2120  TEXT runtime·retpolineBP(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(5)
  2121  TEXT runtime·retpolineSI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(6)
  2122  TEXT runtime·retpolineDI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(7)
  2123  TEXT runtime·retpolineR8(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(8)
  2124  TEXT runtime·retpolineR9(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(9)
  2125  TEXT runtime·retpolineR10(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(10)
  2126  TEXT runtime·retpolineR11(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(11)
  2127  TEXT runtime·retpolineR12(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(12)
  2128  TEXT runtime·retpolineR13(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(13)
  2129  TEXT runtime·retpolineR14(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(14)
  2130  TEXT runtime·retpolineR15(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(15)
  2131  
  2132  TEXT ·getfp<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  2133  	MOVQ BP, AX
  2134  	RET
  2135  

View as plain text