// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package os import ( "errors" "internal/testlog" "runtime" "sync" "sync/atomic" "syscall" "time" ) // ErrProcessDone indicates a [Process] has finished. var ErrProcessDone = errors.New("os: process already finished") // processStatus describes the status of a [Process]. type processStatus uint32 const ( // statusOK means that the Process is ready to use. statusOK processStatus = iota // statusDone indicates that the PID/handle should not be used because // the process is done (has been successfully Wait'd on). statusDone // statusReleased indicates that the PID/handle should not be used // because the process is released. statusReleased ) // Process stores the information about a process created by [StartProcess]. type Process struct { Pid int // state contains the atomic process state. // // This consists of the processStatus fields, // which indicate if the process is done/released. state atomic.Uint32 // Used only when handle is nil sigMu sync.RWMutex // avoid race between wait and signal // handle, if not nil, is a pointer to a struct // that holds the OS-specific process handle. // This pointer is set when Process is created, // and never changed afterward. // This is a pointer to a separate memory allocation // so that we can use runtime.AddCleanup. handle *processHandle // cleanup is used to clean up the process handle. cleanup runtime.Cleanup } // processHandle holds an operating system handle to a process. // This is only used on systems that support that concept, // currently Linux and Windows. // This maintains a reference count to the handle, // and closes the handle when the reference drops to zero. type processHandle struct { // The actual handle. This field should not be used directly. // Instead, use the acquire and release methods. // // On Windows this is a handle returned by OpenProcess. // On Linux this is a pidfd. handle uintptr // Number of active references. When this drops to zero // the handle is closed. refs atomic.Int32 } // acquire adds a reference and returns the handle. // The bool result reports whether acquire succeeded; // it fails if the handle is already closed. // Every successful call to acquire should be paired with a call to release. func (ph *processHandle) acquire() (uintptr, bool) { for { refs := ph.refs.Load() if refs < 0 { panic("internal error: negative process handle reference count") } if refs == 0 { return 0, false } if ph.refs.CompareAndSwap(refs, refs+1) { return ph.handle, true } } } // release releases a reference to the handle. func (ph *processHandle) release() { for { refs := ph.refs.Load() if refs <= 0 { panic("internal error: too many releases of process handle") } if ph.refs.CompareAndSwap(refs, refs-1) { if refs == 1 { ph.closeHandle() } return } } } // newPIDProcess returns a [Process] for the given PID. func newPIDProcess(pid int) *Process { p := &Process{ Pid: pid, } return p } // newHandleProcess returns a [Process] with the given PID and handle. func newHandleProcess(pid int, handle uintptr) *Process { ph := &processHandle{ handle: handle, } // Start the reference count as 1, // meaning the reference from the returned Process. ph.refs.Store(1) p := &Process{ Pid: pid, handle: ph, } p.cleanup = runtime.AddCleanup(p, (*processHandle).release, ph) return p } // newDoneProcess returns a [Process] for the given PID // that is already marked as done. This is used on Unix systems // if the process is known to not exist. func newDoneProcess(pid int) *Process { p := &Process{ Pid: pid, } p.state.Store(uint32(statusDone)) // No persistent reference, as there is no handle. return p } // handleTransientAcquire returns the process handle or, // if the process is not ready, the current status. func (p *Process) handleTransientAcquire() (uintptr, processStatus) { if p.handle == nil { panic("handleTransientAcquire called in invalid mode") } status := processStatus(p.state.Load()) if status != statusOK { return 0, status } h, ok := p.handle.acquire() if ok { return h, statusOK } // This case means that the handle has been closed. // We always set the status to non-zero before closing the handle. // If we get here the status must have been set non-zero after // we just checked it above. status = processStatus(p.state.Load()) if status == statusOK { panic("inconsistent process status") } return 0, status } // handleTransientRelease releases a handle returned by handleTransientAcquire. func (p *Process) handleTransientRelease() { if p.handle == nil { panic("handleTransientRelease called in invalid mode") } p.handle.release() } // pidStatus returns the current process status. func (p *Process) pidStatus() processStatus { if p.handle != nil { panic("pidStatus called in invalid mode") } return processStatus(p.state.Load()) } // ProcAttr holds the attributes that will be applied to a new process // started by StartProcess. type ProcAttr struct { // If Dir is non-empty, the child changes into the directory before // creating the process. Dir string // If Env is non-nil, it gives the environment variables for the // new process in the form returned by Environ. // If it is nil, the result of Environ will be used. Env []string // Files specifies the open files inherited by the new process. The // first three entries correspond to standard input, standard output, and // standard error. An implementation may support additional entries, // depending on the underlying operating system. A nil entry corresponds // to that file being closed when the process starts. // On Unix systems, StartProcess will change these File values // to blocking mode, which means that SetDeadline will stop working // and calling Close will not interrupt a Read or Write. Files []*File // Operating system-specific process creation attributes. // Note that setting this field means that your program // may not execute properly or even compile on some // operating systems. Sys *syscall.SysProcAttr } // A Signal represents an operating system signal. // The usual underlying implementation is operating system-dependent: // on Unix it is syscall.Signal. type Signal interface { String() string Signal() // to distinguish from other Stringers } // Getpid returns the process id of the caller. func Getpid() int { return syscall.Getpid() } // Getppid returns the process id of the caller's parent. func Getppid() int { return syscall.Getppid() } // FindProcess looks for a running process by its pid. // // The [Process] it returns can be used to obtain information // about the underlying operating system process. // // On Unix systems, FindProcess always succeeds and returns a Process // for the given pid, regardless of whether the process exists. To test whether // the process actually exists, see whether p.Signal(syscall.Signal(0)) reports // an error. func FindProcess(pid int) (*Process, error) { return findProcess(pid) } // StartProcess starts a new process with the program, arguments and attributes // specified by name, argv and attr. The argv slice will become [os.Args] in the // new process, so it normally starts with the program name. // // If the calling goroutine has locked the operating system thread // with [runtime.LockOSThread] and modified any inheritable OS-level // thread state (for example, Linux or Plan 9 name spaces), the new // process will inherit the caller's thread state. // // StartProcess is a low-level interface. The [os/exec] package provides // higher-level interfaces. // // If there is an error, it will be of type [*PathError]. func StartProcess(name string, argv []string, attr *ProcAttr) (*Process, error) { testlog.Open(name) return startProcess(name, argv, attr) } // Release releases any resources associated with the [Process] p, // rendering it unusable in the future. // Release only needs to be called if [Process.Wait] is not. func (p *Process) Release() error { // Unfortunately, for historical reasons, on systems other // than Windows, Release sets the Pid field to -1. // This causes the race detector to report a problem // on concurrent calls to Release, but we can't change it now. if runtime.GOOS != "windows" { p.Pid = -1 } oldStatus := p.doRelease(statusReleased) // For backward compatibility, on Windows only, // we return EINVAL on a second call to Release. if runtime.GOOS == "windows" { if oldStatus == statusReleased { return syscall.EINVAL } } return nil } // doRelease releases a [Process], setting the status to newStatus. // If the previous status is not statusOK, this does nothing. // It returns the previous status. func (p *Process) doRelease(newStatus processStatus) processStatus { for { state := p.state.Load() oldStatus := processStatus(state) if oldStatus != statusOK { return oldStatus } if !p.state.CompareAndSwap(state, uint32(newStatus)) { continue } // We have successfully released the Process. // If it has a handle, release the reference we // created in newHandleProcess. if p.handle != nil { // No need for more cleanup. // We must stop the cleanup before calling release; // otherwise the cleanup might run concurrently // with the release, which would cause the reference // counts to be invalid, causing a panic. p.cleanup.Stop() p.handle.release() } return statusOK } } // Kill causes the [Process] to exit immediately. Kill does not wait until // the Process has actually exited. This only kills the Process itself, // not any other processes it may have started. func (p *Process) Kill() error { return p.kill() } // Wait waits for the [Process] to exit, and then returns a // ProcessState describing its status and an error, if any. // Wait releases any resources associated with the Process. // On most operating systems, the Process must be a child // of the current process or an error will be returned. func (p *Process) Wait() (*ProcessState, error) { return p.wait() } // Signal sends a signal to the [Process]. // Sending [Interrupt] on Windows is not implemented. func (p *Process) Signal(sig Signal) error { return p.signal(sig) } // UserTime returns the user CPU time of the exited process and its children. func (p *ProcessState) UserTime() time.Duration { return p.userTime() } // SystemTime returns the system CPU time of the exited process and its children. func (p *ProcessState) SystemTime() time.Duration { return p.systemTime() } // Exited reports whether the program has exited. // On Unix systems this reports true if the program exited due to calling exit, // but false if the program terminated due to a signal. func (p *ProcessState) Exited() bool { return p.exited() } // Success reports whether the program exited successfully, // such as with exit status 0 on Unix. func (p *ProcessState) Success() bool { return p.success() } // Sys returns system-dependent exit information about // the process. Convert it to the appropriate underlying // type, such as [syscall.WaitStatus] on Unix, to access its contents. func (p *ProcessState) Sys() any { return p.sys() } // SysUsage returns system-dependent resource usage information about // the exited process. Convert it to the appropriate underlying // type, such as [*syscall.Rusage] on Unix, to access its contents. // (On Unix, *syscall.Rusage matches struct rusage as defined in the // getrusage(2) manual page.) func (p *ProcessState) SysUsage() any { return p.sysUsage() }