Source file src/go/types/lookup.go

     1  // Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
     2  // Source: ../../cmd/compile/internal/types2/lookup.go
     3  
     4  // Copyright 2013 The Go Authors. All rights reserved.
     5  // Use of this source code is governed by a BSD-style
     6  // license that can be found in the LICENSE file.
     7  
     8  // This file implements various field and method lookup functions.
     9  
    10  package types
    11  
    12  import "bytes"
    13  
    14  // LookupSelection selects the field or method whose ID is Id(pkg,
    15  // name), on a value of type T. If addressable is set, T is the type
    16  // of an addressable variable (this matters only for method lookups).
    17  // T must not be nil.
    18  //
    19  // If the selection is valid:
    20  //
    21  //   - [Selection.Obj] returns the field ([Var]) or method ([Func]);
    22  //   - [Selection.Indirect] reports whether there were any pointer
    23  //     indirections on the path to the field or method.
    24  //   - [Selection.Index] returns the index sequence, defined below.
    25  //
    26  // The last index entry is the field or method index in the (possibly
    27  // embedded) type where the entry was found, either:
    28  //
    29  //  1. the list of declared methods of a named type; or
    30  //  2. the list of all methods (method set) of an interface type; or
    31  //  3. the list of fields of a struct type.
    32  //
    33  // The earlier index entries are the indices of the embedded struct
    34  // fields traversed to get to the found entry, starting at depth 0.
    35  //
    36  // See also [LookupFieldOrMethod], which returns the components separately.
    37  func LookupSelection(T Type, addressable bool, pkg *Package, name string) (Selection, bool) {
    38  	obj, index, indirect := LookupFieldOrMethod(T, addressable, pkg, name)
    39  	var kind SelectionKind
    40  	switch obj.(type) {
    41  	case nil:
    42  		return Selection{}, false
    43  	case *Func:
    44  		kind = MethodVal
    45  	case *Var:
    46  		kind = FieldVal
    47  	default:
    48  		panic(obj) // can't happen
    49  	}
    50  	return Selection{kind, T, obj, index, indirect}, true
    51  }
    52  
    53  // Internal use of LookupFieldOrMethod: If the obj result is a method
    54  // associated with a concrete (non-interface) type, the method's signature
    55  // may not be fully set up. Call Checker.objDecl(obj, nil) before accessing
    56  // the method's type.
    57  
    58  // LookupFieldOrMethod looks up a field or method with given package and name
    59  // in T and returns the corresponding *Var or *Func, an index sequence, and a
    60  // bool indicating if there were any pointer indirections on the path to the
    61  // field or method. If addressable is set, T is the type of an addressable
    62  // variable (only matters for method lookups). T must not be nil.
    63  //
    64  // The last index entry is the field or method index in the (possibly embedded)
    65  // type where the entry was found, either:
    66  //
    67  //  1. the list of declared methods of a named type; or
    68  //  2. the list of all methods (method set) of an interface type; or
    69  //  3. the list of fields of a struct type.
    70  //
    71  // The earlier index entries are the indices of the embedded struct fields
    72  // traversed to get to the found entry, starting at depth 0.
    73  //
    74  // If no entry is found, a nil object is returned. In this case, the returned
    75  // index and indirect values have the following meaning:
    76  //
    77  //   - If index != nil, the index sequence points to an ambiguous entry
    78  //     (the same name appeared more than once at the same embedding level).
    79  //
    80  //   - If indirect is set, a method with a pointer receiver type was found
    81  //     but there was no pointer on the path from the actual receiver type to
    82  //     the method's formal receiver base type, nor was the receiver addressable.
    83  //
    84  // See also [LookupSelection], which returns the result as a [Selection].
    85  func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
    86  	if T == nil {
    87  		panic("LookupFieldOrMethod on nil type")
    88  	}
    89  	return lookupFieldOrMethod(T, addressable, pkg, name, false)
    90  }
    91  
    92  // lookupFieldOrMethod is like LookupFieldOrMethod but with the additional foldCase parameter
    93  // (see Object.sameId for the meaning of foldCase).
    94  func lookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string, foldCase bool) (obj Object, index []int, indirect bool) {
    95  	// Methods cannot be associated to a named pointer type.
    96  	// (spec: "The type denoted by T is called the receiver base type;
    97  	// it must not be a pointer or interface type and it must be declared
    98  	// in the same package as the method.").
    99  	// Thus, if we have a named pointer type, proceed with the underlying
   100  	// pointer type but discard the result if it is a method since we would
   101  	// not have found it for T (see also go.dev/issue/8590).
   102  	if t := asNamed(T); t != nil {
   103  		if p, _ := t.Underlying().(*Pointer); p != nil {
   104  			obj, index, indirect = lookupFieldOrMethodImpl(p, false, pkg, name, foldCase)
   105  			if _, ok := obj.(*Func); ok {
   106  				return nil, nil, false
   107  			}
   108  			return
   109  		}
   110  	}
   111  
   112  	obj, index, indirect = lookupFieldOrMethodImpl(T, addressable, pkg, name, foldCase)
   113  
   114  	// If we didn't find anything and if we have a type parameter with a common underlying
   115  	// type, see if there is a matching field (but not a method, those need to be declared
   116  	// explicitly in the constraint). If the constraint is a named pointer type (see above),
   117  	// we are ok here because only fields are accepted as results.
   118  	const enableTParamFieldLookup = false // see go.dev/issue/51576
   119  	if enableTParamFieldLookup && obj == nil && isTypeParam(T) {
   120  		if t, _ := commonUnder(T, nil); t != nil {
   121  			obj, index, indirect = lookupFieldOrMethodImpl(t, addressable, pkg, name, foldCase)
   122  			if _, ok := obj.(*Var); !ok {
   123  				obj, index, indirect = nil, nil, false // accept fields (variables) only
   124  			}
   125  		}
   126  	}
   127  	return
   128  }
   129  
   130  // lookupFieldOrMethodImpl is the implementation of lookupFieldOrMethod.
   131  // Notably, in contrast to lookupFieldOrMethod, it won't find struct fields
   132  // in base types of defined (*Named) pointer types T. For instance, given
   133  // the declaration:
   134  //
   135  //	type T *struct{f int}
   136  //
   137  // lookupFieldOrMethodImpl won't find the field f in the defined (*Named) type T
   138  // (methods on T are not permitted in the first place).
   139  //
   140  // Thus, lookupFieldOrMethodImpl should only be called by lookupFieldOrMethod
   141  // and missingMethod (the latter doesn't care about struct fields).
   142  //
   143  // The resulting object may not be fully type-checked.
   144  func lookupFieldOrMethodImpl(T Type, addressable bool, pkg *Package, name string, foldCase bool) (obj Object, index []int, indirect bool) {
   145  	// WARNING: The code in this function is extremely subtle - do not modify casually!
   146  
   147  	if name == "_" {
   148  		return // blank fields/methods are never found
   149  	}
   150  
   151  	// Importantly, we must not call under before the call to deref below (nor
   152  	// does deref call under), as doing so could incorrectly result in finding
   153  	// methods of the pointer base type when T is a (*Named) pointer type.
   154  	typ, isPtr := deref(T)
   155  
   156  	// *typ where typ is an interface (incl. a type parameter) has no methods.
   157  	if isPtr {
   158  		if _, ok := under(typ).(*Interface); ok {
   159  			return
   160  		}
   161  	}
   162  
   163  	// Start with typ as single entry at shallowest depth.
   164  	current := []embeddedType{{typ, nil, isPtr, false}}
   165  
   166  	// seen tracks named types that we have seen already, allocated lazily.
   167  	// Used to avoid endless searches in case of recursive types.
   168  	//
   169  	// We must use a lookup on identity rather than a simple map[*Named]bool as
   170  	// instantiated types may be identical but not equal.
   171  	var seen instanceLookup
   172  
   173  	// search current depth
   174  	for len(current) > 0 {
   175  		var next []embeddedType // embedded types found at current depth
   176  
   177  		// look for (pkg, name) in all types at current depth
   178  		for _, e := range current {
   179  			typ := e.typ
   180  
   181  			// If we have a named type, we may have associated methods.
   182  			// Look for those first.
   183  			if named := asNamed(typ); named != nil {
   184  				if alt := seen.lookup(named); alt != nil {
   185  					// We have seen this type before, at a more shallow depth
   186  					// (note that multiples of this type at the current depth
   187  					// were consolidated before). The type at that depth shadows
   188  					// this same type at the current depth, so we can ignore
   189  					// this one.
   190  					continue
   191  				}
   192  				seen.add(named)
   193  
   194  				// look for a matching attached method
   195  				if i, m := named.lookupMethod(pkg, name, foldCase); m != nil {
   196  					// potential match
   197  					// caution: method may not have a proper signature yet
   198  					index = concat(e.index, i)
   199  					if obj != nil || e.multiples {
   200  						return nil, index, false // collision
   201  					}
   202  					obj = m
   203  					indirect = e.indirect
   204  					continue // we can't have a matching field or interface method
   205  				}
   206  			}
   207  
   208  			switch t := under(typ).(type) {
   209  			case *Struct:
   210  				// look for a matching field and collect embedded types
   211  				for i, f := range t.fields {
   212  					if f.sameId(pkg, name, foldCase) {
   213  						assert(f.typ != nil)
   214  						index = concat(e.index, i)
   215  						if obj != nil || e.multiples {
   216  							return nil, index, false // collision
   217  						}
   218  						obj = f
   219  						indirect = e.indirect
   220  						continue // we can't have a matching interface method
   221  					}
   222  					// Collect embedded struct fields for searching the next
   223  					// lower depth, but only if we have not seen a match yet
   224  					// (if we have a match it is either the desired field or
   225  					// we have a name collision on the same depth; in either
   226  					// case we don't need to look further).
   227  					// Embedded fields are always of the form T or *T where
   228  					// T is a type name. If e.typ appeared multiple times at
   229  					// this depth, f.typ appears multiple times at the next
   230  					// depth.
   231  					if obj == nil && f.embedded {
   232  						typ, isPtr := deref(f.typ)
   233  						// TODO(gri) optimization: ignore types that can't
   234  						// have fields or methods (only Named, Struct, and
   235  						// Interface types need to be considered).
   236  						next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
   237  					}
   238  				}
   239  
   240  			case *Interface:
   241  				// look for a matching method (interface may be a type parameter)
   242  				if i, m := t.typeSet().LookupMethod(pkg, name, foldCase); m != nil {
   243  					assert(m.typ != nil)
   244  					index = concat(e.index, i)
   245  					if obj != nil || e.multiples {
   246  						return nil, index, false // collision
   247  					}
   248  					obj = m
   249  					indirect = e.indirect
   250  				}
   251  			}
   252  		}
   253  
   254  		if obj != nil {
   255  			// found a potential match
   256  			// spec: "A method call x.m() is valid if the method set of (the type of) x
   257  			//        contains m and the argument list can be assigned to the parameter
   258  			//        list of m. If x is addressable and &x's method set contains m, x.m()
   259  			//        is shorthand for (&x).m()".
   260  			if f, _ := obj.(*Func); f != nil {
   261  				// determine if method has a pointer receiver
   262  				if f.hasPtrRecv() && !indirect && !addressable {
   263  					return nil, nil, true // pointer/addressable receiver required
   264  				}
   265  			}
   266  			return
   267  		}
   268  
   269  		current = consolidateMultiples(next)
   270  	}
   271  
   272  	return nil, nil, false // not found
   273  }
   274  
   275  // embeddedType represents an embedded type
   276  type embeddedType struct {
   277  	typ       Type
   278  	index     []int // embedded field indices, starting with index at depth 0
   279  	indirect  bool  // if set, there was a pointer indirection on the path to this field
   280  	multiples bool  // if set, typ appears multiple times at this depth
   281  }
   282  
   283  // consolidateMultiples collects multiple list entries with the same type
   284  // into a single entry marked as containing multiples. The result is the
   285  // consolidated list.
   286  func consolidateMultiples(list []embeddedType) []embeddedType {
   287  	if len(list) <= 1 {
   288  		return list // at most one entry - nothing to do
   289  	}
   290  
   291  	n := 0                     // number of entries w/ unique type
   292  	prev := make(map[Type]int) // index at which type was previously seen
   293  	for _, e := range list {
   294  		if i, found := lookupType(prev, e.typ); found {
   295  			list[i].multiples = true
   296  			// ignore this entry
   297  		} else {
   298  			prev[e.typ] = n
   299  			list[n] = e
   300  			n++
   301  		}
   302  	}
   303  	return list[:n]
   304  }
   305  
   306  func lookupType(m map[Type]int, typ Type) (int, bool) {
   307  	// fast path: maybe the types are equal
   308  	if i, found := m[typ]; found {
   309  		return i, true
   310  	}
   311  
   312  	for t, i := range m {
   313  		if Identical(t, typ) {
   314  			return i, true
   315  		}
   316  	}
   317  
   318  	return 0, false
   319  }
   320  
   321  type instanceLookup struct {
   322  	// buf is used to avoid allocating the map m in the common case of a small
   323  	// number of instances.
   324  	buf [3]*Named
   325  	m   map[*Named][]*Named
   326  }
   327  
   328  func (l *instanceLookup) lookup(inst *Named) *Named {
   329  	for _, t := range l.buf {
   330  		if t != nil && Identical(inst, t) {
   331  			return t
   332  		}
   333  	}
   334  	for _, t := range l.m[inst.Origin()] {
   335  		if Identical(inst, t) {
   336  			return t
   337  		}
   338  	}
   339  	return nil
   340  }
   341  
   342  func (l *instanceLookup) add(inst *Named) {
   343  	for i, t := range l.buf {
   344  		if t == nil {
   345  			l.buf[i] = inst
   346  			return
   347  		}
   348  	}
   349  	if l.m == nil {
   350  		l.m = make(map[*Named][]*Named)
   351  	}
   352  	insts := l.m[inst.Origin()]
   353  	l.m[inst.Origin()] = append(insts, inst)
   354  }
   355  
   356  // MissingMethod returns (nil, false) if V implements T, otherwise it
   357  // returns a missing method required by T and whether it is missing or
   358  // just has the wrong type: either a pointer receiver or wrong signature.
   359  //
   360  // For non-interface types V, or if static is set, V implements T if all
   361  // methods of T are present in V. Otherwise (V is an interface and static
   362  // is not set), MissingMethod only checks that methods of T which are also
   363  // present in V have matching types (e.g., for a type assertion x.(T) where
   364  // x is of interface type V).
   365  func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) {
   366  	return (*Checker)(nil).missingMethod(V, T, static, Identical, nil)
   367  }
   368  
   369  // missingMethod is like MissingMethod but accepts a *Checker as receiver,
   370  // a comparator equivalent for type comparison, and a *string for error causes.
   371  // The receiver may be nil if missingMethod is invoked through an exported
   372  // API call (such as MissingMethod), i.e., when all methods have been type-
   373  // checked.
   374  // The underlying type of T must be an interface; T (rather than its under-
   375  // lying type) is used for better error messages (reported through *cause).
   376  // The comparator is used to compare signatures.
   377  // If a method is missing and cause is not nil, *cause describes the error.
   378  func (check *Checker) missingMethod(V, T Type, static bool, equivalent func(x, y Type) bool, cause *string) (method *Func, wrongType bool) {
   379  	methods := under(T).(*Interface).typeSet().methods // T must be an interface
   380  	if len(methods) == 0 {
   381  		return nil, false
   382  	}
   383  
   384  	const (
   385  		ok = iota
   386  		notFound
   387  		wrongName
   388  		unexported
   389  		wrongSig
   390  		ambigSel
   391  		ptrRecv
   392  		field
   393  	)
   394  
   395  	state := ok
   396  	var m *Func // method on T we're trying to implement
   397  	var f *Func // method on V, if found (state is one of ok, wrongName, wrongSig)
   398  
   399  	if u, _ := under(V).(*Interface); u != nil {
   400  		tset := u.typeSet()
   401  		for _, m = range methods {
   402  			_, f = tset.LookupMethod(m.pkg, m.name, false)
   403  
   404  			if f == nil {
   405  				if !static {
   406  					continue
   407  				}
   408  				state = notFound
   409  				break
   410  			}
   411  
   412  			if !equivalent(f.typ, m.typ) {
   413  				state = wrongSig
   414  				break
   415  			}
   416  		}
   417  	} else {
   418  		for _, m = range methods {
   419  			obj, index, indirect := lookupFieldOrMethodImpl(V, false, m.pkg, m.name, false)
   420  
   421  			// check if m is ambiguous, on *V, or on V with case-folding
   422  			if obj == nil {
   423  				switch {
   424  				case index != nil:
   425  					state = ambigSel
   426  				case indirect:
   427  					state = ptrRecv
   428  				default:
   429  					state = notFound
   430  					obj, _, _ = lookupFieldOrMethodImpl(V, false, m.pkg, m.name, true /* fold case */)
   431  					f, _ = obj.(*Func)
   432  					if f != nil {
   433  						state = wrongName
   434  						if f.name == m.name {
   435  							// If the names are equal, f must be unexported
   436  							// (otherwise the package wouldn't matter).
   437  							state = unexported
   438  						}
   439  					}
   440  				}
   441  				break
   442  			}
   443  
   444  			// we must have a method (not a struct field)
   445  			f, _ = obj.(*Func)
   446  			if f == nil {
   447  				state = field
   448  				break
   449  			}
   450  
   451  			// methods may not have a fully set up signature yet
   452  			if check != nil {
   453  				check.objDecl(f, nil)
   454  			}
   455  
   456  			if !equivalent(f.typ, m.typ) {
   457  				state = wrongSig
   458  				break
   459  			}
   460  		}
   461  	}
   462  
   463  	if state == ok {
   464  		return nil, false
   465  	}
   466  
   467  	if cause != nil {
   468  		if f != nil {
   469  			// This method may be formatted in funcString below, so must have a fully
   470  			// set up signature.
   471  			if check != nil {
   472  				check.objDecl(f, nil)
   473  			}
   474  		}
   475  		switch state {
   476  		case notFound:
   477  			switch {
   478  			case isInterfacePtr(V):
   479  				*cause = "(" + check.interfacePtrError(V) + ")"
   480  			case isInterfacePtr(T):
   481  				*cause = "(" + check.interfacePtrError(T) + ")"
   482  			default:
   483  				*cause = check.sprintf("(missing method %s)", m.Name())
   484  			}
   485  		case wrongName:
   486  			fs, ms := check.funcString(f, false), check.funcString(m, false)
   487  			*cause = check.sprintf("(missing method %s)\n\t\thave %s\n\t\twant %s", m.Name(), fs, ms)
   488  		case unexported:
   489  			*cause = check.sprintf("(unexported method %s)", m.Name())
   490  		case wrongSig:
   491  			fs, ms := check.funcString(f, false), check.funcString(m, false)
   492  			if fs == ms {
   493  				// Don't report "want Foo, have Foo".
   494  				// Add package information to disambiguate (go.dev/issue/54258).
   495  				fs, ms = check.funcString(f, true), check.funcString(m, true)
   496  			}
   497  			if fs == ms {
   498  				// We still have "want Foo, have Foo".
   499  				// This is most likely due to different type parameters with
   500  				// the same name appearing in the instantiated signatures
   501  				// (go.dev/issue/61685).
   502  				// Rather than reporting this misleading error cause, for now
   503  				// just point out that the method signature is incorrect.
   504  				// TODO(gri) should find a good way to report the root cause
   505  				*cause = check.sprintf("(wrong type for method %s)", m.Name())
   506  				break
   507  			}
   508  			*cause = check.sprintf("(wrong type for method %s)\n\t\thave %s\n\t\twant %s", m.Name(), fs, ms)
   509  		case ambigSel:
   510  			*cause = check.sprintf("(ambiguous selector %s.%s)", V, m.Name())
   511  		case ptrRecv:
   512  			*cause = check.sprintf("(method %s has pointer receiver)", m.Name())
   513  		case field:
   514  			*cause = check.sprintf("(%s.%s is a field, not a method)", V, m.Name())
   515  		default:
   516  			panic("unreachable")
   517  		}
   518  	}
   519  
   520  	return m, state == wrongSig || state == ptrRecv
   521  }
   522  
   523  // hasAllMethods is similar to checkMissingMethod but instead reports whether all methods are present.
   524  // If V is not a valid type, or if it is a struct containing embedded fields with invalid types, the
   525  // result is true because it is not possible to say with certainty whether a method is missing or not
   526  // (an embedded field may have the method in question).
   527  // If the result is false and cause is not nil, *cause describes the error.
   528  // Use hasAllMethods to avoid follow-on errors due to incorrect types.
   529  func (check *Checker) hasAllMethods(V, T Type, static bool, equivalent func(x, y Type) bool, cause *string) bool {
   530  	if !isValid(V) {
   531  		return true // we don't know anything about V, assume it implements T
   532  	}
   533  	m, _ := check.missingMethod(V, T, static, equivalent, cause)
   534  	return m == nil || hasInvalidEmbeddedFields(V, nil)
   535  }
   536  
   537  // hasInvalidEmbeddedFields reports whether T is a struct (or a pointer to a struct) that contains
   538  // (directly or indirectly) embedded fields with invalid types.
   539  func hasInvalidEmbeddedFields(T Type, seen map[*Struct]bool) bool {
   540  	if S, _ := under(derefStructPtr(T)).(*Struct); S != nil && !seen[S] {
   541  		if seen == nil {
   542  			seen = make(map[*Struct]bool)
   543  		}
   544  		seen[S] = true
   545  		for _, f := range S.fields {
   546  			if f.embedded && (!isValid(f.typ) || hasInvalidEmbeddedFields(f.typ, seen)) {
   547  				return true
   548  			}
   549  		}
   550  	}
   551  	return false
   552  }
   553  
   554  func isInterfacePtr(T Type) bool {
   555  	p, _ := under(T).(*Pointer)
   556  	return p != nil && IsInterface(p.base)
   557  }
   558  
   559  // check may be nil.
   560  func (check *Checker) interfacePtrError(T Type) string {
   561  	assert(isInterfacePtr(T))
   562  	if p, _ := under(T).(*Pointer); isTypeParam(p.base) {
   563  		return check.sprintf("type %s is pointer to type parameter, not type parameter", T)
   564  	}
   565  	return check.sprintf("type %s is pointer to interface, not interface", T)
   566  }
   567  
   568  // funcString returns a string of the form name + signature for f.
   569  // check may be nil.
   570  func (check *Checker) funcString(f *Func, pkgInfo bool) string {
   571  	buf := bytes.NewBufferString(f.name)
   572  	var qf Qualifier
   573  	if check != nil && !pkgInfo {
   574  		qf = check.qualifier
   575  	}
   576  	w := newTypeWriter(buf, qf)
   577  	w.pkgInfo = pkgInfo
   578  	w.paramNames = false
   579  	w.signature(f.typ.(*Signature))
   580  	return buf.String()
   581  }
   582  
   583  // assertableTo reports whether a value of type V can be asserted to have type T.
   584  // The receiver may be nil if assertableTo is invoked through an exported API call
   585  // (such as AssertableTo), i.e., when all methods have been type-checked.
   586  // The underlying type of V must be an interface.
   587  // If the result is false and cause is not nil, *cause describes the error.
   588  // TODO(gri) replace calls to this function with calls to newAssertableTo.
   589  func (check *Checker) assertableTo(V, T Type, cause *string) bool {
   590  	// no static check is required if T is an interface
   591  	// spec: "If T is an interface type, x.(T) asserts that the
   592  	//        dynamic type of x implements the interface T."
   593  	if IsInterface(T) {
   594  		return true
   595  	}
   596  	// TODO(gri) fix this for generalized interfaces
   597  	return check.hasAllMethods(T, V, false, Identical, cause)
   598  }
   599  
   600  // newAssertableTo reports whether a value of type V can be asserted to have type T.
   601  // It also implements behavior for interfaces that currently are only permitted
   602  // in constraint position (we have not yet defined that behavior in the spec).
   603  // The underlying type of V must be an interface.
   604  // If the result is false and cause is not nil, *cause is set to the error cause.
   605  func (check *Checker) newAssertableTo(V, T Type, cause *string) bool {
   606  	// no static check is required if T is an interface
   607  	// spec: "If T is an interface type, x.(T) asserts that the
   608  	//        dynamic type of x implements the interface T."
   609  	if IsInterface(T) {
   610  		return true
   611  	}
   612  	return check.implements(T, V, false, cause)
   613  }
   614  
   615  // deref dereferences typ if it is a *Pointer (but not a *Named type
   616  // with an underlying pointer type!) and returns its base and true.
   617  // Otherwise it returns (typ, false).
   618  func deref(typ Type) (Type, bool) {
   619  	if p, _ := Unalias(typ).(*Pointer); p != nil {
   620  		// p.base should never be nil, but be conservative
   621  		if p.base == nil {
   622  			if debug {
   623  				panic("pointer with nil base type (possibly due to an invalid cyclic declaration)")
   624  			}
   625  			return Typ[Invalid], true
   626  		}
   627  		return p.base, true
   628  	}
   629  	return typ, false
   630  }
   631  
   632  // derefStructPtr dereferences typ if it is a (named or unnamed) pointer to a
   633  // (named or unnamed) struct and returns its base. Otherwise it returns typ.
   634  func derefStructPtr(typ Type) Type {
   635  	if p, _ := under(typ).(*Pointer); p != nil {
   636  		if _, ok := under(p.base).(*Struct); ok {
   637  			return p.base
   638  		}
   639  	}
   640  	return typ
   641  }
   642  
   643  // concat returns the result of concatenating list and i.
   644  // The result does not share its underlying array with list.
   645  func concat(list []int, i int) []int {
   646  	var t []int
   647  	t = append(t, list...)
   648  	return append(t, i)
   649  }
   650  
   651  // fieldIndex returns the index for the field with matching package and name, or a value < 0.
   652  // See Object.sameId for the meaning of foldCase.
   653  func fieldIndex(fields []*Var, pkg *Package, name string, foldCase bool) int {
   654  	if name != "_" {
   655  		for i, f := range fields {
   656  			if f.sameId(pkg, name, foldCase) {
   657  				return i
   658  			}
   659  		}
   660  	}
   661  	return -1
   662  }
   663  
   664  // methodIndex returns the index of and method with matching package and name, or (-1, nil).
   665  // See Object.sameId for the meaning of foldCase.
   666  func methodIndex(methods []*Func, pkg *Package, name string, foldCase bool) (int, *Func) {
   667  	if name != "_" {
   668  		for i, m := range methods {
   669  			if m.sameId(pkg, name, foldCase) {
   670  				return i, m
   671  			}
   672  		}
   673  	}
   674  	return -1, nil
   675  }
   676  

View as plain text