Source file src/cmd/link/internal/ld/pcln.go

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ld
     6  
     7  import (
     8  	"cmd/internal/goobj"
     9  	"cmd/internal/objabi"
    10  	"cmd/internal/sys"
    11  	"cmd/link/internal/loader"
    12  	"cmd/link/internal/sym"
    13  	"fmt"
    14  	"internal/abi"
    15  	"internal/buildcfg"
    16  	"path/filepath"
    17  	"strings"
    18  )
    19  
    20  const funcSize = 11 * 4 // funcSize is the size of the _func object in runtime/runtime2.go
    21  
    22  // pclntab holds the state needed for pclntab generation.
    23  type pclntab struct {
    24  	// The first and last functions found.
    25  	firstFunc, lastFunc loader.Sym
    26  
    27  	// Running total size of pclntab.
    28  	size int64
    29  
    30  	// runtime.pclntab's symbols
    31  	carrier     loader.Sym
    32  	pclntab     loader.Sym
    33  	pcheader    loader.Sym
    34  	funcnametab loader.Sym
    35  	findfunctab loader.Sym
    36  	cutab       loader.Sym
    37  	filetab     loader.Sym
    38  	pctab       loader.Sym
    39  
    40  	// The number of functions + number of TEXT sections - 1. This is such an
    41  	// unexpected value because platforms that have more than one TEXT section
    42  	// get a dummy function inserted between because the external linker can place
    43  	// functions in those areas. We mark those areas as not covered by the Go
    44  	// runtime.
    45  	//
    46  	// On most platforms this is the number of reachable functions.
    47  	nfunc int32
    48  
    49  	// The number of filenames in runtime.filetab.
    50  	nfiles uint32
    51  }
    52  
    53  // addGeneratedSym adds a generator symbol to pclntab, returning the new Sym.
    54  // It is the caller's responsibility to save the symbol in state.
    55  func (state *pclntab) addGeneratedSym(ctxt *Link, name string, size int64, f generatorFunc) loader.Sym {
    56  	size = Rnd(size, int64(ctxt.Arch.PtrSize))
    57  	state.size += size
    58  	s := ctxt.createGeneratorSymbol(name, 0, sym.SPCLNTAB, size, f)
    59  	ctxt.loader.SetAttrReachable(s, true)
    60  	ctxt.loader.SetCarrierSym(s, state.carrier)
    61  	ctxt.loader.SetAttrNotInSymbolTable(s, true)
    62  	return s
    63  }
    64  
    65  // makePclntab makes a pclntab object, and assembles all the compilation units
    66  // we'll need to write pclntab. Returns the pclntab structure, a slice of the
    67  // CompilationUnits we need, and a slice of the function symbols we need to
    68  // generate pclntab.
    69  func makePclntab(ctxt *Link, container loader.Bitmap) (*pclntab, []*sym.CompilationUnit, []loader.Sym) {
    70  	ldr := ctxt.loader
    71  	state := new(pclntab)
    72  
    73  	// Gather some basic stats and info.
    74  	seenCUs := make(map[*sym.CompilationUnit]struct{})
    75  	compUnits := []*sym.CompilationUnit{}
    76  	funcs := []loader.Sym{}
    77  
    78  	for _, s := range ctxt.Textp {
    79  		if !emitPcln(ctxt, s, container) {
    80  			continue
    81  		}
    82  		funcs = append(funcs, s)
    83  		state.nfunc++
    84  		if state.firstFunc == 0 {
    85  			state.firstFunc = s
    86  		}
    87  		state.lastFunc = s
    88  
    89  		// We need to keep track of all compilation units we see. Some symbols
    90  		// (eg, go.buildid, _cgoexp_, etc) won't have a compilation unit.
    91  		cu := ldr.SymUnit(s)
    92  		if _, ok := seenCUs[cu]; cu != nil && !ok {
    93  			seenCUs[cu] = struct{}{}
    94  			cu.PclnIndex = len(compUnits)
    95  			compUnits = append(compUnits, cu)
    96  		}
    97  	}
    98  	return state, compUnits, funcs
    99  }
   100  
   101  func emitPcln(ctxt *Link, s loader.Sym, container loader.Bitmap) bool {
   102  	if ctxt.Target.IsRISCV64() {
   103  		// Avoid adding local symbols to the pcln table - RISC-V
   104  		// linking generates a very large number of these, particularly
   105  		// for HI20 symbols (which we need to load in order to be able
   106  		// to resolve relocations). Unnecessarily including all of
   107  		// these symbols quickly blows out the size of the pcln table
   108  		// and overflows hash buckets.
   109  		symName := ctxt.loader.SymName(s)
   110  		if symName == "" || strings.HasPrefix(symName, ".L") {
   111  			return false
   112  		}
   113  	}
   114  
   115  	// We want to generate func table entries only for the "lowest
   116  	// level" symbols, not containers of subsymbols.
   117  	return !container.Has(s)
   118  }
   119  
   120  func computeDeferReturn(ctxt *Link, deferReturnSym, s loader.Sym) uint32 {
   121  	ldr := ctxt.loader
   122  	target := ctxt.Target
   123  	deferreturn := uint32(0)
   124  	lastWasmAddr := uint32(0)
   125  
   126  	relocs := ldr.Relocs(s)
   127  	for ri := 0; ri < relocs.Count(); ri++ {
   128  		r := relocs.At(ri)
   129  		if target.IsWasm() && r.Type() == objabi.R_ADDR {
   130  			// wasm/ssa.go generates an ARESUMEPOINT just
   131  			// before the deferreturn call. The "PC" of
   132  			// the deferreturn call is stored in the
   133  			// R_ADDR relocation on the ARESUMEPOINT.
   134  			lastWasmAddr = uint32(r.Add())
   135  		}
   136  		if r.Type().IsDirectCall() && (r.Sym() == deferReturnSym || ldr.IsDeferReturnTramp(r.Sym())) {
   137  			if target.IsWasm() {
   138  				deferreturn = lastWasmAddr - 1
   139  			} else {
   140  				// Note: the relocation target is in the call instruction, but
   141  				// is not necessarily the whole instruction (for instance, on
   142  				// x86 the relocation applies to bytes [1:5] of the 5 byte call
   143  				// instruction).
   144  				deferreturn = uint32(r.Off())
   145  				switch target.Arch.Family {
   146  				case sys.I386:
   147  					deferreturn--
   148  					if ctxt.BuildMode == BuildModeShared || ctxt.linkShared || ctxt.BuildMode == BuildModePlugin {
   149  						// In this mode, we need to get the address from GOT,
   150  						// with two additional instructions like
   151  						//
   152  						// CALL    __x86.get_pc_thunk.bx(SB)       // 5 bytes
   153  						// LEAL    _GLOBAL_OFFSET_TABLE_<>(BX), BX // 6 bytes
   154  						//
   155  						// We need to back off to the get_pc_thunk call.
   156  						// (See progedit in cmd/internal/obj/x86/obj6.go)
   157  						deferreturn -= 11
   158  					}
   159  				case sys.AMD64:
   160  					deferreturn--
   161  
   162  				case sys.ARM, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64:
   163  					// no change
   164  				case sys.S390X:
   165  					deferreturn -= 2
   166  				default:
   167  					panic(fmt.Sprint("Unhandled architecture:", target.Arch.Family))
   168  				}
   169  			}
   170  			break // only need one
   171  		}
   172  	}
   173  	return deferreturn
   174  }
   175  
   176  // genInlTreeSym generates the InlTree sym for a function with the
   177  // specified FuncInfo.
   178  func genInlTreeSym(ctxt *Link, cu *sym.CompilationUnit, fi loader.FuncInfo, arch *sys.Arch, nameOffsets map[loader.Sym]uint32) loader.Sym {
   179  	ldr := ctxt.loader
   180  	its := ldr.CreateExtSym("", 0)
   181  	inlTreeSym := ldr.MakeSymbolUpdater(its)
   182  	// Note: the generated symbol is given a type of sym.SGOFUNC, as a
   183  	// signal to the symtab() phase that it needs to be grouped in with
   184  	// other similar symbols (gcdata, etc); the dodata() phase will
   185  	// eventually switch the type back to SRODATA.
   186  	inlTreeSym.SetType(sym.SGOFUNC)
   187  	ldr.SetAttrReachable(its, true)
   188  	ldr.SetSymAlign(its, 4) // it has 32-bit fields
   189  	ninl := fi.NumInlTree()
   190  	for i := 0; i < int(ninl); i++ {
   191  		call := fi.InlTree(i)
   192  		nameOff, ok := nameOffsets[call.Func]
   193  		if !ok {
   194  			panic("couldn't find function name offset")
   195  		}
   196  
   197  		inlFunc := ldr.FuncInfo(call.Func)
   198  		var funcID abi.FuncID
   199  		startLine := int32(0)
   200  		if inlFunc.Valid() {
   201  			funcID = inlFunc.FuncID()
   202  			startLine = inlFunc.StartLine()
   203  		} else if !ctxt.linkShared {
   204  			// Inlined functions are always Go functions, and thus
   205  			// must have FuncInfo.
   206  			//
   207  			// Unfortunately, with -linkshared, the inlined
   208  			// function may be external symbols (from another
   209  			// shared library), and we don't load FuncInfo from the
   210  			// shared library. We will report potentially incorrect
   211  			// FuncID in this case. See https://go.dev/issue/55954.
   212  			panic(fmt.Sprintf("inlined function %s missing func info", ldr.SymName(call.Func)))
   213  		}
   214  
   215  		// Construct runtime.inlinedCall value.
   216  		const size = 16
   217  		inlTreeSym.SetUint8(arch, int64(i*size+0), uint8(funcID))
   218  		// Bytes 1-3 are unused.
   219  		inlTreeSym.SetUint32(arch, int64(i*size+4), uint32(nameOff))
   220  		inlTreeSym.SetUint32(arch, int64(i*size+8), uint32(call.ParentPC))
   221  		inlTreeSym.SetUint32(arch, int64(i*size+12), uint32(startLine))
   222  	}
   223  	return its
   224  }
   225  
   226  // makeInlSyms returns a map of loader.Sym that are created inlSyms.
   227  func makeInlSyms(ctxt *Link, funcs []loader.Sym, nameOffsets map[loader.Sym]uint32) map[loader.Sym]loader.Sym {
   228  	ldr := ctxt.loader
   229  	// Create the inline symbols we need.
   230  	inlSyms := make(map[loader.Sym]loader.Sym)
   231  	for _, s := range funcs {
   232  		if fi := ldr.FuncInfo(s); fi.Valid() {
   233  			fi.Preload()
   234  			if fi.NumInlTree() > 0 {
   235  				inlSyms[s] = genInlTreeSym(ctxt, ldr.SymUnit(s), fi, ctxt.Arch, nameOffsets)
   236  			}
   237  		}
   238  	}
   239  	return inlSyms
   240  }
   241  
   242  // generatePCHeader creates the runtime.pcheader symbol, setting it up as a
   243  // generator to fill in its data later.
   244  func (state *pclntab) generatePCHeader(ctxt *Link) {
   245  	ldr := ctxt.loader
   246  	textStartOff := int64(8 + 2*ctxt.Arch.PtrSize)
   247  	size := int64(8 + 8*ctxt.Arch.PtrSize)
   248  	writeHeader := func(ctxt *Link, s loader.Sym) {
   249  		header := ctxt.loader.MakeSymbolUpdater(s)
   250  
   251  		writeSymOffset := func(off int64, ws loader.Sym) int64 {
   252  			diff := ldr.SymValue(ws) - ldr.SymValue(s)
   253  			if diff <= 0 {
   254  				name := ldr.SymName(ws)
   255  				panic(fmt.Sprintf("expected runtime.pcheader(%x) to be placed before %s(%x)", ldr.SymValue(s), name, ldr.SymValue(ws)))
   256  			}
   257  			return header.SetUintptr(ctxt.Arch, off, uintptr(diff))
   258  		}
   259  
   260  		// Write header.
   261  		// Keep in sync with runtime/symtab.go:pcHeader and package debug/gosym.
   262  		header.SetUint32(ctxt.Arch, 0, 0xfffffff1)
   263  		header.SetUint8(ctxt.Arch, 6, uint8(ctxt.Arch.MinLC))
   264  		header.SetUint8(ctxt.Arch, 7, uint8(ctxt.Arch.PtrSize))
   265  		off := header.SetUint(ctxt.Arch, 8, uint64(state.nfunc))
   266  		off = header.SetUint(ctxt.Arch, off, uint64(state.nfiles))
   267  		if off != textStartOff {
   268  			panic(fmt.Sprintf("pcHeader textStartOff: %d != %d", off, textStartOff))
   269  		}
   270  		off += int64(ctxt.Arch.PtrSize) // skip runtimeText relocation
   271  		off = writeSymOffset(off, state.funcnametab)
   272  		off = writeSymOffset(off, state.cutab)
   273  		off = writeSymOffset(off, state.filetab)
   274  		off = writeSymOffset(off, state.pctab)
   275  		off = writeSymOffset(off, state.pclntab)
   276  		if off != size {
   277  			panic(fmt.Sprintf("pcHeader size: %d != %d", off, size))
   278  		}
   279  	}
   280  
   281  	state.pcheader = state.addGeneratedSym(ctxt, "runtime.pcheader", size, writeHeader)
   282  	// Create the runtimeText relocation.
   283  	sb := ldr.MakeSymbolUpdater(state.pcheader)
   284  	sb.SetAddr(ctxt.Arch, textStartOff, ldr.Lookup("runtime.text", 0))
   285  }
   286  
   287  // walkFuncs iterates over the funcs, calling a function for each unique
   288  // function and inlined function.
   289  func walkFuncs(ctxt *Link, funcs []loader.Sym, f func(loader.Sym)) {
   290  	ldr := ctxt.loader
   291  	seen := make(map[loader.Sym]struct{})
   292  	for _, s := range funcs {
   293  		if _, ok := seen[s]; !ok {
   294  			f(s)
   295  			seen[s] = struct{}{}
   296  		}
   297  
   298  		fi := ldr.FuncInfo(s)
   299  		if !fi.Valid() {
   300  			continue
   301  		}
   302  		fi.Preload()
   303  		for i, ni := 0, fi.NumInlTree(); i < int(ni); i++ {
   304  			call := fi.InlTree(i).Func
   305  			if _, ok := seen[call]; !ok {
   306  				f(call)
   307  				seen[call] = struct{}{}
   308  			}
   309  		}
   310  	}
   311  }
   312  
   313  // generateFuncnametab creates the function name table. Returns a map of
   314  // func symbol to the name offset in runtime.funcnamtab.
   315  func (state *pclntab) generateFuncnametab(ctxt *Link, funcs []loader.Sym) map[loader.Sym]uint32 {
   316  	nameOffsets := make(map[loader.Sym]uint32, state.nfunc)
   317  
   318  	// Write the null terminated strings.
   319  	writeFuncNameTab := func(ctxt *Link, s loader.Sym) {
   320  		symtab := ctxt.loader.MakeSymbolUpdater(s)
   321  		for s, off := range nameOffsets {
   322  			symtab.AddCStringAt(int64(off), ctxt.loader.SymName(s))
   323  		}
   324  	}
   325  
   326  	// Loop through the CUs, and calculate the size needed.
   327  	var size int64
   328  	walkFuncs(ctxt, funcs, func(s loader.Sym) {
   329  		nameOffsets[s] = uint32(size)
   330  		size += int64(len(ctxt.loader.SymName(s)) + 1) // NULL terminate
   331  	})
   332  
   333  	state.funcnametab = state.addGeneratedSym(ctxt, "runtime.funcnametab", size, writeFuncNameTab)
   334  	return nameOffsets
   335  }
   336  
   337  // walkFilenames walks funcs, calling a function for each filename used in each
   338  // function's line table.
   339  func walkFilenames(ctxt *Link, funcs []loader.Sym, f func(*sym.CompilationUnit, goobj.CUFileIndex)) {
   340  	ldr := ctxt.loader
   341  
   342  	// Loop through all functions, finding the filenames we need.
   343  	for _, s := range funcs {
   344  		fi := ldr.FuncInfo(s)
   345  		if !fi.Valid() {
   346  			continue
   347  		}
   348  		fi.Preload()
   349  
   350  		cu := ldr.SymUnit(s)
   351  		for i, nf := 0, int(fi.NumFile()); i < nf; i++ {
   352  			f(cu, fi.File(i))
   353  		}
   354  		for i, ninl := 0, int(fi.NumInlTree()); i < ninl; i++ {
   355  			call := fi.InlTree(i)
   356  			f(cu, call.File)
   357  		}
   358  	}
   359  }
   360  
   361  // generateFilenameTabs creates LUTs needed for filename lookup. Returns a slice
   362  // of the index at which each CU begins in runtime.cutab.
   363  //
   364  // Function objects keep track of the files they reference to print the stack.
   365  // This function creates a per-CU list of filenames if CU[M] references
   366  // files[1-N], the following is generated:
   367  //
   368  //	runtime.cutab:
   369  //	  CU[M]
   370  //	   offsetToFilename[0]
   371  //	   offsetToFilename[1]
   372  //	   ..
   373  //
   374  //	runtime.filetab
   375  //	   filename[0]
   376  //	   filename[1]
   377  //
   378  // Looking up a filename then becomes:
   379  //  0. Given a func, and filename index [K]
   380  //  1. Get Func.CUIndex:       M := func.cuOffset
   381  //  2. Find filename offset:   fileOffset := runtime.cutab[M+K]
   382  //  3. Get the filename:       getcstring(runtime.filetab[fileOffset])
   383  func (state *pclntab) generateFilenameTabs(ctxt *Link, compUnits []*sym.CompilationUnit, funcs []loader.Sym) []uint32 {
   384  	// On a per-CU basis, keep track of all the filenames we need.
   385  	//
   386  	// Note, that we store the filenames in a separate section in the object
   387  	// files, and deduplicate based on the actual value. It would be better to
   388  	// store the filenames as symbols, using content addressable symbols (and
   389  	// then not loading extra filenames), and just use the hash value of the
   390  	// symbol name to do this cataloging.
   391  	//
   392  	// TODO: Store filenames as symbols. (Note this would be easiest if you
   393  	// also move strings to ALWAYS using the larger content addressable hash
   394  	// function, and use that hash value for uniqueness testing.)
   395  	cuEntries := make([]goobj.CUFileIndex, len(compUnits))
   396  	fileOffsets := make(map[string]uint32)
   397  
   398  	// Walk the filenames.
   399  	// We store the total filename string length we need to load, and the max
   400  	// file index we've seen per CU so we can calculate how large the
   401  	// CU->global table needs to be.
   402  	var fileSize int64
   403  	walkFilenames(ctxt, funcs, func(cu *sym.CompilationUnit, i goobj.CUFileIndex) {
   404  		// Note we use the raw filename for lookup, but use the expanded filename
   405  		// when we save the size.
   406  		filename := cu.FileTable[i]
   407  		if _, ok := fileOffsets[filename]; !ok {
   408  			fileOffsets[filename] = uint32(fileSize)
   409  			fileSize += int64(len(expandFile(filename)) + 1) // NULL terminate
   410  		}
   411  
   412  		// Find the maximum file index we've seen.
   413  		if cuEntries[cu.PclnIndex] < i+1 {
   414  			cuEntries[cu.PclnIndex] = i + 1 // Store max + 1
   415  		}
   416  	})
   417  
   418  	// Calculate the size of the runtime.cutab variable.
   419  	var totalEntries uint32
   420  	cuOffsets := make([]uint32, len(cuEntries))
   421  	for i, entries := range cuEntries {
   422  		// Note, cutab is a slice of uint32, so an offset to a cu's entry is just the
   423  		// running total of all cu indices we've needed to store so far, not the
   424  		// number of bytes we've stored so far.
   425  		cuOffsets[i] = totalEntries
   426  		totalEntries += uint32(entries)
   427  	}
   428  
   429  	// Write cutab.
   430  	writeCutab := func(ctxt *Link, s loader.Sym) {
   431  		sb := ctxt.loader.MakeSymbolUpdater(s)
   432  
   433  		var off int64
   434  		for i, max := range cuEntries {
   435  			// Write the per CU LUT.
   436  			cu := compUnits[i]
   437  			for j := goobj.CUFileIndex(0); j < max; j++ {
   438  				fileOffset, ok := fileOffsets[cu.FileTable[j]]
   439  				if !ok {
   440  					// We're looping through all possible file indices. It's possible a file's
   441  					// been deadcode eliminated, and although it's a valid file in the CU, it's
   442  					// not needed in this binary. When that happens, use an invalid offset.
   443  					fileOffset = ^uint32(0)
   444  				}
   445  				off = sb.SetUint32(ctxt.Arch, off, fileOffset)
   446  			}
   447  		}
   448  	}
   449  	state.cutab = state.addGeneratedSym(ctxt, "runtime.cutab", int64(totalEntries*4), writeCutab)
   450  
   451  	// Write filetab.
   452  	writeFiletab := func(ctxt *Link, s loader.Sym) {
   453  		sb := ctxt.loader.MakeSymbolUpdater(s)
   454  
   455  		// Write the strings.
   456  		for filename, loc := range fileOffsets {
   457  			sb.AddStringAt(int64(loc), expandFile(filename))
   458  		}
   459  	}
   460  	state.nfiles = uint32(len(fileOffsets))
   461  	state.filetab = state.addGeneratedSym(ctxt, "runtime.filetab", fileSize, writeFiletab)
   462  
   463  	return cuOffsets
   464  }
   465  
   466  // generatePctab creates the runtime.pctab variable, holding all the
   467  // deduplicated pcdata.
   468  func (state *pclntab) generatePctab(ctxt *Link, funcs []loader.Sym) {
   469  	ldr := ctxt.loader
   470  
   471  	// Pctab offsets of 0 are considered invalid in the runtime. We respect
   472  	// that by just padding a single byte at the beginning of runtime.pctab,
   473  	// that way no real offsets can be zero.
   474  	size := int64(1)
   475  
   476  	// Walk the functions, finding offset to store each pcdata.
   477  	seen := make(map[loader.Sym]struct{})
   478  	saveOffset := func(pcSym loader.Sym) {
   479  		if _, ok := seen[pcSym]; !ok {
   480  			datSize := ldr.SymSize(pcSym)
   481  			if datSize != 0 {
   482  				ldr.SetSymValue(pcSym, size)
   483  			} else {
   484  				// Invalid PC data, record as zero.
   485  				ldr.SetSymValue(pcSym, 0)
   486  			}
   487  			size += datSize
   488  			seen[pcSym] = struct{}{}
   489  		}
   490  	}
   491  	var pcsp, pcline, pcfile, pcinline loader.Sym
   492  	var pcdata []loader.Sym
   493  	for _, s := range funcs {
   494  		fi := ldr.FuncInfo(s)
   495  		if !fi.Valid() {
   496  			continue
   497  		}
   498  		fi.Preload()
   499  		pcsp, pcfile, pcline, pcinline, pcdata = ldr.PcdataAuxs(s, pcdata)
   500  
   501  		pcSyms := []loader.Sym{pcsp, pcfile, pcline}
   502  		for _, pcSym := range pcSyms {
   503  			saveOffset(pcSym)
   504  		}
   505  		for _, pcSym := range pcdata {
   506  			saveOffset(pcSym)
   507  		}
   508  		if fi.NumInlTree() > 0 {
   509  			saveOffset(pcinline)
   510  		}
   511  	}
   512  
   513  	// TODO: There is no reason we need a generator for this variable, and it
   514  	// could be moved to a carrier symbol. However, carrier symbols containing
   515  	// carrier symbols don't work yet (as of Aug 2020). Once this is fixed,
   516  	// runtime.pctab could just be a carrier sym.
   517  	writePctab := func(ctxt *Link, s loader.Sym) {
   518  		ldr := ctxt.loader
   519  		sb := ldr.MakeSymbolUpdater(s)
   520  		for sym := range seen {
   521  			sb.SetBytesAt(ldr.SymValue(sym), ldr.Data(sym))
   522  		}
   523  	}
   524  
   525  	state.pctab = state.addGeneratedSym(ctxt, "runtime.pctab", size, writePctab)
   526  }
   527  
   528  // numPCData returns the number of PCData syms for the FuncInfo.
   529  // NB: Preload must be called on valid FuncInfos before calling this function.
   530  func numPCData(ldr *loader.Loader, s loader.Sym, fi loader.FuncInfo) uint32 {
   531  	if !fi.Valid() {
   532  		return 0
   533  	}
   534  	numPCData := uint32(ldr.NumPcdata(s))
   535  	if fi.NumInlTree() > 0 {
   536  		if numPCData < abi.PCDATA_InlTreeIndex+1 {
   537  			numPCData = abi.PCDATA_InlTreeIndex + 1
   538  		}
   539  	}
   540  	return numPCData
   541  }
   542  
   543  // generateFunctab creates the runtime.functab
   544  //
   545  // runtime.functab contains two things:
   546  //
   547  //   - pc->func look up table.
   548  //   - array of func objects, interleaved with pcdata and funcdata
   549  func (state *pclntab) generateFunctab(ctxt *Link, funcs []loader.Sym, inlSyms map[loader.Sym]loader.Sym, cuOffsets []uint32, nameOffsets map[loader.Sym]uint32) {
   550  	// Calculate the size of the table.
   551  	size, startLocations := state.calculateFunctabSize(ctxt, funcs)
   552  	writePcln := func(ctxt *Link, s loader.Sym) {
   553  		ldr := ctxt.loader
   554  		sb := ldr.MakeSymbolUpdater(s)
   555  		// Write the data.
   556  		writePCToFunc(ctxt, sb, funcs, startLocations)
   557  		writeFuncs(ctxt, sb, funcs, inlSyms, startLocations, cuOffsets, nameOffsets)
   558  	}
   559  	state.pclntab = state.addGeneratedSym(ctxt, "runtime.functab", size, writePcln)
   560  }
   561  
   562  // funcData returns the funcdata and offsets for the FuncInfo.
   563  // The funcdata are written into runtime.functab after each func
   564  // object. This is a helper function to make querying the FuncInfo object
   565  // cleaner.
   566  //
   567  // NB: Preload must be called on the FuncInfo before calling.
   568  // NB: fdSyms is used as scratch space.
   569  func funcData(ldr *loader.Loader, s loader.Sym, fi loader.FuncInfo, inlSym loader.Sym, fdSyms []loader.Sym) []loader.Sym {
   570  	fdSyms = fdSyms[:0]
   571  	if fi.Valid() {
   572  		fdSyms = ldr.Funcdata(s, fdSyms)
   573  		if fi.NumInlTree() > 0 {
   574  			if len(fdSyms) < abi.FUNCDATA_InlTree+1 {
   575  				fdSyms = append(fdSyms, make([]loader.Sym, abi.FUNCDATA_InlTree+1-len(fdSyms))...)
   576  			}
   577  			fdSyms[abi.FUNCDATA_InlTree] = inlSym
   578  		}
   579  	}
   580  	return fdSyms
   581  }
   582  
   583  // calculateFunctabSize calculates the size of the pclntab, and the offsets in
   584  // the output buffer for individual func entries.
   585  func (state pclntab) calculateFunctabSize(ctxt *Link, funcs []loader.Sym) (int64, []uint32) {
   586  	ldr := ctxt.loader
   587  	startLocations := make([]uint32, len(funcs))
   588  
   589  	// Allocate space for the pc->func table. This structure consists of a pc offset
   590  	// and an offset to the func structure. After that, we have a single pc
   591  	// value that marks the end of the last function in the binary.
   592  	size := int64(int(state.nfunc)*2*4 + 4)
   593  
   594  	// Now find the space for the func objects. We do this in a running manner,
   595  	// so that we can find individual starting locations.
   596  	for i, s := range funcs {
   597  		size = Rnd(size, int64(ctxt.Arch.PtrSize))
   598  		startLocations[i] = uint32(size)
   599  		fi := ldr.FuncInfo(s)
   600  		size += funcSize
   601  		if fi.Valid() {
   602  			fi.Preload()
   603  			numFuncData := ldr.NumFuncdata(s)
   604  			if fi.NumInlTree() > 0 {
   605  				if numFuncData < abi.FUNCDATA_InlTree+1 {
   606  					numFuncData = abi.FUNCDATA_InlTree + 1
   607  				}
   608  			}
   609  			size += int64(numPCData(ldr, s, fi) * 4)
   610  			size += int64(numFuncData * 4)
   611  		}
   612  	}
   613  
   614  	return size, startLocations
   615  }
   616  
   617  // writePCToFunc writes the PC->func lookup table.
   618  func writePCToFunc(ctxt *Link, sb *loader.SymbolBuilder, funcs []loader.Sym, startLocations []uint32) {
   619  	ldr := ctxt.loader
   620  	textStart := ldr.SymValue(ldr.Lookup("runtime.text", 0))
   621  	pcOff := func(s loader.Sym) uint32 {
   622  		off := ldr.SymValue(s) - textStart
   623  		if off < 0 {
   624  			panic(fmt.Sprintf("expected func %s(%x) to be placed at or after textStart (%x)", ldr.SymName(s), ldr.SymValue(s), textStart))
   625  		}
   626  		return uint32(off)
   627  	}
   628  	for i, s := range funcs {
   629  		sb.SetUint32(ctxt.Arch, int64(i*2*4), pcOff(s))
   630  		sb.SetUint32(ctxt.Arch, int64((i*2+1)*4), startLocations[i])
   631  	}
   632  
   633  	// Final entry of table is just end pc offset.
   634  	lastFunc := funcs[len(funcs)-1]
   635  	sb.SetUint32(ctxt.Arch, int64(len(funcs))*2*4, pcOff(lastFunc)+uint32(ldr.SymSize(lastFunc)))
   636  }
   637  
   638  // writeFuncs writes the func structures and pcdata to runtime.functab.
   639  func writeFuncs(ctxt *Link, sb *loader.SymbolBuilder, funcs []loader.Sym, inlSyms map[loader.Sym]loader.Sym, startLocations, cuOffsets []uint32, nameOffsets map[loader.Sym]uint32) {
   640  	ldr := ctxt.loader
   641  	deferReturnSym := ldr.Lookup("runtime.deferreturn", abiInternalVer)
   642  	gofunc := ldr.Lookup("go:func.*", 0)
   643  	gofuncBase := ldr.SymValue(gofunc)
   644  	textStart := ldr.SymValue(ldr.Lookup("runtime.text", 0))
   645  	funcdata := []loader.Sym{}
   646  	var pcsp, pcfile, pcline, pcinline loader.Sym
   647  	var pcdata []loader.Sym
   648  
   649  	// Write the individual func objects.
   650  	for i, s := range funcs {
   651  		startLine := int32(0)
   652  		fi := ldr.FuncInfo(s)
   653  		if fi.Valid() {
   654  			fi.Preload()
   655  			pcsp, pcfile, pcline, pcinline, pcdata = ldr.PcdataAuxs(s, pcdata)
   656  			startLine = fi.StartLine()
   657  		}
   658  
   659  		off := int64(startLocations[i])
   660  		// entryOff uint32 (offset of func entry PC from textStart)
   661  		entryOff := ldr.SymValue(s) - textStart
   662  		if entryOff < 0 {
   663  			panic(fmt.Sprintf("expected func %s(%x) to be placed before or at textStart (%x)", ldr.SymName(s), ldr.SymValue(s), textStart))
   664  		}
   665  		off = sb.SetUint32(ctxt.Arch, off, uint32(entryOff))
   666  
   667  		// nameOff int32
   668  		nameOff, ok := nameOffsets[s]
   669  		if !ok {
   670  			panic("couldn't find function name offset")
   671  		}
   672  		off = sb.SetUint32(ctxt.Arch, off, uint32(nameOff))
   673  
   674  		// args int32
   675  		// TODO: Move into funcinfo.
   676  		args := uint32(0)
   677  		if fi.Valid() {
   678  			args = uint32(fi.Args())
   679  		}
   680  		off = sb.SetUint32(ctxt.Arch, off, args)
   681  
   682  		// deferreturn
   683  		deferreturn := computeDeferReturn(ctxt, deferReturnSym, s)
   684  		off = sb.SetUint32(ctxt.Arch, off, deferreturn)
   685  
   686  		// pcdata
   687  		if fi.Valid() {
   688  			off = sb.SetUint32(ctxt.Arch, off, uint32(ldr.SymValue(pcsp)))
   689  			off = sb.SetUint32(ctxt.Arch, off, uint32(ldr.SymValue(pcfile)))
   690  			off = sb.SetUint32(ctxt.Arch, off, uint32(ldr.SymValue(pcline)))
   691  		} else {
   692  			off += 12
   693  		}
   694  		off = sb.SetUint32(ctxt.Arch, off, uint32(numPCData(ldr, s, fi)))
   695  
   696  		// Store the offset to compilation unit's file table.
   697  		cuIdx := ^uint32(0)
   698  		if cu := ldr.SymUnit(s); cu != nil {
   699  			cuIdx = cuOffsets[cu.PclnIndex]
   700  		}
   701  		off = sb.SetUint32(ctxt.Arch, off, cuIdx)
   702  
   703  		// startLine int32
   704  		off = sb.SetUint32(ctxt.Arch, off, uint32(startLine))
   705  
   706  		// funcID uint8
   707  		var funcID abi.FuncID
   708  		if fi.Valid() {
   709  			funcID = fi.FuncID()
   710  		}
   711  		off = sb.SetUint8(ctxt.Arch, off, uint8(funcID))
   712  
   713  		// flag uint8
   714  		var flag abi.FuncFlag
   715  		if fi.Valid() {
   716  			flag = fi.FuncFlag()
   717  		}
   718  		off = sb.SetUint8(ctxt.Arch, off, uint8(flag))
   719  
   720  		off += 1 // pad
   721  
   722  		// nfuncdata must be the final entry.
   723  		funcdata = funcData(ldr, s, fi, 0, funcdata)
   724  		off = sb.SetUint8(ctxt.Arch, off, uint8(len(funcdata)))
   725  
   726  		// Output the pcdata.
   727  		if fi.Valid() {
   728  			for j, pcSym := range pcdata {
   729  				sb.SetUint32(ctxt.Arch, off+int64(j*4), uint32(ldr.SymValue(pcSym)))
   730  			}
   731  			if fi.NumInlTree() > 0 {
   732  				sb.SetUint32(ctxt.Arch, off+abi.PCDATA_InlTreeIndex*4, uint32(ldr.SymValue(pcinline)))
   733  			}
   734  		}
   735  
   736  		// Write funcdata refs as offsets from go:func.* and go:funcrel.*.
   737  		funcdata = funcData(ldr, s, fi, inlSyms[s], funcdata)
   738  		// Missing funcdata will be ^0. See runtime/symtab.go:funcdata.
   739  		off = int64(startLocations[i] + funcSize + numPCData(ldr, s, fi)*4)
   740  		for j := range funcdata {
   741  			dataoff := off + int64(4*j)
   742  			fdsym := funcdata[j]
   743  
   744  			// cmd/internal/obj optimistically populates ArgsPointerMaps and
   745  			// ArgInfo for assembly functions, hoping that the compiler will
   746  			// emit appropriate symbols from their Go stub declarations. If
   747  			// it didn't though, just ignore it.
   748  			//
   749  			// TODO(cherryyz): Fix arg map generation (see discussion on CL 523335).
   750  			if fdsym != 0 && (j == abi.FUNCDATA_ArgsPointerMaps || j == abi.FUNCDATA_ArgInfo) && ldr.IsFromAssembly(s) && ldr.Data(fdsym) == nil {
   751  				fdsym = 0
   752  			}
   753  
   754  			if fdsym == 0 {
   755  				sb.SetUint32(ctxt.Arch, dataoff, ^uint32(0)) // ^0 is a sentinel for "no value"
   756  				continue
   757  			}
   758  
   759  			if outer := ldr.OuterSym(fdsym); outer != gofunc {
   760  				panic(fmt.Sprintf("bad carrier sym for symbol %s (funcdata %s#%d), want go:func.* got %s", ldr.SymName(fdsym), ldr.SymName(s), j, ldr.SymName(outer)))
   761  			}
   762  			sb.SetUint32(ctxt.Arch, dataoff, uint32(ldr.SymValue(fdsym)-gofuncBase))
   763  		}
   764  	}
   765  }
   766  
   767  // pclntab initializes the pclntab symbol with
   768  // runtime function and file name information.
   769  
   770  // pclntab generates the pcln table for the link output.
   771  func (ctxt *Link) pclntab(container loader.Bitmap) *pclntab {
   772  	// Go 1.2's symtab layout is documented in golang.org/s/go12symtab, but the
   773  	// layout and data has changed since that time.
   774  	//
   775  	// As of August 2020, here's the layout of pclntab:
   776  	//
   777  	//  .gopclntab/__gopclntab [elf/macho section]
   778  	//    runtime.pclntab
   779  	//      Carrier symbol for the entire pclntab section.
   780  	//
   781  	//      runtime.pcheader  (see: runtime/symtab.go:pcHeader)
   782  	//        8-byte magic
   783  	//        nfunc [thearch.ptrsize bytes]
   784  	//        offset to runtime.funcnametab from the beginning of runtime.pcheader
   785  	//        offset to runtime.pclntab_old from beginning of runtime.pcheader
   786  	//
   787  	//      runtime.funcnametab
   788  	//        []list of null terminated function names
   789  	//
   790  	//      runtime.cutab
   791  	//        for i=0..#CUs
   792  	//          for j=0..#max used file index in CU[i]
   793  	//            uint32 offset into runtime.filetab for the filename[j]
   794  	//
   795  	//      runtime.filetab
   796  	//        []null terminated filename strings
   797  	//
   798  	//      runtime.pctab
   799  	//        []byte of deduplicated pc data.
   800  	//
   801  	//      runtime.functab
   802  	//        function table, alternating PC and offset to func struct [each entry thearch.ptrsize bytes]
   803  	//        end PC [thearch.ptrsize bytes]
   804  	//        func structures, pcdata offsets, func data.
   805  
   806  	state, compUnits, funcs := makePclntab(ctxt, container)
   807  
   808  	ldr := ctxt.loader
   809  	state.carrier = ldr.LookupOrCreateSym("runtime.pclntab", 0)
   810  	ldr.MakeSymbolUpdater(state.carrier).SetType(sym.SPCLNTAB)
   811  	ldr.SetAttrReachable(state.carrier, true)
   812  	setCarrierSym(sym.SPCLNTAB, state.carrier)
   813  
   814  	state.generatePCHeader(ctxt)
   815  	nameOffsets := state.generateFuncnametab(ctxt, funcs)
   816  	cuOffsets := state.generateFilenameTabs(ctxt, compUnits, funcs)
   817  	state.generatePctab(ctxt, funcs)
   818  	inlSyms := makeInlSyms(ctxt, funcs, nameOffsets)
   819  	state.generateFunctab(ctxt, funcs, inlSyms, cuOffsets, nameOffsets)
   820  
   821  	return state
   822  }
   823  
   824  func expandGoroot(s string) string {
   825  	const n = len("$GOROOT")
   826  	if len(s) >= n+1 && s[:n] == "$GOROOT" && (s[n] == '/' || s[n] == '\\') {
   827  		if final := buildcfg.GOROOT; final != "" {
   828  			return filepath.ToSlash(filepath.Join(final, s[n:]))
   829  		}
   830  	}
   831  	return s
   832  }
   833  
   834  const (
   835  	SUBBUCKETS    = 16
   836  	SUBBUCKETSIZE = abi.FuncTabBucketSize / SUBBUCKETS
   837  	NOIDX         = 0x7fffffff
   838  )
   839  
   840  // findfunctab generates a lookup table to quickly find the containing
   841  // function for a pc. See src/runtime/symtab.go:findfunc for details.
   842  func (ctxt *Link) findfunctab(state *pclntab, container loader.Bitmap) {
   843  	ldr := ctxt.loader
   844  
   845  	// find min and max address
   846  	min := ldr.SymValue(ctxt.Textp[0])
   847  	lastp := ctxt.Textp[len(ctxt.Textp)-1]
   848  	max := ldr.SymValue(lastp) + ldr.SymSize(lastp)
   849  
   850  	// for each subbucket, compute the minimum of all symbol indexes
   851  	// that map to that subbucket.
   852  	n := int32((max - min + SUBBUCKETSIZE - 1) / SUBBUCKETSIZE)
   853  
   854  	nbuckets := int32((max - min + abi.FuncTabBucketSize - 1) / abi.FuncTabBucketSize)
   855  
   856  	size := 4*int64(nbuckets) + int64(n)
   857  
   858  	writeFindFuncTab := func(_ *Link, s loader.Sym) {
   859  		t := ldr.MakeSymbolUpdater(s)
   860  
   861  		indexes := make([]int32, n)
   862  		for i := int32(0); i < n; i++ {
   863  			indexes[i] = NOIDX
   864  		}
   865  		idx := int32(0)
   866  		for i, s := range ctxt.Textp {
   867  			if !emitPcln(ctxt, s, container) {
   868  				continue
   869  			}
   870  			p := ldr.SymValue(s)
   871  			var e loader.Sym
   872  			i++
   873  			if i < len(ctxt.Textp) {
   874  				e = ctxt.Textp[i]
   875  			}
   876  			for e != 0 && !emitPcln(ctxt, e, container) && i < len(ctxt.Textp) {
   877  				e = ctxt.Textp[i]
   878  				i++
   879  			}
   880  			q := max
   881  			if e != 0 {
   882  				q = ldr.SymValue(e)
   883  			}
   884  
   885  			//fmt.Printf("%d: [%x %x] %s\n", idx, p, q, ldr.SymName(s))
   886  			for ; p < q; p += SUBBUCKETSIZE {
   887  				i = int((p - min) / SUBBUCKETSIZE)
   888  				if indexes[i] > idx {
   889  					indexes[i] = idx
   890  				}
   891  			}
   892  
   893  			i = int((q - 1 - min) / SUBBUCKETSIZE)
   894  			if indexes[i] > idx {
   895  				indexes[i] = idx
   896  			}
   897  			idx++
   898  		}
   899  
   900  		// fill in table
   901  		for i := int32(0); i < nbuckets; i++ {
   902  			base := indexes[i*SUBBUCKETS]
   903  			if base == NOIDX {
   904  				Errorf("hole in findfunctab")
   905  			}
   906  			t.SetUint32(ctxt.Arch, int64(i)*(4+SUBBUCKETS), uint32(base))
   907  			for j := int32(0); j < SUBBUCKETS && i*SUBBUCKETS+j < n; j++ {
   908  				idx = indexes[i*SUBBUCKETS+j]
   909  				if idx == NOIDX {
   910  					Errorf("hole in findfunctab")
   911  				}
   912  				if idx-base >= 256 {
   913  					Errorf("too many functions in a findfunc bucket! %d/%d %d %d", i, nbuckets, j, idx-base)
   914  				}
   915  
   916  				t.SetUint8(ctxt.Arch, int64(i)*(4+SUBBUCKETS)+4+int64(j), uint8(idx-base))
   917  			}
   918  		}
   919  	}
   920  
   921  	state.findfunctab = ctxt.createGeneratorSymbol("runtime.findfunctab", 0, sym.SRODATA, size, writeFindFuncTab)
   922  	ldr.SetAttrReachable(state.findfunctab, true)
   923  	ldr.SetAttrLocal(state.findfunctab, true)
   924  }
   925  
   926  // findContainerSyms returns a bitmap, indexed by symbol number, where there's
   927  // a 1 for every container symbol.
   928  func (ctxt *Link) findContainerSyms() loader.Bitmap {
   929  	ldr := ctxt.loader
   930  	container := loader.MakeBitmap(ldr.NSym())
   931  	// Find container symbols and mark them as such.
   932  	for _, s := range ctxt.Textp {
   933  		outer := ldr.OuterSym(s)
   934  		if outer != 0 {
   935  			container.Set(outer)
   936  		}
   937  	}
   938  	return container
   939  }
   940  

View as plain text