Source file src/cmd/compile/internal/inline/inl.go

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  //
     5  // The inlining facility makes 2 passes: first CanInline determines which
     6  // functions are suitable for inlining, and for those that are it
     7  // saves a copy of the body. Then InlineCalls walks each function body to
     8  // expand calls to inlinable functions.
     9  //
    10  // The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
    11  // making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
    12  // are not supported.
    13  //      0: disabled
    14  //      1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
    15  //      2: (unassigned)
    16  //      3: (unassigned)
    17  //      4: allow non-leaf functions
    18  //
    19  // At some point this may get another default and become switch-offable with -N.
    20  //
    21  // The -d typcheckinl flag enables early typechecking of all imported bodies,
    22  // which is useful to flush out bugs.
    23  //
    24  // The Debug.m flag enables diagnostic output.  a single -m is useful for verifying
    25  // which calls get inlined or not, more is for debugging, and may go away at any point.
    26  
    27  package inline
    28  
    29  import (
    30  	"fmt"
    31  	"go/constant"
    32  	"internal/buildcfg"
    33  	"strconv"
    34  	"strings"
    35  
    36  	"cmd/compile/internal/base"
    37  	"cmd/compile/internal/inline/inlheur"
    38  	"cmd/compile/internal/ir"
    39  	"cmd/compile/internal/logopt"
    40  	"cmd/compile/internal/pgoir"
    41  	"cmd/compile/internal/typecheck"
    42  	"cmd/compile/internal/types"
    43  	"cmd/internal/obj"
    44  	"cmd/internal/pgo"
    45  	"cmd/internal/src"
    46  )
    47  
    48  // Inlining budget parameters, gathered in one place
    49  const (
    50  	inlineMaxBudget       = 80
    51  	inlineExtraAppendCost = 0
    52  	// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
    53  	inlineExtraCallCost  = 57              // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
    54  	inlineParamCallCost  = 17              // calling a parameter only costs this much extra (inlining might expose a constant function)
    55  	inlineExtraPanicCost = 1               // do not penalize inlining panics.
    56  	inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.
    57  
    58  	inlineBigFunctionNodes      = 5000                 // Functions with this many nodes are considered "big".
    59  	inlineBigFunctionMaxCost    = 20                   // Max cost of inlinee when inlining into a "big" function.
    60  	inlineClosureCalledOnceCost = 10 * inlineMaxBudget // if a closure is just called once, inline it.
    61  )
    62  
    63  var (
    64  	// List of all hot callee nodes.
    65  	// TODO(prattmic): Make this non-global.
    66  	candHotCalleeMap = make(map[*pgoir.IRNode]struct{})
    67  
    68  	// Set of functions that contain hot call sites.
    69  	hasHotCall = make(map[*ir.Func]struct{})
    70  
    71  	// List of all hot call sites. CallSiteInfo.Callee is always nil.
    72  	// TODO(prattmic): Make this non-global.
    73  	candHotEdgeMap = make(map[pgoir.CallSiteInfo]struct{})
    74  
    75  	// Threshold in percentage for hot callsite inlining.
    76  	inlineHotCallSiteThresholdPercent float64
    77  
    78  	// Threshold in CDF percentage for hot callsite inlining,
    79  	// that is, for a threshold of X the hottest callsites that
    80  	// make up the top X% of total edge weight will be
    81  	// considered hot for inlining candidates.
    82  	inlineCDFHotCallSiteThresholdPercent = float64(99)
    83  
    84  	// Budget increased due to hotness.
    85  	inlineHotMaxBudget int32 = 2000
    86  )
    87  
    88  func IsPgoHotFunc(fn *ir.Func, profile *pgoir.Profile) bool {
    89  	if profile == nil {
    90  		return false
    91  	}
    92  	if n, ok := profile.WeightedCG.IRNodes[ir.LinkFuncName(fn)]; ok {
    93  		_, ok := candHotCalleeMap[n]
    94  		return ok
    95  	}
    96  	return false
    97  }
    98  
    99  func HasPgoHotInline(fn *ir.Func) bool {
   100  	_, has := hasHotCall[fn]
   101  	return has
   102  }
   103  
   104  // PGOInlinePrologue records the hot callsites from ir-graph.
   105  func PGOInlinePrologue(p *pgoir.Profile) {
   106  	if base.Debug.PGOInlineCDFThreshold != "" {
   107  		if s, err := strconv.ParseFloat(base.Debug.PGOInlineCDFThreshold, 64); err == nil && s >= 0 && s <= 100 {
   108  			inlineCDFHotCallSiteThresholdPercent = s
   109  		} else {
   110  			base.Fatalf("invalid PGOInlineCDFThreshold, must be between 0 and 100")
   111  		}
   112  	}
   113  	var hotCallsites []pgo.NamedCallEdge
   114  	inlineHotCallSiteThresholdPercent, hotCallsites = hotNodesFromCDF(p)
   115  	if base.Debug.PGODebug > 0 {
   116  		fmt.Printf("hot-callsite-thres-from-CDF=%v\n", inlineHotCallSiteThresholdPercent)
   117  	}
   118  
   119  	if x := base.Debug.PGOInlineBudget; x != 0 {
   120  		inlineHotMaxBudget = int32(x)
   121  	}
   122  
   123  	for _, n := range hotCallsites {
   124  		// mark inlineable callees from hot edges
   125  		if callee := p.WeightedCG.IRNodes[n.CalleeName]; callee != nil {
   126  			candHotCalleeMap[callee] = struct{}{}
   127  		}
   128  		// mark hot call sites
   129  		if caller := p.WeightedCG.IRNodes[n.CallerName]; caller != nil && caller.AST != nil {
   130  			csi := pgoir.CallSiteInfo{LineOffset: n.CallSiteOffset, Caller: caller.AST}
   131  			candHotEdgeMap[csi] = struct{}{}
   132  		}
   133  	}
   134  
   135  	if base.Debug.PGODebug >= 3 {
   136  		fmt.Printf("hot-cg before inline in dot format:")
   137  		p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent)
   138  	}
   139  }
   140  
   141  // hotNodesFromCDF computes an edge weight threshold and the list of hot
   142  // nodes that make up the given percentage of the CDF. The threshold, as
   143  // a percent, is the lower bound of weight for nodes to be considered hot
   144  // (currently only used in debug prints) (in case of equal weights,
   145  // comparing with the threshold may not accurately reflect which nodes are
   146  // considered hot).
   147  func hotNodesFromCDF(p *pgoir.Profile) (float64, []pgo.NamedCallEdge) {
   148  	cum := int64(0)
   149  	for i, n := range p.NamedEdgeMap.ByWeight {
   150  		w := p.NamedEdgeMap.Weight[n]
   151  		cum += w
   152  		if pgo.WeightInPercentage(cum, p.TotalWeight) > inlineCDFHotCallSiteThresholdPercent {
   153  			// nodes[:i+1] to include the very last node that makes it to go over the threshold.
   154  			// (Say, if the CDF threshold is 50% and one hot node takes 60% of weight, we want to
   155  			// include that node instead of excluding it.)
   156  			return pgo.WeightInPercentage(w, p.TotalWeight), p.NamedEdgeMap.ByWeight[:i+1]
   157  		}
   158  	}
   159  	return 0, p.NamedEdgeMap.ByWeight
   160  }
   161  
   162  // CanInlineFuncs computes whether a batch of functions are inlinable.
   163  func CanInlineFuncs(funcs []*ir.Func, profile *pgoir.Profile) {
   164  	if profile != nil {
   165  		PGOInlinePrologue(profile)
   166  	}
   167  
   168  	if base.Flag.LowerL == 0 {
   169  		return
   170  	}
   171  
   172  	ir.VisitFuncsBottomUp(funcs, func(funcs []*ir.Func, recursive bool) {
   173  		for _, fn := range funcs {
   174  			CanInline(fn, profile)
   175  			if inlheur.Enabled() {
   176  				analyzeFuncProps(fn, profile)
   177  			}
   178  		}
   179  	})
   180  }
   181  
   182  func simdCreditMultiplier(fn *ir.Func) int32 {
   183  	for _, field := range fn.Type().RecvParamsResults() {
   184  		if field.Type.IsSIMD() {
   185  			return 3
   186  		}
   187  	}
   188  	// Sometimes code uses closures, that do not take simd
   189  	// parameters, to perform repetitive SIMD operations.
   190  	// fn.  These really need to be inlined, or the anticipated
   191  	// awesome SIMD performance will be missed.
   192  	for _, v := range fn.ClosureVars {
   193  		if v.Type().IsSIMD() {
   194  			return 11 // 11 ought to be enough.
   195  		}
   196  	}
   197  
   198  	return 1
   199  }
   200  
   201  // inlineBudget determines the max budget for function 'fn' prior to
   202  // analyzing the hairiness of the body of 'fn'. We pass in the pgo
   203  // profile if available (which can change the budget), also a
   204  // 'relaxed' flag, which expands the budget slightly to allow for the
   205  // possibility that a call to the function might have its score
   206  // adjusted downwards. If 'verbose' is set, then print a remark where
   207  // we boost the budget due to PGO.
   208  // Note that inlineCostOk has the final say on whether an inline will
   209  // happen; changes here merely make inlines possible.
   210  func inlineBudget(fn *ir.Func, profile *pgoir.Profile, relaxed bool, verbose bool) int32 {
   211  	// Update the budget for profile-guided inlining.
   212  	budget := int32(inlineMaxBudget)
   213  
   214  	budget *= simdCreditMultiplier(fn)
   215  
   216  	if IsPgoHotFunc(fn, profile) {
   217  		budget = inlineHotMaxBudget
   218  		if verbose {
   219  			fmt.Printf("hot-node enabled increased budget=%v for func=%v\n", budget, ir.PkgFuncName(fn))
   220  		}
   221  	}
   222  	if relaxed {
   223  		budget += inlheur.BudgetExpansion(inlineMaxBudget)
   224  	}
   225  	if fn.ClosureParent != nil {
   226  		// be very liberal here, if the closure is only called once, the budget is large
   227  		budget = max(budget, inlineClosureCalledOnceCost)
   228  	}
   229  
   230  	return budget
   231  }
   232  
   233  // CanInline determines whether fn is inlineable.
   234  // If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl.
   235  // fn and fn.Body will already have been typechecked.
   236  func CanInline(fn *ir.Func, profile *pgoir.Profile) {
   237  	if fn.Nname == nil {
   238  		base.Fatalf("CanInline no nname %+v", fn)
   239  	}
   240  
   241  	var reason string // reason, if any, that the function was not inlined
   242  	if base.Flag.LowerM > 1 || logopt.Enabled() {
   243  		defer func() {
   244  			if reason != "" {
   245  				if base.Flag.LowerM > 1 {
   246  					fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason)
   247  				}
   248  				if logopt.Enabled() {
   249  					logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
   250  				}
   251  			}
   252  		}()
   253  	}
   254  
   255  	reason = InlineImpossible(fn)
   256  	if reason != "" {
   257  		return
   258  	}
   259  	if fn.Typecheck() == 0 {
   260  		base.Fatalf("CanInline on non-typechecked function %v", fn)
   261  	}
   262  
   263  	n := fn.Nname
   264  	if n.Func.InlinabilityChecked() {
   265  		return
   266  	}
   267  	defer n.Func.SetInlinabilityChecked(true)
   268  
   269  	cc := int32(inlineExtraCallCost)
   270  	if base.Flag.LowerL == 4 {
   271  		cc = 1 // this appears to yield better performance than 0.
   272  	}
   273  
   274  	// Used a "relaxed" inline budget if the new inliner is enabled.
   275  	relaxed := inlheur.Enabled()
   276  
   277  	// Compute the inline budget for this func.
   278  	budget := inlineBudget(fn, profile, relaxed, base.Debug.PGODebug > 0)
   279  
   280  	// At this point in the game the function we're looking at may
   281  	// have "stale" autos, vars that still appear in the Dcl list, but
   282  	// which no longer have any uses in the function body (due to
   283  	// elimination by deadcode). We'd like to exclude these dead vars
   284  	// when creating the "Inline.Dcl" field below; to accomplish this,
   285  	// the hairyVisitor below builds up a map of used/referenced
   286  	// locals, and we use this map to produce a pruned Inline.Dcl
   287  	// list. See issue 25459 for more context.
   288  
   289  	visitor := hairyVisitor{
   290  		curFunc:       fn,
   291  		debug:         isDebugFn(fn),
   292  		isBigFunc:     IsBigFunc(fn),
   293  		budget:        budget,
   294  		maxBudget:     budget,
   295  		extraCallCost: cc,
   296  		profile:       profile,
   297  	}
   298  	if visitor.tooHairy(fn) {
   299  		reason = visitor.reason
   300  		return
   301  	}
   302  
   303  	n.Func.Inl = &ir.Inline{
   304  		Cost:            budget - visitor.budget,
   305  		Dcl:             pruneUnusedAutos(n.Func.Dcl, &visitor),
   306  		HaveDcl:         true,
   307  		CanDelayResults: canDelayResults(fn),
   308  	}
   309  	if base.Flag.LowerM != 0 || logopt.Enabled() {
   310  		noteInlinableFunc(n, fn, budget-visitor.budget)
   311  	}
   312  }
   313  
   314  // noteInlinableFunc issues a message to the user that the specified
   315  // function is inlinable.
   316  func noteInlinableFunc(n *ir.Name, fn *ir.Func, cost int32) {
   317  	if base.Flag.LowerM > 1 {
   318  		fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, cost, fn.Type(), fn.Body)
   319  	} else if base.Flag.LowerM != 0 {
   320  		fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
   321  	}
   322  	// JSON optimization log output.
   323  	if logopt.Enabled() {
   324  		logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", cost))
   325  	}
   326  }
   327  
   328  // InlineImpossible returns a non-empty reason string if fn is impossible to
   329  // inline regardless of cost or contents.
   330  func InlineImpossible(fn *ir.Func) string {
   331  	var reason string // reason, if any, that the function can not be inlined.
   332  	if fn.Nname == nil {
   333  		reason = "no name"
   334  		return reason
   335  	}
   336  
   337  	// If marked "go:noinline", don't inline.
   338  	if fn.Pragma&ir.Noinline != 0 {
   339  		reason = "marked go:noinline"
   340  		return reason
   341  	}
   342  
   343  	// If marked "go:norace" and -race compilation, don't inline.
   344  	if base.Flag.Race && fn.Pragma&ir.Norace != 0 {
   345  		reason = "marked go:norace with -race compilation"
   346  		return reason
   347  	}
   348  
   349  	// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
   350  	if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 {
   351  		reason = "marked go:nocheckptr"
   352  		return reason
   353  	}
   354  
   355  	// If marked "go:cgo_unsafe_args", don't inline, since the function
   356  	// makes assumptions about its argument frame layout.
   357  	if fn.Pragma&ir.CgoUnsafeArgs != 0 {
   358  		reason = "marked go:cgo_unsafe_args"
   359  		return reason
   360  	}
   361  
   362  	// If marked as "go:uintptrkeepalive", don't inline, since the keep
   363  	// alive information is lost during inlining.
   364  	//
   365  	// TODO(prattmic): This is handled on calls during escape analysis,
   366  	// which is after inlining. Move prior to inlining so the keep-alive is
   367  	// maintained after inlining.
   368  	if fn.Pragma&ir.UintptrKeepAlive != 0 {
   369  		reason = "marked as having a keep-alive uintptr argument"
   370  		return reason
   371  	}
   372  
   373  	// If marked as "go:uintptrescapes", don't inline, since the escape
   374  	// information is lost during inlining.
   375  	if fn.Pragma&ir.UintptrEscapes != 0 {
   376  		reason = "marked as having an escaping uintptr argument"
   377  		return reason
   378  	}
   379  
   380  	// The nowritebarrierrec checker currently works at function
   381  	// granularity, so inlining yeswritebarrierrec functions can confuse it
   382  	// (#22342). As a workaround, disallow inlining them for now.
   383  	if fn.Pragma&ir.Yeswritebarrierrec != 0 {
   384  		reason = "marked go:yeswritebarrierrec"
   385  		return reason
   386  	}
   387  
   388  	// If a local function has no fn.Body (is defined outside of Go), cannot inline it.
   389  	// Imported functions don't have fn.Body but might have inline body in fn.Inl.
   390  	if len(fn.Body) == 0 && !typecheck.HaveInlineBody(fn) {
   391  		reason = "no function body"
   392  		return reason
   393  	}
   394  
   395  	return ""
   396  }
   397  
   398  // canDelayResults reports whether inlined calls to fn can delay
   399  // declaring the result parameter until the "return" statement.
   400  func canDelayResults(fn *ir.Func) bool {
   401  	// We can delay declaring+initializing result parameters if:
   402  	// (1) there's exactly one "return" statement in the inlined function;
   403  	// (2) it's not an empty return statement (#44355); and
   404  	// (3) the result parameters aren't named.
   405  
   406  	nreturns := 0
   407  	ir.VisitList(fn.Body, func(n ir.Node) {
   408  		if n, ok := n.(*ir.ReturnStmt); ok {
   409  			nreturns++
   410  			if len(n.Results) == 0 {
   411  				nreturns++ // empty return statement (case 2)
   412  			}
   413  		}
   414  	})
   415  
   416  	if nreturns != 1 {
   417  		return false // not exactly one return statement (case 1)
   418  	}
   419  
   420  	// temporaries for return values.
   421  	for _, param := range fn.Type().Results() {
   422  		if sym := param.Sym; sym != nil && !sym.IsBlank() {
   423  			return false // found a named result parameter (case 3)
   424  		}
   425  	}
   426  
   427  	return true
   428  }
   429  
   430  // hairyVisitor visits a function body to determine its inlining
   431  // hairiness and whether or not it can be inlined.
   432  type hairyVisitor struct {
   433  	// This is needed to access the current caller in the doNode function.
   434  	curFunc       *ir.Func
   435  	isBigFunc     bool
   436  	debug         bool
   437  	budget        int32
   438  	maxBudget     int32
   439  	reason        string
   440  	extraCallCost int32
   441  	usedLocals    ir.NameSet
   442  	do            func(ir.Node) bool
   443  	profile       *pgoir.Profile
   444  }
   445  
   446  func isDebugFn(fn *ir.Func) bool {
   447  	// if n := fn.Nname; n != nil {
   448  	// 	if n.Sym().Name == "Int32x8.Transpose8" && n.Sym().Pkg.Path == "simd/archsimd" {
   449  	// 		fmt.Printf("isDebugFn '%s' DOT '%s'\n", n.Sym().Pkg.Path, n.Sym().Name)
   450  	// 		return true
   451  	// 	}
   452  	// }
   453  	return false
   454  }
   455  
   456  func (v *hairyVisitor) tooHairy(fn *ir.Func) bool {
   457  	v.do = v.doNode // cache closure
   458  	if ir.DoChildren(fn, v.do) {
   459  		return true
   460  	}
   461  	if v.budget < 0 {
   462  		v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", v.maxBudget-v.budget, v.maxBudget)
   463  		return true
   464  	}
   465  	return false
   466  }
   467  
   468  // doNode visits n and its children, updates the state in v, and returns true if
   469  // n makes the current function too hairy for inlining.
   470  func (v *hairyVisitor) doNode(n ir.Node) bool {
   471  	if n == nil {
   472  		return false
   473  	}
   474  	if v.debug {
   475  		fmt.Printf("%v: doNode %v budget is %d\n", ir.Line(n), n.Op(), v.budget)
   476  	}
   477  opSwitch:
   478  	switch n.Op() {
   479  	// Call is okay if inlinable and we have the budget for the body.
   480  	case ir.OCALLFUNC:
   481  		n := n.(*ir.CallExpr)
   482  		var cheap bool
   483  		if n.Fun.Op() == ir.ONAME {
   484  			name := n.Fun.(*ir.Name)
   485  			if name.Class == ir.PFUNC {
   486  				s := name.Sym()
   487  				fn := s.Name
   488  				switch s.Pkg.Path {
   489  				case "internal/abi":
   490  					switch fn {
   491  					case "NoEscape":
   492  						// Special case for internal/abi.NoEscape. It does just type
   493  						// conversions to appease the escape analysis, and doesn't
   494  						// generate code.
   495  						cheap = true
   496  					}
   497  					if strings.HasPrefix(fn, "EscapeNonString[") {
   498  						// internal/abi.EscapeNonString[T] is a compiler intrinsic
   499  						// implemented in the escape analysis phase.
   500  						cheap = true
   501  					}
   502  				case "internal/runtime/sys":
   503  					switch fn {
   504  					case "GetCallerPC", "GetCallerSP":
   505  						// Functions that call GetCallerPC/SP can not be inlined
   506  						// because users expect the PC/SP of the logical caller,
   507  						// but GetCallerPC/SP returns the physical caller.
   508  						v.reason = "call to " + fn
   509  						return true
   510  					}
   511  				case "go.runtime":
   512  					switch fn {
   513  					case "throw":
   514  						// runtime.throw is a "cheap call" like panic in normal code.
   515  						v.budget -= inlineExtraThrowCost
   516  						break opSwitch
   517  					case "panicrangestate":
   518  						cheap = true
   519  					}
   520  				}
   521  			}
   522  			// Special case for coverage counter updates; although
   523  			// these correspond to real operations, we treat them as
   524  			// zero cost for the moment. This is due to the existence
   525  			// of tests that are sensitive to inlining-- if the
   526  			// insertion of coverage instrumentation happens to tip a
   527  			// given function over the threshold and move it from
   528  			// "inlinable" to "not-inlinable", this can cause changes
   529  			// in allocation behavior, which can then result in test
   530  			// failures (a good example is the TestAllocations in
   531  			// crypto/ed25519).
   532  			if isAtomicCoverageCounterUpdate(n) {
   533  				return false
   534  			}
   535  		}
   536  		if n.Fun.Op() == ir.OMETHEXPR {
   537  			if meth := ir.MethodExprName(n.Fun); meth != nil {
   538  				if fn := meth.Func; fn != nil {
   539  					s := fn.Sym()
   540  					if types.RuntimeSymName(s) == "heapBits.nextArena" {
   541  						// Special case: explicitly allow mid-stack inlining of
   542  						// runtime.heapBits.next even though it calls slow-path
   543  						// runtime.heapBits.nextArena.
   544  						cheap = true
   545  					}
   546  					// Special case: on architectures that can do unaligned loads,
   547  					// explicitly mark encoding/binary methods as cheap,
   548  					// because in practice they are, even though our inlining
   549  					// budgeting system does not see that. See issue 42958.
   550  					if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" {
   551  						switch s.Name {
   552  						case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16",
   553  							"bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16",
   554  							"littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16",
   555  							"bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16",
   556  							"littleEndian.AppendUint64", "littleEndian.AppendUint32", "littleEndian.AppendUint16",
   557  							"bigEndian.AppendUint64", "bigEndian.AppendUint32", "bigEndian.AppendUint16":
   558  							cheap = true
   559  						}
   560  					}
   561  				}
   562  			}
   563  		}
   564  
   565  		// A call to a parameter is optimistically a cheap call, if it's a constant function
   566  		// perhaps it will inline, it also can simplify escape analysis.
   567  		extraCost := v.extraCallCost
   568  
   569  		if n.Fun.Op() == ir.ONAME {
   570  			name := n.Fun.(*ir.Name)
   571  			if name.Class == ir.PFUNC {
   572  				// Special case: on architectures that can do unaligned loads,
   573  				// explicitly mark internal/byteorder methods as cheap,
   574  				// because in practice they are, even though our inlining
   575  				// budgeting system does not see that. See issue 42958.
   576  				if base.Ctxt.Arch.CanMergeLoads && name.Sym().Pkg.Path == "internal/byteorder" {
   577  					switch name.Sym().Name {
   578  					case "LEUint64", "LEUint32", "LEUint16",
   579  						"BEUint64", "BEUint32", "BEUint16",
   580  						"LEPutUint64", "LEPutUint32", "LEPutUint16",
   581  						"BEPutUint64", "BEPutUint32", "BEPutUint16",
   582  						"LEAppendUint64", "LEAppendUint32", "LEAppendUint16",
   583  						"BEAppendUint64", "BEAppendUint32", "BEAppendUint16":
   584  						cheap = true
   585  					}
   586  				}
   587  			}
   588  			if name.Class == ir.PPARAM || name.Class == ir.PAUTOHEAP && name.IsClosureVar() {
   589  				extraCost = min(extraCost, inlineParamCallCost)
   590  			}
   591  		}
   592  
   593  		if cheap {
   594  			if v.debug {
   595  				if ir.IsIntrinsicCall(n) {
   596  					fmt.Printf("%v: cheap call is also intrinsic, %v\n", ir.Line(n), n)
   597  				}
   598  			}
   599  			break // treat like any other node, that is, cost of 1
   600  		}
   601  
   602  		if ir.IsIntrinsicCall(n) {
   603  			if v.debug {
   604  				fmt.Printf("%v: intrinsic call, %v\n", ir.Line(n), n)
   605  			}
   606  			break // Treat like any other node.
   607  		}
   608  
   609  		if callee := inlCallee(v.curFunc, n.Fun, v.profile, false); callee != nil && typecheck.HaveInlineBody(callee) {
   610  			// Check whether we'd actually inline this call. Set
   611  			// log == false since we aren't actually doing inlining
   612  			// yet.
   613  			if ok, _, _ := canInlineCallExpr(v.curFunc, n, callee, v.isBigFunc, false, false); ok {
   614  				// mkinlcall would inline this call [1], so use
   615  				// the cost of the inline body as the cost of
   616  				// the call, as that is what will actually
   617  				// appear in the code.
   618  				//
   619  				// [1] This is almost a perfect match to the
   620  				// mkinlcall logic, except that
   621  				// canInlineCallExpr considers inlining cycles
   622  				// by looking at what has already been inlined.
   623  				// Since we haven't done any inlining yet we
   624  				// will miss those.
   625  				//
   626  				// TODO: in the case of a single-call closure, the inlining budget here is potentially much, much larger.
   627  				//
   628  				v.budget -= callee.Inl.Cost
   629  				break
   630  			}
   631  		}
   632  
   633  		if v.debug {
   634  			fmt.Printf("%v: costly OCALLFUNC %v\n", ir.Line(n), n)
   635  		}
   636  
   637  		// Call cost for non-leaf inlining.
   638  		v.budget -= extraCost
   639  
   640  	case ir.OCALLMETH:
   641  		base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
   642  
   643  	// Things that are too hairy, irrespective of the budget
   644  	case ir.OCALL, ir.OCALLINTER:
   645  		// Call cost for non-leaf inlining.
   646  		if v.debug {
   647  			fmt.Printf("%v: costly OCALL %v\n", ir.Line(n), n)
   648  		}
   649  		v.budget -= v.extraCallCost
   650  
   651  	case ir.OPANIC:
   652  		n := n.(*ir.UnaryExpr)
   653  		if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() {
   654  			// Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining.
   655  			// Before CL 284412, these conversions were introduced later in the
   656  			// compiler, so they didn't count against inlining budget.
   657  			v.budget++
   658  		}
   659  		v.budget -= inlineExtraPanicCost
   660  
   661  	case ir.ORECOVER:
   662  		// TODO: maybe we could allow inlining of recover() now?
   663  		v.reason = "call to recover"
   664  		return true
   665  
   666  	case ir.OCLOSURE:
   667  		if base.Debug.InlFuncsWithClosures == 0 {
   668  			v.reason = "not inlining functions with closures"
   669  			return true
   670  		}
   671  
   672  		// TODO(danscales): Maybe make budget proportional to number of closure
   673  		// variables, e.g.:
   674  		//v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3)
   675  		// TODO(austin): However, if we're able to inline this closure into
   676  		// v.curFunc, then we actually pay nothing for the closure captures. We
   677  		// should try to account for that if we're going to account for captures.
   678  		v.budget -= 15
   679  
   680  	case ir.OGO, ir.ODEFER, ir.OTAILCALL:
   681  		v.reason = "unhandled op " + n.Op().String()
   682  		return true
   683  
   684  	case ir.OAPPEND:
   685  		v.budget -= inlineExtraAppendCost
   686  
   687  	case ir.OADDR:
   688  		n := n.(*ir.AddrExpr)
   689  		// Make "&s.f" cost 0 when f's offset is zero.
   690  		if dot, ok := n.X.(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOT || dot.Op() == ir.ODOTPTR) {
   691  			if _, ok := dot.X.(*ir.Name); ok && dot.Selection.Offset == 0 {
   692  				v.budget += 2 // undo ir.OADDR+ir.ODOT/ir.ODOTPTR
   693  			}
   694  		}
   695  
   696  	case ir.ODEREF:
   697  		// *(*X)(unsafe.Pointer(&x)) is low-cost
   698  		n := n.(*ir.StarExpr)
   699  
   700  		ptr := n.X
   701  		for ptr.Op() == ir.OCONVNOP {
   702  			ptr = ptr.(*ir.ConvExpr).X
   703  		}
   704  		if ptr.Op() == ir.OADDR {
   705  			v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR
   706  		}
   707  
   708  	case ir.OCONVNOP:
   709  		// This doesn't produce code, but the children might.
   710  		v.budget++ // undo default cost
   711  
   712  	case ir.OFALL, ir.OTYPE:
   713  		// These nodes don't produce code; omit from inlining budget.
   714  		return false
   715  
   716  	case ir.OIF:
   717  		n := n.(*ir.IfStmt)
   718  		if ir.IsConst(n.Cond, constant.Bool) {
   719  			// This if and the condition cost nothing.
   720  			if doList(n.Init(), v.do) {
   721  				return true
   722  			}
   723  			if ir.BoolVal(n.Cond) {
   724  				return doList(n.Body, v.do)
   725  			} else {
   726  				return doList(n.Else, v.do)
   727  			}
   728  		}
   729  
   730  	case ir.ONAME:
   731  		n := n.(*ir.Name)
   732  		if n.Class == ir.PAUTO {
   733  			v.usedLocals.Add(n)
   734  		}
   735  
   736  	case ir.OBLOCK:
   737  		// The only OBLOCK we should see at this point is an empty one.
   738  		// In any event, let the visitList(n.List()) below take care of the statements,
   739  		// and don't charge for the OBLOCK itself. The ++ undoes the -- below.
   740  		v.budget++
   741  
   742  	case ir.OMETHVALUE, ir.OSLICELIT:
   743  		v.budget-- // Hack for toolstash -cmp.
   744  
   745  	case ir.OMETHEXPR:
   746  		v.budget++ // Hack for toolstash -cmp.
   747  
   748  	case ir.OAS2:
   749  		n := n.(*ir.AssignListStmt)
   750  
   751  		// Unified IR unconditionally rewrites:
   752  		//
   753  		//	a, b = f()
   754  		//
   755  		// into:
   756  		//
   757  		//	DCL tmp1
   758  		//	DCL tmp2
   759  		//	tmp1, tmp2 = f()
   760  		//	a, b = tmp1, tmp2
   761  		//
   762  		// so that it can insert implicit conversions as necessary. To
   763  		// minimize impact to the existing inlining heuristics (in
   764  		// particular, to avoid breaking the existing inlinability regress
   765  		// tests), we need to compensate for this here.
   766  		//
   767  		// See also identical logic in IsBigFunc.
   768  		if len(n.Rhs) > 0 {
   769  			if init := n.Rhs[0].Init(); len(init) == 1 {
   770  				if _, ok := init[0].(*ir.AssignListStmt); ok {
   771  					// 4 for each value, because each temporary variable now
   772  					// appears 3 times (DCL, LHS, RHS), plus an extra DCL node.
   773  					//
   774  					// 1 for the extra "tmp1, tmp2 = f()" assignment statement.
   775  					v.budget += 4*int32(len(n.Lhs)) + 1
   776  				}
   777  			}
   778  		}
   779  
   780  	case ir.OAS:
   781  		// Special case for coverage counter updates and coverage
   782  		// function registrations. Although these correspond to real
   783  		// operations, we treat them as zero cost for the moment. This
   784  		// is primarily due to the existence of tests that are
   785  		// sensitive to inlining-- if the insertion of coverage
   786  		// instrumentation happens to tip a given function over the
   787  		// threshold and move it from "inlinable" to "not-inlinable",
   788  		// this can cause changes in allocation behavior, which can
   789  		// then result in test failures (a good example is the
   790  		// TestAllocations in crypto/ed25519).
   791  		n := n.(*ir.AssignStmt)
   792  		if n.X.Op() == ir.OINDEX && isIndexingCoverageCounter(n.X) {
   793  			return false
   794  		}
   795  
   796  	case ir.OSLICE, ir.OSLICEARR, ir.OSLICESTR, ir.OSLICE3, ir.OSLICE3ARR:
   797  		n := n.(*ir.SliceExpr)
   798  
   799  		// Ignore superfluous slicing.
   800  		if n.Low != nil && n.Low.Op() == ir.OLITERAL && ir.Int64Val(n.Low) == 0 {
   801  			v.budget++
   802  		}
   803  		if n.High != nil && n.High.Op() == ir.OLEN && n.High.(*ir.UnaryExpr).X == n.X {
   804  			v.budget += 2
   805  		}
   806  	}
   807  
   808  	v.budget--
   809  
   810  	// When debugging, don't stop early, to get full cost of inlining this function
   811  	if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() && !v.debug {
   812  		v.reason = "too expensive"
   813  		return true
   814  	}
   815  
   816  	return ir.DoChildren(n, v.do)
   817  }
   818  
   819  // IsBigFunc reports whether fn is a "big" function.
   820  //
   821  // Note: The criteria for "big" is heuristic and subject to change.
   822  func IsBigFunc(fn *ir.Func) bool {
   823  	budget := inlineBigFunctionNodes
   824  	return ir.Any(fn, func(n ir.Node) bool {
   825  		// See logic in hairyVisitor.doNode, explaining unified IR's
   826  		// handling of "a, b = f()" assignments.
   827  		if n, ok := n.(*ir.AssignListStmt); ok && n.Op() == ir.OAS2 && len(n.Rhs) > 0 {
   828  			if init := n.Rhs[0].Init(); len(init) == 1 {
   829  				if _, ok := init[0].(*ir.AssignListStmt); ok {
   830  					budget += 4*len(n.Lhs) + 1
   831  				}
   832  			}
   833  		}
   834  
   835  		budget--
   836  		return budget <= 0
   837  	})
   838  }
   839  
   840  // inlineCallCheck returns whether a call will never be inlineable
   841  // for basic reasons, and whether the call is an intrinisic call.
   842  // The intrinsic result singles out intrinsic calls for debug logging.
   843  func inlineCallCheck(callerfn *ir.Func, call *ir.CallExpr) (bool, bool) {
   844  	if base.Flag.LowerL == 0 {
   845  		return false, false
   846  	}
   847  	if call.Op() != ir.OCALLFUNC {
   848  		return false, false
   849  	}
   850  	if call.GoDefer || call.NoInline {
   851  		return false, false
   852  	}
   853  
   854  	// Prevent inlining some reflect.Value methods when using checkptr,
   855  	// even when package reflect was compiled without it (#35073).
   856  	if base.Debug.Checkptr != 0 && call.Fun.Op() == ir.OMETHEXPR {
   857  		if method := ir.MethodExprName(call.Fun); method != nil {
   858  			switch types.ReflectSymName(method.Sym()) {
   859  			case "Value.UnsafeAddr", "Value.Pointer":
   860  				return false, false
   861  			}
   862  		}
   863  	}
   864  
   865  	// internal/abi.EscapeNonString[T] is a compiler intrinsic implemented
   866  	// in the escape analysis phase.
   867  	if fn := ir.StaticCalleeName(call.Fun); fn != nil && fn.Sym().Pkg.Path == "internal/abi" &&
   868  		strings.HasPrefix(fn.Sym().Name, "EscapeNonString[") {
   869  		return false, true
   870  	}
   871  
   872  	if ir.IsIntrinsicCall(call) {
   873  		return false, true
   874  	}
   875  	return true, false
   876  }
   877  
   878  // InlineCallTarget returns the resolved-for-inlining target of a call.
   879  // It does not necessarily guarantee that the target can be inlined, though
   880  // obvious exclusions are applied.
   881  func InlineCallTarget(callerfn *ir.Func, call *ir.CallExpr, profile *pgoir.Profile) *ir.Func {
   882  	if mightInline, _ := inlineCallCheck(callerfn, call); !mightInline {
   883  		return nil
   884  	}
   885  	return inlCallee(callerfn, call.Fun, profile, true)
   886  }
   887  
   888  // TryInlineCall returns an inlined call expression for call, or nil
   889  // if inlining is not possible.
   890  func TryInlineCall(callerfn *ir.Func, call *ir.CallExpr, bigCaller bool, profile *pgoir.Profile, closureCalledOnce bool) *ir.InlinedCallExpr {
   891  	mightInline, isIntrinsic := inlineCallCheck(callerfn, call)
   892  
   893  	// Preserve old logging behavior
   894  	if (mightInline || isIntrinsic) && base.Flag.LowerM > 3 {
   895  		fmt.Printf("%v:call to func %+v\n", ir.Line(call), call.Fun)
   896  	}
   897  	if !mightInline {
   898  		return nil
   899  	}
   900  
   901  	if fn := inlCallee(callerfn, call.Fun, profile, false); fn != nil && typecheck.HaveInlineBody(fn) {
   902  		return mkinlcall(callerfn, call, fn, bigCaller, closureCalledOnce)
   903  	}
   904  	return nil
   905  }
   906  
   907  // inlCallee takes a function-typed expression and returns the underlying function ONAME
   908  // that it refers to if statically known. Otherwise, it returns nil.
   909  // resolveOnly skips cost-based inlineability checks for closures; the result may not actually be inlineable.
   910  func inlCallee(caller *ir.Func, fn ir.Node, profile *pgoir.Profile, resolveOnly bool) (res *ir.Func) {
   911  	fn = ir.StaticValue(fn)
   912  	switch fn.Op() {
   913  	case ir.OMETHEXPR:
   914  		fn := fn.(*ir.SelectorExpr)
   915  		n := ir.MethodExprName(fn)
   916  		// Check that receiver type matches fn.X.
   917  		// TODO(mdempsky): Handle implicit dereference
   918  		// of pointer receiver argument?
   919  		if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
   920  			return nil
   921  		}
   922  		return n.Func
   923  	case ir.ONAME:
   924  		fn := fn.(*ir.Name)
   925  		if fn.Class == ir.PFUNC {
   926  			return fn.Func
   927  		}
   928  	case ir.OCLOSURE:
   929  		fn := fn.(*ir.ClosureExpr)
   930  		c := fn.Func
   931  		if len(c.ClosureVars) != 0 && c.ClosureVars[0].Outer.Curfn != caller {
   932  			return nil // inliner doesn't support inlining across closure frames
   933  		}
   934  		if !resolveOnly {
   935  			CanInline(c, profile)
   936  		}
   937  		return c
   938  	}
   939  	return nil
   940  }
   941  
   942  var inlgen int
   943  
   944  // SSADumpInline gives the SSA back end a chance to dump the function
   945  // when producing output for debugging the compiler itself.
   946  var SSADumpInline = func(*ir.Func) {}
   947  
   948  // InlineCall allows the inliner implementation to be overridden.
   949  // If it returns nil, the function will not be inlined.
   950  var InlineCall = func(callerfn *ir.Func, call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr {
   951  	base.Fatalf("inline.InlineCall not overridden")
   952  	panic("unreachable")
   953  }
   954  
   955  // inlineCostOK returns true if call n from caller to callee is cheap enough to
   956  // inline. bigCaller indicates that caller is a big function.
   957  //
   958  // In addition to the "cost OK" boolean, it also returns
   959  //   - the "max cost" limit used to make the decision (which may differ depending on func size)
   960  //   - the score assigned to this specific callsite
   961  //   - whether the inlined function is "hot" according to PGO.
   962  func inlineCostOK(n *ir.CallExpr, caller, callee *ir.Func, bigCaller, closureCalledOnce bool) (bool, int32, int32, bool) {
   963  	maxCost := int32(inlineMaxBudget)
   964  
   965  	if bigCaller {
   966  		// We use this to restrict inlining into very big functions.
   967  		// See issue 26546 and 17566.
   968  		maxCost = inlineBigFunctionMaxCost
   969  	}
   970  
   971  	simdMaxCost := simdCreditMultiplier(callee) * maxCost
   972  
   973  	if callee.ClosureParent != nil {
   974  		maxCost *= 2           // favor inlining closures
   975  		if closureCalledOnce { // really favor inlining the one call to this closure
   976  			maxCost = max(maxCost, inlineClosureCalledOnceCost)
   977  		}
   978  	}
   979  
   980  	maxCost = max(maxCost, simdMaxCost)
   981  
   982  	metric := callee.Inl.Cost
   983  	if inlheur.Enabled() {
   984  		score, ok := inlheur.GetCallSiteScore(caller, n)
   985  		if ok {
   986  			metric = int32(score)
   987  		}
   988  	}
   989  
   990  	lineOffset := pgoir.NodeLineOffset(n, caller)
   991  	csi := pgoir.CallSiteInfo{LineOffset: lineOffset, Caller: caller}
   992  	_, hot := candHotEdgeMap[csi]
   993  
   994  	if metric <= maxCost {
   995  		// Simple case. Function is already cheap enough.
   996  		return true, 0, metric, hot
   997  	}
   998  
   999  	// We'll also allow inlining of hot functions below inlineHotMaxBudget,
  1000  	// but only in small functions.
  1001  
  1002  	if !hot {
  1003  		// Cold
  1004  		return false, maxCost, metric, false
  1005  	}
  1006  
  1007  	// Hot
  1008  
  1009  	if bigCaller {
  1010  		if base.Debug.PGODebug > 0 {
  1011  			fmt.Printf("hot-big check disallows inlining for call %s (cost %d) at %v in big function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller))
  1012  		}
  1013  		return false, maxCost, metric, false
  1014  	}
  1015  
  1016  	if metric > inlineHotMaxBudget {
  1017  		return false, inlineHotMaxBudget, metric, false
  1018  	}
  1019  
  1020  	if !base.PGOHash.MatchPosWithInfo(n.Pos(), "inline", nil) {
  1021  		// De-selected by PGO Hash.
  1022  		return false, maxCost, metric, false
  1023  	}
  1024  
  1025  	if base.Debug.PGODebug > 0 {
  1026  		fmt.Printf("hot-budget check allows inlining for call %s (cost %d) at %v in function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller))
  1027  	}
  1028  
  1029  	return true, 0, metric, hot
  1030  }
  1031  
  1032  // parsePos returns all the inlining positions and the innermost position.
  1033  func parsePos(pos src.XPos, posTmp []src.Pos) ([]src.Pos, src.Pos) {
  1034  	ctxt := base.Ctxt
  1035  	ctxt.AllPos(pos, func(p src.Pos) {
  1036  		posTmp = append(posTmp, p)
  1037  	})
  1038  	l := len(posTmp) - 1
  1039  	return posTmp[:l], posTmp[l]
  1040  }
  1041  
  1042  // canInlineCallExpr returns true if the call n from caller to callee
  1043  // can be inlined, plus the score computed for the call expr in question,
  1044  // and whether the callee is hot according to PGO.
  1045  // bigCaller indicates that caller is a big function. log
  1046  // indicates that the 'cannot inline' reason should be logged.
  1047  //
  1048  // Preconditions: CanInline(callee) has already been called.
  1049  func canInlineCallExpr(callerfn *ir.Func, n *ir.CallExpr, callee *ir.Func, bigCaller, closureCalledOnce bool, log bool) (bool, int32, bool) {
  1050  	if callee.Inl == nil {
  1051  		// callee is never inlinable.
  1052  		if log && logopt.Enabled() {
  1053  			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
  1054  				fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(callee)))
  1055  		}
  1056  		return false, 0, false
  1057  	}
  1058  
  1059  	ok, maxCost, callSiteScore, hot := inlineCostOK(n, callerfn, callee, bigCaller, closureCalledOnce)
  1060  	if !ok {
  1061  		// callee cost too high for this call site.
  1062  		if log && logopt.Enabled() {
  1063  			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
  1064  				fmt.Sprintf("cost %d of %s exceeds max caller cost %d", callee.Inl.Cost, ir.PkgFuncName(callee), maxCost))
  1065  		}
  1066  		return false, 0, false
  1067  	}
  1068  
  1069  	callees, calleeInner := parsePos(n.Pos(), make([]src.Pos, 0, 10))
  1070  
  1071  	for _, p := range callees {
  1072  		if p.Line() == calleeInner.Line() && p.Col() == calleeInner.Col() && p.AbsFilename() == calleeInner.AbsFilename() {
  1073  			if log && logopt.Enabled() {
  1074  				logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(callerfn)))
  1075  			}
  1076  			return false, 0, false
  1077  		}
  1078  	}
  1079  
  1080  	if base.Flag.Cfg.Instrumenting && types.IsNoInstrumentPkg(callee.Sym().Pkg) {
  1081  		// Runtime package must not be instrumented.
  1082  		// Instrument skips runtime package. However, some runtime code can be
  1083  		// inlined into other packages and instrumented there. To avoid this,
  1084  		// we disable inlining of runtime functions when instrumenting.
  1085  		// The example that we observed is inlining of LockOSThread,
  1086  		// which lead to false race reports on m contents.
  1087  		if log && logopt.Enabled() {
  1088  			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
  1089  				fmt.Sprintf("call to runtime function %s in instrumented build", ir.PkgFuncName(callee)))
  1090  		}
  1091  		return false, 0, false
  1092  	}
  1093  
  1094  	if base.Flag.Race && types.IsNoRacePkg(callee.Sym().Pkg) {
  1095  		if log && logopt.Enabled() {
  1096  			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
  1097  				fmt.Sprintf(`call to into "no-race" package function %s in race build`, ir.PkgFuncName(callee)))
  1098  		}
  1099  		return false, 0, false
  1100  	}
  1101  
  1102  	if base.Debug.Checkptr != 0 && types.IsRuntimePkg(callee.Sym().Pkg) {
  1103  		// We don't instrument runtime packages for checkptr (see base/flag.go).
  1104  		if log && logopt.Enabled() {
  1105  			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
  1106  				fmt.Sprintf(`call to into runtime package function %s in -d=checkptr build`, ir.PkgFuncName(callee)))
  1107  		}
  1108  		return false, 0, false
  1109  	}
  1110  
  1111  	// Check if we've already inlined this function at this particular
  1112  	// call site, in order to stop inlining when we reach the beginning
  1113  	// of a recursion cycle again. We don't inline immediately recursive
  1114  	// functions, but allow inlining if there is a recursion cycle of
  1115  	// many functions. Most likely, the inlining will stop before we
  1116  	// even hit the beginning of the cycle again, but this catches the
  1117  	// unusual case.
  1118  	parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex()
  1119  	sym := callee.Linksym()
  1120  	for inlIndex := parent; inlIndex >= 0; inlIndex = base.Ctxt.InlTree.Parent(inlIndex) {
  1121  		if base.Ctxt.InlTree.InlinedFunction(inlIndex) == sym {
  1122  			if log {
  1123  				if base.Flag.LowerM > 1 {
  1124  					fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), callee, ir.FuncName(callerfn))
  1125  				}
  1126  				if logopt.Enabled() {
  1127  					logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
  1128  						fmt.Sprintf("repeated recursive cycle to %s", ir.PkgFuncName(callee)))
  1129  				}
  1130  			}
  1131  			return false, 0, false
  1132  		}
  1133  	}
  1134  
  1135  	return true, callSiteScore, hot
  1136  }
  1137  
  1138  // mkinlcall returns an OINLCALL node that can replace OCALLFUNC n, or
  1139  // nil if it cannot be inlined. callerfn is the function that contains
  1140  // n, and fn is the function being called.
  1141  //
  1142  // The result of mkinlcall MUST be assigned back to n, e.g.
  1143  //
  1144  //	n.Left = mkinlcall(n.Left, fn, isddd)
  1145  func mkinlcall(callerfn *ir.Func, n *ir.CallExpr, fn *ir.Func, bigCaller, closureCalledOnce bool) *ir.InlinedCallExpr {
  1146  	ok, score, hot := canInlineCallExpr(callerfn, n, fn, bigCaller, closureCalledOnce, true)
  1147  	if !ok {
  1148  		return nil
  1149  	}
  1150  	if hot {
  1151  		hasHotCall[callerfn] = struct{}{}
  1152  	}
  1153  	typecheck.AssertFixedCall(n)
  1154  
  1155  	parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex()
  1156  	sym := fn.Linksym()
  1157  	inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym, ir.FuncName(fn))
  1158  
  1159  	closureInitLSym := func(n *ir.CallExpr, fn *ir.Func) {
  1160  		// The linker needs FuncInfo metadata for all inlined
  1161  		// functions. This is typically handled by gc.enqueueFunc
  1162  		// calling ir.InitLSym for all function declarations in
  1163  		// typecheck.Target.Decls (ir.UseClosure adds all closures to
  1164  		// Decls).
  1165  		//
  1166  		// However, closures in Decls are ignored, and are
  1167  		// instead enqueued when walk of the calling function
  1168  		// discovers them.
  1169  		//
  1170  		// This presents a problem for direct calls to closures.
  1171  		// Inlining will replace the entire closure definition with its
  1172  		// body, which hides the closure from walk and thus suppresses
  1173  		// symbol creation.
  1174  		//
  1175  		// Explicitly create a symbol early in this edge case to ensure
  1176  		// we keep this metadata.
  1177  		//
  1178  		// TODO: Refactor to keep a reference so this can all be done
  1179  		// by enqueueFunc.
  1180  
  1181  		if n.Op() != ir.OCALLFUNC {
  1182  			// Not a standard call.
  1183  			return
  1184  		}
  1185  
  1186  		var nf = n.Fun
  1187  		// Skips ir.OCONVNOPs, see issue #73716.
  1188  		for nf.Op() == ir.OCONVNOP {
  1189  			nf = nf.(*ir.ConvExpr).X
  1190  		}
  1191  		if nf.Op() != ir.OCLOSURE {
  1192  			// Not a direct closure call or one with type conversion.
  1193  			return
  1194  		}
  1195  
  1196  		clo := nf.(*ir.ClosureExpr)
  1197  		if !clo.Func.IsClosure() {
  1198  			// enqueueFunc will handle non closures anyways.
  1199  			return
  1200  		}
  1201  
  1202  		ir.InitLSym(fn, true)
  1203  	}
  1204  
  1205  	closureInitLSym(n, fn)
  1206  
  1207  	if base.Flag.GenDwarfInl > 0 {
  1208  		if !sym.WasInlined() {
  1209  			base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn)
  1210  			sym.Set(obj.AttrWasInlined, true)
  1211  		}
  1212  	}
  1213  
  1214  	if base.Flag.LowerM != 0 {
  1215  		if buildcfg.Experiment.NewInliner {
  1216  			fmt.Printf("%v: inlining call to %v with score %d\n",
  1217  				ir.Line(n), fn, score)
  1218  		} else {
  1219  			fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
  1220  		}
  1221  	}
  1222  	if base.Flag.LowerM > 2 {
  1223  		fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
  1224  	}
  1225  
  1226  	res := InlineCall(callerfn, n, fn, inlIndex)
  1227  
  1228  	if res == nil {
  1229  		base.FatalfAt(n.Pos(), "inlining call to %v failed", fn)
  1230  	}
  1231  
  1232  	if base.Flag.LowerM > 2 {
  1233  		fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res)
  1234  	}
  1235  
  1236  	if inlheur.Enabled() {
  1237  		inlheur.UpdateCallsiteTable(callerfn, n, res)
  1238  	}
  1239  
  1240  	return res
  1241  }
  1242  
  1243  // CalleeEffects appends any side effects from evaluating callee to init.
  1244  func CalleeEffects(init *ir.Nodes, callee ir.Node) {
  1245  	for {
  1246  		init.Append(ir.TakeInit(callee)...)
  1247  
  1248  		switch callee.Op() {
  1249  		case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR:
  1250  			return // done
  1251  
  1252  		case ir.OCONVNOP:
  1253  			conv := callee.(*ir.ConvExpr)
  1254  			callee = conv.X
  1255  
  1256  		case ir.OINLCALL:
  1257  			ic := callee.(*ir.InlinedCallExpr)
  1258  			init.Append(ic.Body.Take()...)
  1259  			callee = ic.SingleResult()
  1260  
  1261  		default:
  1262  			base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee)
  1263  		}
  1264  	}
  1265  }
  1266  
  1267  func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name {
  1268  	s := make([]*ir.Name, 0, len(ll))
  1269  	for _, n := range ll {
  1270  		if n.Class == ir.PAUTO {
  1271  			if !vis.usedLocals.Has(n) {
  1272  				// TODO(mdempsky): Simplify code after confident that this
  1273  				// never happens anymore.
  1274  				base.FatalfAt(n.Pos(), "unused auto: %v", n)
  1275  				continue
  1276  			}
  1277  		}
  1278  		s = append(s, n)
  1279  	}
  1280  	return s
  1281  }
  1282  
  1283  func doList(list []ir.Node, do func(ir.Node) bool) bool {
  1284  	for _, x := range list {
  1285  		if x != nil {
  1286  			if do(x) {
  1287  				return true
  1288  			}
  1289  		}
  1290  	}
  1291  	return false
  1292  }
  1293  
  1294  // isIndexingCoverageCounter returns true if the specified node 'n' is indexing
  1295  // into a coverage counter array.
  1296  func isIndexingCoverageCounter(n ir.Node) bool {
  1297  	if n.Op() != ir.OINDEX {
  1298  		return false
  1299  	}
  1300  	ixn := n.(*ir.IndexExpr)
  1301  	if ixn.X.Op() != ir.ONAME || !ixn.X.Type().IsArray() {
  1302  		return false
  1303  	}
  1304  	nn := ixn.X.(*ir.Name)
  1305  	// CoverageAuxVar implies either a coverage counter or a package
  1306  	// ID; since the cover tool never emits code to index into ID vars
  1307  	// this is effectively testing whether nn is a coverage counter.
  1308  	return nn.CoverageAuxVar()
  1309  }
  1310  
  1311  // isAtomicCoverageCounterUpdate examines the specified node to
  1312  // determine whether it represents a call to sync/atomic.AddUint32 to
  1313  // increment a coverage counter.
  1314  func isAtomicCoverageCounterUpdate(cn *ir.CallExpr) bool {
  1315  	if cn.Fun.Op() != ir.ONAME {
  1316  		return false
  1317  	}
  1318  	name := cn.Fun.(*ir.Name)
  1319  	if name.Class != ir.PFUNC {
  1320  		return false
  1321  	}
  1322  	fn := name.Sym().Name
  1323  	if name.Sym().Pkg.Path != "sync/atomic" ||
  1324  		(fn != "AddUint32" && fn != "StoreUint32") {
  1325  		return false
  1326  	}
  1327  	if len(cn.Args) != 2 || cn.Args[0].Op() != ir.OADDR {
  1328  		return false
  1329  	}
  1330  	adn := cn.Args[0].(*ir.AddrExpr)
  1331  	v := isIndexingCoverageCounter(adn.X)
  1332  	return v
  1333  }
  1334  
  1335  func PostProcessCallSites(profile *pgoir.Profile) {
  1336  	if base.Debug.DumpInlCallSiteScores != 0 {
  1337  		budgetCallback := func(fn *ir.Func, prof *pgoir.Profile) (int32, bool) {
  1338  			v := inlineBudget(fn, prof, false, false)
  1339  			return v, v == inlineHotMaxBudget
  1340  		}
  1341  		inlheur.DumpInlCallSiteScores(profile, budgetCallback)
  1342  	}
  1343  }
  1344  
  1345  func analyzeFuncProps(fn *ir.Func, p *pgoir.Profile) {
  1346  	canInline := func(fn *ir.Func) { CanInline(fn, p) }
  1347  	budgetForFunc := func(fn *ir.Func) int32 {
  1348  		return inlineBudget(fn, p, true, false)
  1349  	}
  1350  	inlheur.AnalyzeFunc(fn, canInline, budgetForFunc, inlineMaxBudget)
  1351  }
  1352  

View as plain text