// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package sort_test import ( "cmp" "fmt" "internal/testenv" "math" "math/rand/v2" "slices" . "sort" "strconv" "strings" "testing" ) var ints = [...]int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586} var float64s = [...]float64{74.3, 59.0, math.Inf(1), 238.2, -784.0, 2.3, math.NaN(), math.NaN(), math.Inf(-1), 9845.768, -959.7485, 905, 7.8, 7.8} var stringsData = [...]string{"", "Hello", "foo", "bar", "foo", "f00", "%*&^*&^&", "***"} func TestSortIntSlice(t *testing.T) { data := ints a := IntSlice(data[0:]) Sort(a) if !IsSorted(a) { t.Errorf("sorted %v", ints) t.Errorf(" got %v", data) } } func TestSortFloat64Slice(t *testing.T) { data := float64s a := Float64Slice(data[0:]) Sort(a) if !IsSorted(a) { t.Errorf("sorted %v", float64s) t.Errorf(" got %v", data) } } // Compare Sort with slices.Sort sorting a float64 slice containing NaNs. func TestSortFloat64sCompareSlicesSort(t *testing.T) { slice1 := slices.Clone(float64s[:]) slice2 := slices.Clone(float64s[:]) Sort(Float64Slice(slice1)) slices.Sort(slice2) // Compare for equality using cmp.Compare, which considers NaNs equal. if !slices.EqualFunc(slice1, slice2, func(a, b float64) bool { return cmp.Compare(a, b) == 0 }) { t.Errorf("mismatch between Sort and slices.Sort: got %v, want %v", slice1, slice2) } } func TestSortStringSlice(t *testing.T) { data := stringsData a := StringSlice(data[0:]) Sort(a) if !IsSorted(a) { t.Errorf("sorted %v", stringsData) t.Errorf(" got %v", data) } } func TestInts(t *testing.T) { data := ints Ints(data[0:]) if !IntsAreSorted(data[0:]) { t.Errorf("sorted %v", ints) t.Errorf(" got %v", data) } } func TestFloat64s(t *testing.T) { data := float64s Float64s(data[0:]) if !Float64sAreSorted(data[0:]) { t.Errorf("sorted %v", float64s) t.Errorf(" got %v", data) } } func TestStrings(t *testing.T) { data := stringsData Strings(data[0:]) if !StringsAreSorted(data[0:]) { t.Errorf("sorted %v", stringsData) t.Errorf(" got %v", data) } } func TestSlice(t *testing.T) { data := stringsData Slice(data[:], func(i, j int) bool { return data[i] < data[j] }) if !SliceIsSorted(data[:], func(i, j int) bool { return data[i] < data[j] }) { t.Errorf("sorted %v", stringsData) t.Errorf(" got %v", data) } } func TestSortLarge_Random(t *testing.T) { n := 1000000 if testing.Short() { n /= 100 } data := make([]int, n) for i := 0; i < len(data); i++ { data[i] = rand.IntN(100) } if IntsAreSorted(data) { t.Fatalf("terrible rand.rand") } Ints(data) if !IntsAreSorted(data) { t.Errorf("sort didn't sort - 1M ints") } } func TestReverseSortIntSlice(t *testing.T) { data := ints data1 := ints a := IntSlice(data[0:]) Sort(a) r := IntSlice(data1[0:]) Sort(Reverse(r)) for i := 0; i < len(data); i++ { if a[i] != r[len(data)-1-i] { t.Errorf("reverse sort didn't sort") } if i > len(data)/2 { break } } } func TestBreakPatterns(t *testing.T) { // Special slice used to trigger breakPatterns. data := make([]int, 30) for i := range data { data[i] = 10 } data[(len(data)/4)*1] = 0 data[(len(data)/4)*2] = 1 data[(len(data)/4)*3] = 2 Sort(IntSlice(data)) } func TestReverseRange(t *testing.T) { data := []int{1, 2, 3, 4, 5, 6, 7} ReverseRange(IntSlice(data), 0, len(data)) for i := len(data) - 1; i > 0; i-- { if data[i] > data[i-1] { t.Fatalf("reverseRange didn't work") } } data1 := []int{1, 2, 3, 4, 5, 6, 7} data2 := []int{1, 2, 5, 4, 3, 6, 7} ReverseRange(IntSlice(data1), 2, 5) for i, v := range data1 { if v != data2[i] { t.Fatalf("reverseRange didn't work") } } } type nonDeterministicTestingData struct { r *rand.Rand } func (t *nonDeterministicTestingData) Len() int { return 500 } func (t *nonDeterministicTestingData) Less(i, j int) bool { if i < 0 || j < 0 || i >= t.Len() || j >= t.Len() { panic("nondeterministic comparison out of bounds") } return t.r.Float32() < 0.5 } func (t *nonDeterministicTestingData) Swap(i, j int) { if i < 0 || j < 0 || i >= t.Len() || j >= t.Len() { panic("nondeterministic comparison out of bounds") } } func TestNonDeterministicComparison(t *testing.T) { // Ensure that sort.Sort does not panic when Less returns inconsistent results. // See https://golang.org/issue/14377. defer func() { if r := recover(); r != nil { t.Error(r) } }() td := &nonDeterministicTestingData{ r: rand.New(rand.NewPCG(0, 0)), } for i := 0; i < 10; i++ { Sort(td) } } func BenchmarkSortString1K(b *testing.B) { b.StopTimer() unsorted := make([]string, 1<<10) for i := range unsorted { unsorted[i] = strconv.Itoa(i ^ 0x2cc) } data := make([]string, len(unsorted)) for i := 0; i < b.N; i++ { copy(data, unsorted) b.StartTimer() Strings(data) b.StopTimer() } } func BenchmarkSortString1K_Slice(b *testing.B) { b.StopTimer() unsorted := make([]string, 1<<10) for i := range unsorted { unsorted[i] = strconv.Itoa(i ^ 0x2cc) } data := make([]string, len(unsorted)) for i := 0; i < b.N; i++ { copy(data, unsorted) b.StartTimer() Slice(data, func(i, j int) bool { return data[i] < data[j] }) b.StopTimer() } } func BenchmarkStableString1K(b *testing.B) { b.StopTimer() unsorted := make([]string, 1<<10) for i := range unsorted { unsorted[i] = strconv.Itoa(i ^ 0x2cc) } data := make([]string, len(unsorted)) for i := 0; i < b.N; i++ { copy(data, unsorted) b.StartTimer() Stable(StringSlice(data)) b.StopTimer() } } func BenchmarkSortInt1K(b *testing.B) { b.StopTimer() for i := 0; i < b.N; i++ { data := make([]int, 1<<10) for i := 0; i < len(data); i++ { data[i] = i ^ 0x2cc } b.StartTimer() Ints(data) b.StopTimer() } } func BenchmarkSortInt1K_Sorted(b *testing.B) { b.StopTimer() for i := 0; i < b.N; i++ { data := make([]int, 1<<10) for i := 0; i < len(data); i++ { data[i] = i } b.StartTimer() Ints(data) b.StopTimer() } } func BenchmarkSortInt1K_Reversed(b *testing.B) { b.StopTimer() for i := 0; i < b.N; i++ { data := make([]int, 1<<10) for i := 0; i < len(data); i++ { data[i] = len(data) - i } b.StartTimer() Ints(data) b.StopTimer() } } func BenchmarkSortInt1K_Mod8(b *testing.B) { b.StopTimer() for i := 0; i < b.N; i++ { data := make([]int, 1<<10) for i := 0; i < len(data); i++ { data[i] = i % 8 } b.StartTimer() Ints(data) b.StopTimer() } } func BenchmarkStableInt1K(b *testing.B) { b.StopTimer() unsorted := make([]int, 1<<10) for i := range unsorted { unsorted[i] = i ^ 0x2cc } data := make([]int, len(unsorted)) for i := 0; i < b.N; i++ { copy(data, unsorted) b.StartTimer() Stable(IntSlice(data)) b.StopTimer() } } func BenchmarkStableInt1K_Slice(b *testing.B) { b.StopTimer() unsorted := make([]int, 1<<10) for i := range unsorted { unsorted[i] = i ^ 0x2cc } data := make([]int, len(unsorted)) for i := 0; i < b.N; i++ { copy(data, unsorted) b.StartTimer() SliceStable(data, func(i, j int) bool { return data[i] < data[j] }) b.StopTimer() } } func BenchmarkSortInt64K(b *testing.B) { b.StopTimer() for i := 0; i < b.N; i++ { data := make([]int, 1<<16) for i := 0; i < len(data); i++ { data[i] = i ^ 0xcccc } b.StartTimer() Ints(data) b.StopTimer() } } func BenchmarkSortInt64K_Slice(b *testing.B) { b.StopTimer() for i := 0; i < b.N; i++ { data := make([]int, 1<<16) for i := 0; i < len(data); i++ { data[i] = i ^ 0xcccc } b.StartTimer() Slice(data, func(i, j int) bool { return data[i] < data[j] }) b.StopTimer() } } func BenchmarkStableInt64K(b *testing.B) { b.StopTimer() for i := 0; i < b.N; i++ { data := make([]int, 1<<16) for i := 0; i < len(data); i++ { data[i] = i ^ 0xcccc } b.StartTimer() Stable(IntSlice(data)) b.StopTimer() } } const ( _Sawtooth = iota _Rand _Stagger _Plateau _Shuffle _NDist ) const ( _Copy = iota _Reverse _ReverseFirstHalf _ReverseSecondHalf _Sorted _Dither _NMode ) type testingData struct { desc string t *testing.T data []int maxswap int // number of swaps allowed ncmp, nswap int } func (d *testingData) Len() int { return len(d.data) } func (d *testingData) Less(i, j int) bool { d.ncmp++ return d.data[i] < d.data[j] } func (d *testingData) Swap(i, j int) { if d.nswap >= d.maxswap { d.t.Fatalf("%s: used %d swaps sorting slice of %d", d.desc, d.nswap, len(d.data)) } d.nswap++ d.data[i], d.data[j] = d.data[j], d.data[i] } func lg(n int) int { i := 0 for 1<<uint(i) < n { i++ } return i } func testBentleyMcIlroy(t *testing.T, sort func(Interface), maxswap func(int) int) { sizes := []int{100, 1023, 1024, 1025} if testing.Short() { sizes = []int{100, 127, 128, 129} } dists := []string{"sawtooth", "rand", "stagger", "plateau", "shuffle"} modes := []string{"copy", "reverse", "reverse1", "reverse2", "sort", "dither"} var tmp1, tmp2 [1025]int for _, n := range sizes { for m := 1; m < 2*n; m *= 2 { for dist := 0; dist < _NDist; dist++ { j := 0 k := 1 data := tmp1[0:n] for i := 0; i < n; i++ { switch dist { case _Sawtooth: data[i] = i % m case _Rand: data[i] = rand.IntN(m) case _Stagger: data[i] = (i*m + i) % n case _Plateau: data[i] = min(i, m) case _Shuffle: if rand.IntN(m) != 0 { j += 2 data[i] = j } else { k += 2 data[i] = k } } } mdata := tmp2[0:n] for mode := 0; mode < _NMode; mode++ { switch mode { case _Copy: for i := 0; i < n; i++ { mdata[i] = data[i] } case _Reverse: for i := 0; i < n; i++ { mdata[i] = data[n-i-1] } case _ReverseFirstHalf: for i := 0; i < n/2; i++ { mdata[i] = data[n/2-i-1] } for i := n / 2; i < n; i++ { mdata[i] = data[i] } case _ReverseSecondHalf: for i := 0; i < n/2; i++ { mdata[i] = data[i] } for i := n / 2; i < n; i++ { mdata[i] = data[n-(i-n/2)-1] } case _Sorted: for i := 0; i < n; i++ { mdata[i] = data[i] } // Ints is known to be correct // because mode Sort runs after mode _Copy. Ints(mdata) case _Dither: for i := 0; i < n; i++ { mdata[i] = data[i] + i%5 } } desc := fmt.Sprintf("n=%d m=%d dist=%s mode=%s", n, m, dists[dist], modes[mode]) d := &testingData{desc: desc, t: t, data: mdata[0:n], maxswap: maxswap(n)} sort(d) // Uncomment if you are trying to improve the number of compares/swaps. //t.Logf("%s: ncmp=%d, nswp=%d", desc, d.ncmp, d.nswap) // If we were testing C qsort, we'd have to make a copy // of the slice and sort it ourselves and then compare // x against it, to ensure that qsort was only permuting // the data, not (for example) overwriting it with zeros. // // In go, we don't have to be so paranoid: since the only // mutating method Sort can call is TestingData.swap, // it suffices here just to check that the final slice is sorted. if !IntsAreSorted(mdata) { t.Fatalf("%s: ints not sorted\n\t%v", desc, mdata) } } } } } } func TestSortBM(t *testing.T) { testBentleyMcIlroy(t, Sort, func(n int) int { return n * lg(n) * 12 / 10 }) } func TestHeapsortBM(t *testing.T) { testBentleyMcIlroy(t, Heapsort, func(n int) int { return n * lg(n) * 12 / 10 }) } func TestStableBM(t *testing.T) { testBentleyMcIlroy(t, Stable, func(n int) int { return n * lg(n) * lg(n) / 3 }) } // This is based on the "antiquicksort" implementation by M. Douglas McIlroy. // See https://www.cs.dartmouth.edu/~doug/mdmspe.pdf for more info. type adversaryTestingData struct { t *testing.T data []int // item values, initialized to special gas value and changed by Less maxcmp int // number of comparisons allowed ncmp int // number of comparisons (calls to Less) nsolid int // number of elements that have been set to non-gas values candidate int // guess at current pivot gas int // special value for unset elements, higher than everything else } func (d *adversaryTestingData) Len() int { return len(d.data) } func (d *adversaryTestingData) Less(i, j int) bool { if d.ncmp >= d.maxcmp { d.t.Fatalf("used %d comparisons sorting adversary data with size %d", d.ncmp, len(d.data)) } d.ncmp++ if d.data[i] == d.gas && d.data[j] == d.gas { if i == d.candidate { // freeze i d.data[i] = d.nsolid d.nsolid++ } else { // freeze j d.data[j] = d.nsolid d.nsolid++ } } if d.data[i] == d.gas { d.candidate = i } else if d.data[j] == d.gas { d.candidate = j } return d.data[i] < d.data[j] } func (d *adversaryTestingData) Swap(i, j int) { d.data[i], d.data[j] = d.data[j], d.data[i] } func newAdversaryTestingData(t *testing.T, size int, maxcmp int) *adversaryTestingData { gas := size - 1 data := make([]int, size) for i := 0; i < size; i++ { data[i] = gas } return &adversaryTestingData{t: t, data: data, maxcmp: maxcmp, gas: gas} } func TestAdversary(t *testing.T) { const size = 10000 // large enough to distinguish between O(n^2) and O(n*log(n)) maxcmp := size * lg(size) * 4 // the factor 4 was found by trial and error d := newAdversaryTestingData(t, size, maxcmp) Sort(d) // This should degenerate to heapsort. // Check data is fully populated and sorted. for i, v := range d.data { if v != i { t.Fatalf("adversary data not fully sorted") } } } func TestStableInts(t *testing.T) { data := ints Stable(IntSlice(data[0:])) if !IntsAreSorted(data[0:]) { t.Errorf("nsorted %v\n got %v", ints, data) } } type intPairs []struct { a, b int } // IntPairs compare on a only. func (d intPairs) Len() int { return len(d) } func (d intPairs) Less(i, j int) bool { return d[i].a < d[j].a } func (d intPairs) Swap(i, j int) { d[i], d[j] = d[j], d[i] } // Record initial order in B. func (d intPairs) initB() { for i := range d { d[i].b = i } } // InOrder checks if a-equal elements were not reordered. func (d intPairs) inOrder() bool { lastA, lastB := -1, 0 for i := 0; i < len(d); i++ { if lastA != d[i].a { lastA = d[i].a lastB = d[i].b continue } if d[i].b <= lastB { return false } lastB = d[i].b } return true } func TestStability(t *testing.T) { n, m := 100000, 1000 if testing.Short() { n, m = 1000, 100 } data := make(intPairs, n) // random distribution for i := 0; i < len(data); i++ { data[i].a = rand.IntN(m) } if IsSorted(data) { t.Fatalf("terrible rand.rand") } data.initB() Stable(data) if !IsSorted(data) { t.Errorf("Stable didn't sort %d ints", n) } if !data.inOrder() { t.Errorf("Stable wasn't stable on %d ints", n) } // already sorted data.initB() Stable(data) if !IsSorted(data) { t.Errorf("Stable shuffled sorted %d ints (order)", n) } if !data.inOrder() { t.Errorf("Stable shuffled sorted %d ints (stability)", n) } // sorted reversed for i := 0; i < len(data); i++ { data[i].a = len(data) - i } data.initB() Stable(data) if !IsSorted(data) { t.Errorf("Stable didn't sort %d ints", n) } if !data.inOrder() { t.Errorf("Stable wasn't stable on %d ints", n) } } var countOpsSizes = []int{1e2, 3e2, 1e3, 3e3, 1e4, 3e4, 1e5, 3e5, 1e6} func countOps(t *testing.T, algo func(Interface), name string) { sizes := countOpsSizes if testing.Short() { sizes = sizes[:5] } if !testing.Verbose() { t.Skip("Counting skipped as non-verbose mode.") } for _, n := range sizes { td := testingData{ desc: name, t: t, data: make([]int, n), maxswap: 1<<31 - 1, } for i := 0; i < n; i++ { td.data[i] = rand.IntN(n / 5) } algo(&td) t.Logf("%s %8d elements: %11d Swap, %10d Less", name, n, td.nswap, td.ncmp) } } func TestCountStableOps(t *testing.T) { countOps(t, Stable, "Stable") } func TestCountSortOps(t *testing.T) { countOps(t, Sort, "Sort ") } func bench(b *testing.B, size int, algo func(Interface), name string) { if strings.HasSuffix(testenv.Builder(), "-race") && size > 1e4 { b.Skip("skipping slow benchmark on race builder") } b.StopTimer() data := make(intPairs, size) x := ^uint32(0) for i := 0; i < b.N; i++ { for n := size - 3; n <= size+3; n++ { for i := 0; i < len(data); i++ { x += x x ^= 1 if int32(x) < 0 { x ^= 0x88888eef } data[i].a = int(x % uint32(n/5)) } data.initB() b.StartTimer() algo(data) b.StopTimer() if !IsSorted(data) { b.Errorf("%s did not sort %d ints", name, n) } if name == "Stable" && !data.inOrder() { b.Errorf("%s unstable on %d ints", name, n) } } } } func BenchmarkSort1e2(b *testing.B) { bench(b, 1e2, Sort, "Sort") } func BenchmarkStable1e2(b *testing.B) { bench(b, 1e2, Stable, "Stable") } func BenchmarkSort1e4(b *testing.B) { bench(b, 1e4, Sort, "Sort") } func BenchmarkStable1e4(b *testing.B) { bench(b, 1e4, Stable, "Stable") } func BenchmarkSort1e6(b *testing.B) { bench(b, 1e6, Sort, "Sort") } func BenchmarkStable1e6(b *testing.B) { bench(b, 1e6, Stable, "Stable") }