Source file src/testing/benchmark.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package testing
     6  
     7  import (
     8  	"context"
     9  	"flag"
    10  	"fmt"
    11  	"internal/sysinfo"
    12  	"io"
    13  	"math"
    14  	"os"
    15  	"runtime"
    16  	"slices"
    17  	"strconv"
    18  	"strings"
    19  	"sync"
    20  	"sync/atomic"
    21  	"time"
    22  	"unicode"
    23  )
    24  
    25  func initBenchmarkFlags() {
    26  	matchBenchmarks = flag.String("test.bench", "", "run only benchmarks matching `regexp`")
    27  	benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks")
    28  	flag.Var(&benchTime, "test.benchtime", "run each benchmark for duration `d` or N times if `d` is of the form Nx")
    29  }
    30  
    31  var (
    32  	matchBenchmarks *string
    33  	benchmarkMemory *bool
    34  
    35  	benchTime = durationOrCountFlag{d: 1 * time.Second} // changed during test of testing package
    36  )
    37  
    38  type durationOrCountFlag struct {
    39  	d         time.Duration
    40  	n         int
    41  	allowZero bool
    42  }
    43  
    44  func (f *durationOrCountFlag) String() string {
    45  	if f.n > 0 {
    46  		return fmt.Sprintf("%dx", f.n)
    47  	}
    48  	return f.d.String()
    49  }
    50  
    51  func (f *durationOrCountFlag) Set(s string) error {
    52  	if strings.HasSuffix(s, "x") {
    53  		n, err := strconv.ParseInt(s[:len(s)-1], 10, 0)
    54  		if err != nil || n < 0 || (!f.allowZero && n == 0) {
    55  			return fmt.Errorf("invalid count")
    56  		}
    57  		*f = durationOrCountFlag{n: int(n)}
    58  		return nil
    59  	}
    60  	d, err := time.ParseDuration(s)
    61  	if err != nil || d < 0 || (!f.allowZero && d == 0) {
    62  		return fmt.Errorf("invalid duration")
    63  	}
    64  	*f = durationOrCountFlag{d: d}
    65  	return nil
    66  }
    67  
    68  // Global lock to ensure only one benchmark runs at a time.
    69  var benchmarkLock sync.Mutex
    70  
    71  // Used for every benchmark for measuring memory.
    72  var memStats runtime.MemStats
    73  
    74  // InternalBenchmark is an internal type but exported because it is cross-package;
    75  // it is part of the implementation of the "go test" command.
    76  type InternalBenchmark struct {
    77  	Name string
    78  	F    func(b *B)
    79  }
    80  
    81  // B is a type passed to [Benchmark] functions to manage benchmark
    82  // timing and control the number of iterations.
    83  //
    84  // A benchmark ends when its Benchmark function returns or calls any of the methods
    85  // FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods must be called
    86  // only from the goroutine running the Benchmark function.
    87  // The other reporting methods, such as the variations of Log and Error,
    88  // may be called simultaneously from multiple goroutines.
    89  //
    90  // Like in tests, benchmark logs are accumulated during execution
    91  // and dumped to standard output when done. Unlike in tests, benchmark logs
    92  // are always printed, so as not to hide output whose existence may be
    93  // affecting benchmark results.
    94  type B struct {
    95  	common
    96  	importPath       string // import path of the package containing the benchmark
    97  	bstate           *benchState
    98  	N                int
    99  	previousN        int           // number of iterations in the previous run
   100  	previousDuration time.Duration // total duration of the previous run
   101  	benchFunc        func(b *B)
   102  	benchTime        durationOrCountFlag
   103  	bytes            int64
   104  	missingBytes     bool // one of the subbenchmarks does not have bytes set.
   105  	timerOn          bool
   106  	showAllocResult  bool
   107  	result           BenchmarkResult
   108  	parallelism      int // RunParallel creates parallelism*GOMAXPROCS goroutines
   109  	// The initial states of memStats.Mallocs and memStats.TotalAlloc.
   110  	startAllocs uint64
   111  	startBytes  uint64
   112  	// The net total of this test after being run.
   113  	netAllocs uint64
   114  	netBytes  uint64
   115  	// Extra metrics collected by ReportMetric.
   116  	extra map[string]float64
   117  
   118  	// loop tracks the state of B.Loop
   119  	loop struct {
   120  		// n is the target number of iterations. It gets bumped up as we go.
   121  		// When the benchmark loop is done, we commit this to b.N so users can
   122  		// do reporting based on it, but we avoid exposing it until then.
   123  		n uint64
   124  		// i is the current Loop iteration. It's strictly monotonically
   125  		// increasing toward n.
   126  		//
   127  		// The high bit is used to poison the Loop fast path and fall back to
   128  		// the slow path.
   129  		i uint64
   130  
   131  		done bool // set when B.Loop return false
   132  	}
   133  }
   134  
   135  // StartTimer starts timing a test. This function is called automatically
   136  // before a benchmark starts, but it can also be used to resume timing after
   137  // a call to [B.StopTimer].
   138  func (b *B) StartTimer() {
   139  	if !b.timerOn {
   140  		runtime.ReadMemStats(&memStats)
   141  		b.startAllocs = memStats.Mallocs
   142  		b.startBytes = memStats.TotalAlloc
   143  		b.start = highPrecisionTimeNow()
   144  		b.timerOn = true
   145  		b.loop.i &^= loopPoisonTimer
   146  	}
   147  }
   148  
   149  // StopTimer stops timing a test. This can be used to pause the timer
   150  // while performing steps that you don't want to measure.
   151  func (b *B) StopTimer() {
   152  	if b.timerOn {
   153  		b.duration += highPrecisionTimeSince(b.start)
   154  		runtime.ReadMemStats(&memStats)
   155  		b.netAllocs += memStats.Mallocs - b.startAllocs
   156  		b.netBytes += memStats.TotalAlloc - b.startBytes
   157  		b.timerOn = false
   158  		// If we hit B.Loop with the timer stopped, fail.
   159  		b.loop.i |= loopPoisonTimer
   160  	}
   161  }
   162  
   163  // ResetTimer zeroes the elapsed benchmark time and memory allocation counters
   164  // and deletes user-reported metrics.
   165  // It does not affect whether the timer is running.
   166  func (b *B) ResetTimer() {
   167  	if b.extra == nil {
   168  		// Allocate the extra map before reading memory stats.
   169  		// Pre-size it to make more allocation unlikely.
   170  		b.extra = make(map[string]float64, 16)
   171  	} else {
   172  		clear(b.extra)
   173  	}
   174  	if b.timerOn {
   175  		runtime.ReadMemStats(&memStats)
   176  		b.startAllocs = memStats.Mallocs
   177  		b.startBytes = memStats.TotalAlloc
   178  		b.start = highPrecisionTimeNow()
   179  	}
   180  	b.duration = 0
   181  	b.netAllocs = 0
   182  	b.netBytes = 0
   183  }
   184  
   185  // SetBytes records the number of bytes processed in a single operation.
   186  // If this is called, the benchmark will report ns/op and MB/s.
   187  func (b *B) SetBytes(n int64) { b.bytes = n }
   188  
   189  // ReportAllocs enables malloc statistics for this benchmark.
   190  // It is equivalent to setting -test.benchmem, but it only affects the
   191  // benchmark function that calls ReportAllocs.
   192  func (b *B) ReportAllocs() {
   193  	b.showAllocResult = true
   194  }
   195  
   196  // runN runs a single benchmark for the specified number of iterations.
   197  func (b *B) runN(n int) {
   198  	benchmarkLock.Lock()
   199  	defer benchmarkLock.Unlock()
   200  	ctx, cancelCtx := context.WithCancel(context.Background())
   201  	defer func() {
   202  		b.runCleanup(normalPanic)
   203  		b.checkRaces()
   204  	}()
   205  	// Try to get a comparable environment for each run
   206  	// by clearing garbage from previous runs.
   207  	runtime.GC()
   208  	b.resetRaces()
   209  	b.N = n
   210  	b.loop.n = 0
   211  	b.loop.i = 0
   212  	b.loop.done = false
   213  	b.ctx = ctx
   214  	b.cancelCtx = cancelCtx
   215  
   216  	b.parallelism = 1
   217  	b.ResetTimer()
   218  	b.StartTimer()
   219  	b.benchFunc(b)
   220  	b.StopTimer()
   221  	b.previousN = n
   222  	b.previousDuration = b.duration
   223  
   224  	if b.loop.n > 0 && !b.loop.done && !b.failed {
   225  		b.Error("benchmark function returned without B.Loop() == false (break or return in loop?)")
   226  	}
   227  }
   228  
   229  // run1 runs the first iteration of benchFunc. It reports whether more
   230  // iterations of this benchmarks should be run.
   231  func (b *B) run1() bool {
   232  	if bstate := b.bstate; bstate != nil {
   233  		// Extend maxLen, if needed.
   234  		if n := len(b.name) + bstate.extLen + 1; n > bstate.maxLen {
   235  			bstate.maxLen = n + 8 // Add additional slack to avoid too many jumps in size.
   236  		}
   237  	}
   238  	go func() {
   239  		// Signal that we're done whether we return normally
   240  		// or by FailNow's runtime.Goexit.
   241  		defer func() {
   242  			b.signal <- true
   243  		}()
   244  
   245  		b.runN(1)
   246  	}()
   247  	<-b.signal
   248  	if b.failed {
   249  		fmt.Fprintf(b.w, "%s--- FAIL: %s\n%s", b.chatty.prefix(), b.name, b.output)
   250  		return false
   251  	}
   252  	// Only print the output if we know we are not going to proceed.
   253  	// Otherwise it is printed in processBench.
   254  	b.mu.RLock()
   255  	finished := b.finished
   256  	b.mu.RUnlock()
   257  	if b.hasSub.Load() || finished {
   258  		tag := "BENCH"
   259  		if b.skipped {
   260  			tag = "SKIP"
   261  		}
   262  		if b.chatty != nil && (len(b.output) > 0 || finished) {
   263  			b.trimOutput()
   264  			fmt.Fprintf(b.w, "%s--- %s: %s\n%s", b.chatty.prefix(), tag, b.name, b.output)
   265  		}
   266  		return false
   267  	}
   268  	return true
   269  }
   270  
   271  var labelsOnce sync.Once
   272  
   273  // run executes the benchmark in a separate goroutine, including all of its
   274  // subbenchmarks. b must not have subbenchmarks.
   275  func (b *B) run() {
   276  	labelsOnce.Do(func() {
   277  		fmt.Fprintf(b.w, "goos: %s\n", runtime.GOOS)
   278  		fmt.Fprintf(b.w, "goarch: %s\n", runtime.GOARCH)
   279  		if b.importPath != "" {
   280  			fmt.Fprintf(b.w, "pkg: %s\n", b.importPath)
   281  		}
   282  		if cpu := sysinfo.CPUName(); cpu != "" {
   283  			fmt.Fprintf(b.w, "cpu: %s\n", cpu)
   284  		}
   285  	})
   286  	if b.bstate != nil {
   287  		// Running go test --test.bench
   288  		b.bstate.processBench(b) // Must call doBench.
   289  	} else {
   290  		// Running func Benchmark.
   291  		b.doBench()
   292  	}
   293  }
   294  
   295  func (b *B) doBench() BenchmarkResult {
   296  	go b.launch()
   297  	<-b.signal
   298  	return b.result
   299  }
   300  
   301  func predictN(goalns int64, prevIters int64, prevns int64, last int64) int {
   302  	if prevns == 0 {
   303  		// Round up to dodge divide by zero. See https://go.dev/issue/70709.
   304  		prevns = 1
   305  	}
   306  
   307  	// Order of operations matters.
   308  	// For very fast benchmarks, prevIters ~= prevns.
   309  	// If you divide first, you get 0 or 1,
   310  	// which can hide an order of magnitude in execution time.
   311  	// So multiply first, then divide.
   312  	n := goalns * prevIters / prevns
   313  	// Run more iterations than we think we'll need (1.2x).
   314  	n += n / 5
   315  	// Don't grow too fast in case we had timing errors previously.
   316  	n = min(n, 100*last)
   317  	// Be sure to run at least one more than last time.
   318  	n = max(n, last+1)
   319  	// Don't run more than 1e9 times. (This also keeps n in int range on 32 bit platforms.)
   320  	n = min(n, 1e9)
   321  	return int(n)
   322  }
   323  
   324  // launch launches the benchmark function. It gradually increases the number
   325  // of benchmark iterations until the benchmark runs for the requested benchtime.
   326  // launch is run by the doBench function as a separate goroutine.
   327  // run1 must have been called on b.
   328  func (b *B) launch() {
   329  	// Signal that we're done whether we return normally
   330  	// or by FailNow's runtime.Goexit.
   331  	defer func() {
   332  		b.signal <- true
   333  	}()
   334  
   335  	// b.Loop does its own ramp-up logic so we just need to run it once.
   336  	// If b.loop.n is non zero, it means b.Loop has already run.
   337  	if b.loop.n == 0 {
   338  		// Run the benchmark for at least the specified amount of time.
   339  		if b.benchTime.n > 0 {
   340  			// We already ran a single iteration in run1.
   341  			// If -benchtime=1x was requested, use that result.
   342  			// See https://golang.org/issue/32051.
   343  			if b.benchTime.n > 1 {
   344  				b.runN(b.benchTime.n)
   345  			}
   346  		} else {
   347  			d := b.benchTime.d
   348  			for n := int64(1); !b.failed && b.duration < d && n < 1e9; {
   349  				last := n
   350  				// Predict required iterations.
   351  				goalns := d.Nanoseconds()
   352  				prevIters := int64(b.N)
   353  				n = int64(predictN(goalns, prevIters, b.duration.Nanoseconds(), last))
   354  				b.runN(int(n))
   355  			}
   356  		}
   357  	}
   358  	b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes, b.extra}
   359  }
   360  
   361  // Elapsed returns the measured elapsed time of the benchmark.
   362  // The duration reported by Elapsed matches the one measured by
   363  // [B.StartTimer], [B.StopTimer], and [B.ResetTimer].
   364  func (b *B) Elapsed() time.Duration {
   365  	d := b.duration
   366  	if b.timerOn {
   367  		d += highPrecisionTimeSince(b.start)
   368  	}
   369  	return d
   370  }
   371  
   372  // ReportMetric adds "n unit" to the reported benchmark results.
   373  // If the metric is per-iteration, the caller should divide by b.N,
   374  // and by convention units should end in "/op".
   375  // ReportMetric overrides any previously reported value for the same unit.
   376  // ReportMetric panics if unit is the empty string or if unit contains
   377  // any whitespace.
   378  // If unit is a unit normally reported by the benchmark framework itself
   379  // (such as "allocs/op"), ReportMetric will override that metric.
   380  // Setting "ns/op" to 0 will suppress that built-in metric.
   381  func (b *B) ReportMetric(n float64, unit string) {
   382  	if unit == "" {
   383  		panic("metric unit must not be empty")
   384  	}
   385  	if strings.IndexFunc(unit, unicode.IsSpace) >= 0 {
   386  		panic("metric unit must not contain whitespace")
   387  	}
   388  	b.extra[unit] = n
   389  }
   390  
   391  func (b *B) stopOrScaleBLoop() bool {
   392  	t := b.Elapsed()
   393  	if t >= b.benchTime.d {
   394  		// Stop the timer so we don't count cleanup time
   395  		b.StopTimer()
   396  		// Commit iteration count
   397  		b.N = int(b.loop.n)
   398  		b.loop.done = true
   399  		return false
   400  	}
   401  	// Loop scaling
   402  	goalns := b.benchTime.d.Nanoseconds()
   403  	prevIters := int64(b.loop.n)
   404  	b.loop.n = uint64(predictN(goalns, prevIters, t.Nanoseconds(), prevIters))
   405  	if b.loop.n&loopPoisonMask != 0 {
   406  		// The iteration count should never get this high, but if it did we'd be
   407  		// in big trouble.
   408  		panic("loop iteration target overflow")
   409  	}
   410  	b.loop.i++
   411  	return true
   412  }
   413  
   414  func (b *B) loopSlowPath() bool {
   415  	// Consistency checks
   416  	if !b.timerOn {
   417  		b.Fatal("B.Loop called with timer stopped")
   418  	}
   419  	if b.loop.i&loopPoisonMask != 0 {
   420  		panic(fmt.Sprintf("unknown loop stop condition: %#x", b.loop.i))
   421  	}
   422  
   423  	if b.loop.n == 0 {
   424  		// If it's the first call to b.Loop() in the benchmark function.
   425  		// Allows more precise measurement of benchmark loop cost counts.
   426  		// Also initialize target to 1 to kick start loop scaling.
   427  		b.loop.n = 1
   428  		// Within a b.Loop loop, we don't use b.N (to avoid confusion).
   429  		b.N = 0
   430  		b.loop.i++
   431  		b.ResetTimer()
   432  		return true
   433  	}
   434  	// Handles fixed iterations case
   435  	if b.benchTime.n > 0 {
   436  		if b.loop.n < uint64(b.benchTime.n) {
   437  			b.loop.n = uint64(b.benchTime.n)
   438  			b.loop.i++
   439  			return true
   440  		}
   441  		b.StopTimer()
   442  		// Commit iteration count
   443  		b.N = int(b.loop.n)
   444  		b.loop.done = true
   445  		return false
   446  	}
   447  	// Handles fixed time case
   448  	return b.stopOrScaleBLoop()
   449  }
   450  
   451  // Loop returns true as long as the benchmark should continue running.
   452  //
   453  // A typical benchmark is structured like:
   454  //
   455  //	func Benchmark(b *testing.B) {
   456  //		... setup ...
   457  //		for b.Loop() {
   458  //			... code to measure ...
   459  //		}
   460  //		... cleanup ...
   461  //	}
   462  //
   463  // Loop resets the benchmark timer the first time it is called in a benchmark,
   464  // so any setup performed prior to starting the benchmark loop does not count
   465  // toward the benchmark measurement. Likewise, when it returns false, it stops
   466  // the timer so cleanup code is not measured.
   467  //
   468  // The compiler never optimizes away calls to functions within the body of a
   469  // "for b.Loop() { ... }" loop. This prevents surprises that can otherwise occur
   470  // if the compiler determines that the result of a benchmarked function is
   471  // unused. The loop must be written in exactly this form, and this only applies
   472  // to calls syntactically between the curly braces of the loop. Optimizations
   473  // are performed as usual in any functions called by the loop.
   474  //
   475  // After Loop returns false, b.N contains the total number of iterations that
   476  // ran, so the benchmark may use b.N to compute other average metrics.
   477  //
   478  // Prior to the introduction of Loop, benchmarks were expected to contain an
   479  // explicit loop from 0 to b.N. Benchmarks should either use Loop or contain a
   480  // loop to b.N, but not both. Loop offers more automatic management of the
   481  // benchmark timer, and runs each benchmark function only once per measurement,
   482  // whereas b.N-based benchmarks must run the benchmark function (and any
   483  // associated setup and cleanup) several times.
   484  func (b *B) Loop() bool {
   485  	// This is written such that the fast path is as fast as possible and can be
   486  	// inlined.
   487  	//
   488  	// There are three cases where we'll fall out of the fast path:
   489  	//
   490  	// - On the first call, both i and n are 0.
   491  	//
   492  	// - If the loop reaches the n'th iteration, then i == n and we need
   493  	//   to figure out the new target iteration count or if we're done.
   494  	//
   495  	// - If the timer is stopped, it poisons the top bit of i so the slow
   496  	//   path can do consistency checks and fail.
   497  	if b.loop.i < b.loop.n {
   498  		b.loop.i++
   499  		return true
   500  	}
   501  	return b.loopSlowPath()
   502  }
   503  
   504  // The loopPoison constants can be OR'd into B.loop.i to cause it to fall back
   505  // to the slow path.
   506  const (
   507  	loopPoisonTimer = uint64(1 << (63 - iota))
   508  	// If necessary, add more poison bits here.
   509  
   510  	// loopPoisonMask is the set of all loop poison bits. (iota-1) is the index
   511  	// of the bit we just set, from which we recreate that bit mask. We subtract
   512  	// 1 to set all of the bits below that bit, then complement the result to
   513  	// get the mask. Sorry, not sorry.
   514  	loopPoisonMask = ^uint64((1 << (63 - (iota - 1))) - 1)
   515  )
   516  
   517  // BenchmarkResult contains the results of a benchmark run.
   518  type BenchmarkResult struct {
   519  	N         int           // The number of iterations.
   520  	T         time.Duration // The total time taken.
   521  	Bytes     int64         // Bytes processed in one iteration.
   522  	MemAllocs uint64        // The total number of memory allocations.
   523  	MemBytes  uint64        // The total number of bytes allocated.
   524  
   525  	// Extra records additional metrics reported by ReportMetric.
   526  	Extra map[string]float64
   527  }
   528  
   529  // NsPerOp returns the "ns/op" metric.
   530  func (r BenchmarkResult) NsPerOp() int64 {
   531  	if v, ok := r.Extra["ns/op"]; ok {
   532  		return int64(v)
   533  	}
   534  	if r.N <= 0 {
   535  		return 0
   536  	}
   537  	return r.T.Nanoseconds() / int64(r.N)
   538  }
   539  
   540  // mbPerSec returns the "MB/s" metric.
   541  func (r BenchmarkResult) mbPerSec() float64 {
   542  	if v, ok := r.Extra["MB/s"]; ok {
   543  		return v
   544  	}
   545  	if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 {
   546  		return 0
   547  	}
   548  	return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds()
   549  }
   550  
   551  // AllocsPerOp returns the "allocs/op" metric,
   552  // which is calculated as r.MemAllocs / r.N.
   553  func (r BenchmarkResult) AllocsPerOp() int64 {
   554  	if v, ok := r.Extra["allocs/op"]; ok {
   555  		return int64(v)
   556  	}
   557  	if r.N <= 0 {
   558  		return 0
   559  	}
   560  	return int64(r.MemAllocs) / int64(r.N)
   561  }
   562  
   563  // AllocedBytesPerOp returns the "B/op" metric,
   564  // which is calculated as r.MemBytes / r.N.
   565  func (r BenchmarkResult) AllocedBytesPerOp() int64 {
   566  	if v, ok := r.Extra["B/op"]; ok {
   567  		return int64(v)
   568  	}
   569  	if r.N <= 0 {
   570  		return 0
   571  	}
   572  	return int64(r.MemBytes) / int64(r.N)
   573  }
   574  
   575  // String returns a summary of the benchmark results.
   576  // It follows the benchmark result line format from
   577  // https://golang.org/design/14313-benchmark-format, not including the
   578  // benchmark name.
   579  // Extra metrics override built-in metrics of the same name.
   580  // String does not include allocs/op or B/op, since those are reported
   581  // by [BenchmarkResult.MemString].
   582  func (r BenchmarkResult) String() string {
   583  	buf := new(strings.Builder)
   584  	fmt.Fprintf(buf, "%8d", r.N)
   585  
   586  	// Get ns/op as a float.
   587  	ns, ok := r.Extra["ns/op"]
   588  	if !ok {
   589  		ns = float64(r.T.Nanoseconds()) / float64(r.N)
   590  	}
   591  	if ns != 0 {
   592  		buf.WriteByte('\t')
   593  		prettyPrint(buf, ns, "ns/op")
   594  	}
   595  
   596  	if mbs := r.mbPerSec(); mbs != 0 {
   597  		fmt.Fprintf(buf, "\t%7.2f MB/s", mbs)
   598  	}
   599  
   600  	// Print extra metrics that aren't represented in the standard
   601  	// metrics.
   602  	var extraKeys []string
   603  	for k := range r.Extra {
   604  		switch k {
   605  		case "ns/op", "MB/s", "B/op", "allocs/op":
   606  			// Built-in metrics reported elsewhere.
   607  			continue
   608  		}
   609  		extraKeys = append(extraKeys, k)
   610  	}
   611  	slices.Sort(extraKeys)
   612  	for _, k := range extraKeys {
   613  		buf.WriteByte('\t')
   614  		prettyPrint(buf, r.Extra[k], k)
   615  	}
   616  	return buf.String()
   617  }
   618  
   619  func prettyPrint(w io.Writer, x float64, unit string) {
   620  	// Print all numbers with 10 places before the decimal point
   621  	// and small numbers with four sig figs. Field widths are
   622  	// chosen to fit the whole part in 10 places while aligning
   623  	// the decimal point of all fractional formats.
   624  	var format string
   625  	switch y := math.Abs(x); {
   626  	case y == 0 || y >= 999.95:
   627  		format = "%10.0f %s"
   628  	case y >= 99.995:
   629  		format = "%12.1f %s"
   630  	case y >= 9.9995:
   631  		format = "%13.2f %s"
   632  	case y >= 0.99995:
   633  		format = "%14.3f %s"
   634  	case y >= 0.099995:
   635  		format = "%15.4f %s"
   636  	case y >= 0.0099995:
   637  		format = "%16.5f %s"
   638  	case y >= 0.00099995:
   639  		format = "%17.6f %s"
   640  	default:
   641  		format = "%18.7f %s"
   642  	}
   643  	fmt.Fprintf(w, format, x, unit)
   644  }
   645  
   646  // MemString returns r.AllocedBytesPerOp and r.AllocsPerOp in the same format as 'go test'.
   647  func (r BenchmarkResult) MemString() string {
   648  	return fmt.Sprintf("%8d B/op\t%8d allocs/op",
   649  		r.AllocedBytesPerOp(), r.AllocsPerOp())
   650  }
   651  
   652  // benchmarkName returns full name of benchmark including procs suffix.
   653  func benchmarkName(name string, n int) string {
   654  	if n != 1 {
   655  		return fmt.Sprintf("%s-%d", name, n)
   656  	}
   657  	return name
   658  }
   659  
   660  type benchState struct {
   661  	match *matcher
   662  
   663  	maxLen int // The largest recorded benchmark name.
   664  	extLen int // Maximum extension length.
   665  }
   666  
   667  // RunBenchmarks is an internal function but exported because it is cross-package;
   668  // it is part of the implementation of the "go test" command.
   669  func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) {
   670  	runBenchmarks("", matchString, benchmarks)
   671  }
   672  
   673  func runBenchmarks(importPath string, matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) bool {
   674  	// If no flag was specified, don't run benchmarks.
   675  	if len(*matchBenchmarks) == 0 {
   676  		return true
   677  	}
   678  	// Collect matching benchmarks and determine longest name.
   679  	maxprocs := 1
   680  	for _, procs := range cpuList {
   681  		if procs > maxprocs {
   682  			maxprocs = procs
   683  		}
   684  	}
   685  	bstate := &benchState{
   686  		match:  newMatcher(matchString, *matchBenchmarks, "-test.bench", *skip),
   687  		extLen: len(benchmarkName("", maxprocs)),
   688  	}
   689  	var bs []InternalBenchmark
   690  	for _, Benchmark := range benchmarks {
   691  		if _, matched, _ := bstate.match.fullName(nil, Benchmark.Name); matched {
   692  			bs = append(bs, Benchmark)
   693  			benchName := benchmarkName(Benchmark.Name, maxprocs)
   694  			if l := len(benchName) + bstate.extLen + 1; l > bstate.maxLen {
   695  				bstate.maxLen = l
   696  			}
   697  		}
   698  	}
   699  	main := &B{
   700  		common: common{
   701  			name:  "Main",
   702  			w:     os.Stdout,
   703  			bench: true,
   704  		},
   705  		importPath: importPath,
   706  		benchFunc: func(b *B) {
   707  			for _, Benchmark := range bs {
   708  				b.Run(Benchmark.Name, Benchmark.F)
   709  			}
   710  		},
   711  		benchTime: benchTime,
   712  		bstate:    bstate,
   713  	}
   714  	if Verbose() {
   715  		main.chatty = newChattyPrinter(main.w)
   716  	}
   717  	main.runN(1)
   718  	return !main.failed
   719  }
   720  
   721  // processBench runs bench b for the configured CPU counts and prints the results.
   722  func (s *benchState) processBench(b *B) {
   723  	for i, procs := range cpuList {
   724  		for j := uint(0); j < *count; j++ {
   725  			runtime.GOMAXPROCS(procs)
   726  			benchName := benchmarkName(b.name, procs)
   727  
   728  			// If it's chatty, we've already printed this information.
   729  			if b.chatty == nil {
   730  				fmt.Fprintf(b.w, "%-*s\t", s.maxLen, benchName)
   731  			}
   732  			// Recompute the running time for all but the first iteration.
   733  			if i > 0 || j > 0 {
   734  				b = &B{
   735  					common: common{
   736  						signal: make(chan bool),
   737  						name:   b.name,
   738  						w:      b.w,
   739  						chatty: b.chatty,
   740  						bench:  true,
   741  					},
   742  					benchFunc: b.benchFunc,
   743  					benchTime: b.benchTime,
   744  				}
   745  				b.run1()
   746  			}
   747  			r := b.doBench()
   748  			if b.failed {
   749  				// The output could be very long here, but probably isn't.
   750  				// We print it all, regardless, because we don't want to trim the reason
   751  				// the benchmark failed.
   752  				fmt.Fprintf(b.w, "%s--- FAIL: %s\n%s", b.chatty.prefix(), benchName, b.output)
   753  				continue
   754  			}
   755  			results := r.String()
   756  			if b.chatty != nil {
   757  				fmt.Fprintf(b.w, "%-*s\t", s.maxLen, benchName)
   758  			}
   759  			if *benchmarkMemory || b.showAllocResult {
   760  				results += "\t" + r.MemString()
   761  			}
   762  			fmt.Fprintln(b.w, results)
   763  			// Unlike with tests, we ignore the -chatty flag and always print output for
   764  			// benchmarks since the output generation time will skew the results.
   765  			if len(b.output) > 0 {
   766  				b.trimOutput()
   767  				fmt.Fprintf(b.w, "%s--- BENCH: %s\n%s", b.chatty.prefix(), benchName, b.output)
   768  			}
   769  			if p := runtime.GOMAXPROCS(-1); p != procs {
   770  				fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p)
   771  			}
   772  			if b.chatty != nil && b.chatty.json {
   773  				b.chatty.Updatef("", "=== NAME  %s\n", "")
   774  			}
   775  		}
   776  	}
   777  }
   778  
   779  // If hideStdoutForTesting is true, Run does not print the benchName.
   780  // This avoids a spurious print during 'go test' on package testing itself,
   781  // which invokes b.Run in its own tests (see sub_test.go).
   782  var hideStdoutForTesting = false
   783  
   784  // Run benchmarks f as a subbenchmark with the given name. It reports
   785  // whether there were any failures.
   786  //
   787  // A subbenchmark is like any other benchmark. A benchmark that calls Run at
   788  // least once will not be measured itself and will be called once with N=1.
   789  func (b *B) Run(name string, f func(b *B)) bool {
   790  	// Since b has subbenchmarks, we will no longer run it as a benchmark itself.
   791  	// Release the lock and acquire it on exit to ensure locks stay paired.
   792  	b.hasSub.Store(true)
   793  	benchmarkLock.Unlock()
   794  	defer benchmarkLock.Lock()
   795  
   796  	benchName, ok, partial := b.name, true, false
   797  	if b.bstate != nil {
   798  		benchName, ok, partial = b.bstate.match.fullName(&b.common, name)
   799  	}
   800  	if !ok {
   801  		return true
   802  	}
   803  	var pc [maxStackLen]uintptr
   804  	n := runtime.Callers(2, pc[:])
   805  	sub := &B{
   806  		common: common{
   807  			signal:  make(chan bool),
   808  			name:    benchName,
   809  			parent:  &b.common,
   810  			level:   b.level + 1,
   811  			creator: pc[:n],
   812  			w:       b.w,
   813  			chatty:  b.chatty,
   814  			bench:   true,
   815  		},
   816  		importPath: b.importPath,
   817  		benchFunc:  f,
   818  		benchTime:  b.benchTime,
   819  		bstate:     b.bstate,
   820  	}
   821  	if partial {
   822  		// Partial name match, like -bench=X/Y matching BenchmarkX.
   823  		// Only process sub-benchmarks, if any.
   824  		sub.hasSub.Store(true)
   825  	}
   826  
   827  	if b.chatty != nil {
   828  		labelsOnce.Do(func() {
   829  			fmt.Printf("goos: %s\n", runtime.GOOS)
   830  			fmt.Printf("goarch: %s\n", runtime.GOARCH)
   831  			if b.importPath != "" {
   832  				fmt.Printf("pkg: %s\n", b.importPath)
   833  			}
   834  			if cpu := sysinfo.CPUName(); cpu != "" {
   835  				fmt.Printf("cpu: %s\n", cpu)
   836  			}
   837  		})
   838  
   839  		if !hideStdoutForTesting {
   840  			if b.chatty.json {
   841  				b.chatty.Updatef(benchName, "=== RUN   %s\n", benchName)
   842  			}
   843  			fmt.Println(benchName)
   844  		}
   845  	}
   846  
   847  	if sub.run1() {
   848  		sub.run()
   849  	}
   850  	b.add(sub.result)
   851  	return !sub.failed
   852  }
   853  
   854  // add simulates running benchmarks in sequence in a single iteration. It is
   855  // used to give some meaningful results in case func Benchmark is used in
   856  // combination with Run.
   857  func (b *B) add(other BenchmarkResult) {
   858  	r := &b.result
   859  	// The aggregated BenchmarkResults resemble running all subbenchmarks as
   860  	// in sequence in a single benchmark.
   861  	r.N = 1
   862  	r.T += time.Duration(other.NsPerOp())
   863  	if other.Bytes == 0 {
   864  		// Summing Bytes is meaningless in aggregate if not all subbenchmarks
   865  		// set it.
   866  		b.missingBytes = true
   867  		r.Bytes = 0
   868  	}
   869  	if !b.missingBytes {
   870  		r.Bytes += other.Bytes
   871  	}
   872  	r.MemAllocs += uint64(other.AllocsPerOp())
   873  	r.MemBytes += uint64(other.AllocedBytesPerOp())
   874  }
   875  
   876  // trimOutput shortens the output from a benchmark, which can be very long.
   877  func (b *B) trimOutput() {
   878  	// The output is likely to appear multiple times because the benchmark
   879  	// is run multiple times, but at least it will be seen. This is not a big deal
   880  	// because benchmarks rarely print, but just in case, we trim it if it's too long.
   881  	const maxNewlines = 10
   882  	for nlCount, j := 0, 0; j < len(b.output); j++ {
   883  		if b.output[j] == '\n' {
   884  			nlCount++
   885  			if nlCount >= maxNewlines {
   886  				b.output = append(b.output[:j], "\n\t... [output truncated]\n"...)
   887  				break
   888  			}
   889  		}
   890  	}
   891  }
   892  
   893  // A PB is used by RunParallel for running parallel benchmarks.
   894  type PB struct {
   895  	globalN *atomic.Uint64 // shared between all worker goroutines iteration counter
   896  	grain   uint64         // acquire that many iterations from globalN at once
   897  	cache   uint64         // local cache of acquired iterations
   898  	bN      uint64         // total number of iterations to execute (b.N)
   899  }
   900  
   901  // Next reports whether there are more iterations to execute.
   902  func (pb *PB) Next() bool {
   903  	if pb.cache == 0 {
   904  		n := pb.globalN.Add(pb.grain)
   905  		if n <= pb.bN {
   906  			pb.cache = pb.grain
   907  		} else if n < pb.bN+pb.grain {
   908  			pb.cache = pb.bN + pb.grain - n
   909  		} else {
   910  			return false
   911  		}
   912  	}
   913  	pb.cache--
   914  	return true
   915  }
   916  
   917  // RunParallel runs a benchmark in parallel.
   918  // It creates multiple goroutines and distributes b.N iterations among them.
   919  // The number of goroutines defaults to GOMAXPROCS. To increase parallelism for
   920  // non-CPU-bound benchmarks, call [B.SetParallelism] before RunParallel.
   921  // RunParallel is usually used with the go test -cpu flag.
   922  //
   923  // The body function will be run in each goroutine. It should set up any
   924  // goroutine-local state and then iterate until pb.Next returns false.
   925  // It should not use the [B.StartTimer], [B.StopTimer], or [B.ResetTimer] functions,
   926  // because they have global effect. It should also not call [B.Run].
   927  //
   928  // RunParallel reports ns/op values as wall time for the benchmark as a whole,
   929  // not the sum of wall time or CPU time over each parallel goroutine.
   930  func (b *B) RunParallel(body func(*PB)) {
   931  	if b.N == 0 {
   932  		return // Nothing to do when probing.
   933  	}
   934  	// Calculate grain size as number of iterations that take ~100µs.
   935  	// 100µs is enough to amortize the overhead and provide sufficient
   936  	// dynamic load balancing.
   937  	grain := uint64(0)
   938  	if b.previousN > 0 && b.previousDuration > 0 {
   939  		grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration)
   940  	}
   941  	if grain < 1 {
   942  		grain = 1
   943  	}
   944  	// We expect the inner loop and function call to take at least 10ns,
   945  	// so do not do more than 100µs/10ns=1e4 iterations.
   946  	if grain > 1e4 {
   947  		grain = 1e4
   948  	}
   949  
   950  	var n atomic.Uint64
   951  	numProcs := b.parallelism * runtime.GOMAXPROCS(0)
   952  	var wg sync.WaitGroup
   953  	wg.Add(numProcs)
   954  	for p := 0; p < numProcs; p++ {
   955  		go func() {
   956  			defer wg.Done()
   957  			pb := &PB{
   958  				globalN: &n,
   959  				grain:   grain,
   960  				bN:      uint64(b.N),
   961  			}
   962  			body(pb)
   963  		}()
   964  	}
   965  	wg.Wait()
   966  	if n.Load() <= uint64(b.N) && !b.Failed() {
   967  		b.Fatal("RunParallel: body exited without pb.Next() == false")
   968  	}
   969  }
   970  
   971  // SetParallelism sets the number of goroutines used by [B.RunParallel] to p*GOMAXPROCS.
   972  // There is usually no need to call SetParallelism for CPU-bound benchmarks.
   973  // If p is less than 1, this call will have no effect.
   974  func (b *B) SetParallelism(p int) {
   975  	if p >= 1 {
   976  		b.parallelism = p
   977  	}
   978  }
   979  
   980  // Benchmark benchmarks a single function. It is useful for creating
   981  // custom benchmarks that do not use the "go test" command.
   982  //
   983  // If f depends on testing flags, then [Init] must be used to register
   984  // those flags before calling Benchmark and before calling [flag.Parse].
   985  //
   986  // If f calls Run, the result will be an estimate of running all its
   987  // subbenchmarks that don't call Run in sequence in a single benchmark.
   988  func Benchmark(f func(b *B)) BenchmarkResult {
   989  	b := &B{
   990  		common: common{
   991  			signal: make(chan bool),
   992  			w:      discard{},
   993  		},
   994  		benchFunc: f,
   995  		benchTime: benchTime,
   996  	}
   997  	if b.run1() {
   998  		b.run()
   999  	}
  1000  	return b.result
  1001  }
  1002  
  1003  type discard struct{}
  1004  
  1005  func (discard) Write(b []byte) (n int, err error) { return len(b), nil }
  1006  

View as plain text