// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ecdsa import ( "bufio" "bytes" "compress/bzip2" "crypto" "crypto/elliptic" "crypto/internal/cryptotest" "crypto/rand" "crypto/sha1" "crypto/sha256" "crypto/sha512" "encoding/hex" "hash" "io" "math/big" "os" "strings" "testing" ) func testAllCurves(t *testing.T, f func(*testing.T, elliptic.Curve)) { tests := []struct { name string curve elliptic.Curve }{ {"P256", elliptic.P256()}, {"P224", elliptic.P224()}, {"P384", elliptic.P384()}, {"P521", elliptic.P521()}, {"P256/Generic", genericParamsForCurve(elliptic.P256())}, } if testing.Short() { tests = tests[:1] } for _, test := range tests { curve := test.curve cryptotest.TestAllImplementations(t, "ecdsa", func(t *testing.T) { t.Run(test.name, func(t *testing.T) { t.Parallel() f(t, curve) }) }) } } // genericParamsForCurve returns the dereferenced CurveParams for // the specified curve. This is used to avoid the logic for // upgrading a curve to its specific implementation, forcing // usage of the generic implementation. func genericParamsForCurve(c elliptic.Curve) *elliptic.CurveParams { d := *(c.Params()) return &d } func TestKeyGeneration(t *testing.T) { testAllCurves(t, testKeyGeneration) } func testKeyGeneration(t *testing.T, c elliptic.Curve) { priv, err := GenerateKey(c, rand.Reader) if err != nil { t.Fatal(err) } if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) { t.Errorf("public key invalid: %s", err) } } func TestSignAndVerify(t *testing.T) { testAllCurves(t, testSignAndVerify) } func testSignAndVerify(t *testing.T, c elliptic.Curve) { priv, _ := GenerateKey(c, rand.Reader) hashed := []byte("testing") r, s, err := Sign(rand.Reader, priv, hashed) if err != nil { t.Errorf("error signing: %s", err) return } if !Verify(&priv.PublicKey, hashed, r, s) { t.Errorf("Verify failed") } hashed[0] ^= 0xff if Verify(&priv.PublicKey, hashed, r, s) { t.Errorf("Verify always works!") } } func TestSignAndVerifyASN1(t *testing.T) { testAllCurves(t, testSignAndVerifyASN1) } func testSignAndVerifyASN1(t *testing.T, c elliptic.Curve) { priv, _ := GenerateKey(c, rand.Reader) hashed := []byte("testing") sig, err := SignASN1(rand.Reader, priv, hashed) if err != nil { t.Errorf("error signing: %s", err) return } if !VerifyASN1(&priv.PublicKey, hashed, sig) { t.Errorf("VerifyASN1 failed") } hashed[0] ^= 0xff if VerifyASN1(&priv.PublicKey, hashed, sig) { t.Errorf("VerifyASN1 always works!") } } func TestNonceSafety(t *testing.T) { testAllCurves(t, testNonceSafety) } func testNonceSafety(t *testing.T, c elliptic.Curve) { priv, _ := GenerateKey(c, rand.Reader) hashed := []byte("testing") r0, s0, err := Sign(zeroReader, priv, hashed) if err != nil { t.Errorf("error signing: %s", err) return } hashed = []byte("testing...") r1, s1, err := Sign(zeroReader, priv, hashed) if err != nil { t.Errorf("error signing: %s", err) return } if s0.Cmp(s1) == 0 { // This should never happen. t.Errorf("the signatures on two different messages were the same") } if r0.Cmp(r1) == 0 { t.Errorf("the nonce used for two different messages was the same") } } type readerFunc func([]byte) (int, error) func (f readerFunc) Read(b []byte) (int, error) { return f(b) } var zeroReader = readerFunc(func(b []byte) (int, error) { clear(b) return len(b), nil }) func TestINDCCA(t *testing.T) { testAllCurves(t, testINDCCA) } func testINDCCA(t *testing.T, c elliptic.Curve) { priv, _ := GenerateKey(c, rand.Reader) hashed := []byte("testing") r0, s0, err := Sign(rand.Reader, priv, hashed) if err != nil { t.Errorf("error signing: %s", err) return } r1, s1, err := Sign(rand.Reader, priv, hashed) if err != nil { t.Errorf("error signing: %s", err) return } if s0.Cmp(s1) == 0 { t.Errorf("two signatures of the same message produced the same result") } if r0.Cmp(r1) == 0 { t.Errorf("two signatures of the same message produced the same nonce") } } func fromHex(s string) *big.Int { r, ok := new(big.Int).SetString(s, 16) if !ok { panic("bad hex") } return r } func TestVectors(t *testing.T) { cryptotest.TestAllImplementations(t, "ecdsa", testVectors) } func testVectors(t *testing.T) { // This test runs the full set of NIST test vectors from // https://csrc.nist.gov/groups/STM/cavp/documents/dss/186-3ecdsatestvectors.zip // // The SigVer.rsp file has been edited to remove test vectors for // unsupported algorithms and has been compressed. if testing.Short() { return } f, err := os.Open("testdata/SigVer.rsp.bz2") if err != nil { t.Fatal(err) } buf := bufio.NewReader(bzip2.NewReader(f)) lineNo := 1 var h hash.Hash var msg []byte var hashed []byte var r, s *big.Int pub := new(PublicKey) for { line, err := buf.ReadString('\n') if len(line) == 0 { if err == io.EOF { break } t.Fatalf("error reading from input: %s", err) } lineNo++ // Need to remove \r\n from the end of the line. if !strings.HasSuffix(line, "\r\n") { t.Fatalf("bad line ending (expected \\r\\n) on line %d", lineNo) } line = line[:len(line)-2] if len(line) == 0 || line[0] == '#' { continue } if line[0] == '[' { line = line[1 : len(line)-1] curve, hash, _ := strings.Cut(line, ",") switch curve { case "P-224": pub.Curve = elliptic.P224() case "P-256": pub.Curve = elliptic.P256() case "P-384": pub.Curve = elliptic.P384() case "P-521": pub.Curve = elliptic.P521() default: pub.Curve = nil } switch hash { case "SHA-1": h = sha1.New() case "SHA-224": h = sha256.New224() case "SHA-256": h = sha256.New() case "SHA-384": h = sha512.New384() case "SHA-512": h = sha512.New() default: h = nil } continue } if h == nil || pub.Curve == nil { continue } switch { case strings.HasPrefix(line, "Msg = "): if msg, err = hex.DecodeString(line[6:]); err != nil { t.Fatalf("failed to decode message on line %d: %s", lineNo, err) } case strings.HasPrefix(line, "Qx = "): pub.X = fromHex(line[5:]) case strings.HasPrefix(line, "Qy = "): pub.Y = fromHex(line[5:]) case strings.HasPrefix(line, "R = "): r = fromHex(line[4:]) case strings.HasPrefix(line, "S = "): s = fromHex(line[4:]) case strings.HasPrefix(line, "Result = "): expected := line[9] == 'P' h.Reset() h.Write(msg) hashed := h.Sum(hashed[:0]) if Verify(pub, hashed, r, s) != expected { t.Fatalf("incorrect result on line %d", lineNo) } default: t.Fatalf("unknown variable on line %d: %s", lineNo, line) } } } func TestNegativeInputs(t *testing.T) { testAllCurves(t, testNegativeInputs) } func testNegativeInputs(t *testing.T, curve elliptic.Curve) { key, err := GenerateKey(curve, rand.Reader) if err != nil { t.Errorf("failed to generate key") } var hash [32]byte r := new(big.Int).SetInt64(1) r.Lsh(r, 550 /* larger than any supported curve */) r.Neg(r) if Verify(&key.PublicKey, hash[:], r, r) { t.Errorf("bogus signature accepted") } } func TestZeroHashSignature(t *testing.T) { testAllCurves(t, testZeroHashSignature) } func testZeroHashSignature(t *testing.T, curve elliptic.Curve) { zeroHash := make([]byte, 64) privKey, err := GenerateKey(curve, rand.Reader) if err != nil { panic(err) } // Sign a hash consisting of all zeros. r, s, err := Sign(rand.Reader, privKey, zeroHash) if err != nil { panic(err) } // Confirm that it can be verified. if !Verify(&privKey.PublicKey, zeroHash, r, s) { t.Errorf("zero hash signature verify failed for %T", curve) } } func TestZeroSignature(t *testing.T) { testAllCurves(t, testZeroSignature) } func testZeroSignature(t *testing.T, curve elliptic.Curve) { privKey, err := GenerateKey(curve, rand.Reader) if err != nil { panic(err) } if Verify(&privKey.PublicKey, make([]byte, 64), big.NewInt(0), big.NewInt(0)) { t.Errorf("Verify with r,s=0 succeeded: %T", curve) } } func TestNegativeSignature(t *testing.T) { testAllCurves(t, testNegativeSignature) } func testNegativeSignature(t *testing.T, curve elliptic.Curve) { zeroHash := make([]byte, 64) privKey, err := GenerateKey(curve, rand.Reader) if err != nil { panic(err) } r, s, err := Sign(rand.Reader, privKey, zeroHash) if err != nil { panic(err) } r = r.Neg(r) if Verify(&privKey.PublicKey, zeroHash, r, s) { t.Errorf("Verify with r=-r succeeded: %T", curve) } } func TestRPlusNSignature(t *testing.T) { testAllCurves(t, testRPlusNSignature) } func testRPlusNSignature(t *testing.T, curve elliptic.Curve) { zeroHash := make([]byte, 64) privKey, err := GenerateKey(curve, rand.Reader) if err != nil { panic(err) } r, s, err := Sign(rand.Reader, privKey, zeroHash) if err != nil { panic(err) } r = r.Add(r, curve.Params().N) if Verify(&privKey.PublicKey, zeroHash, r, s) { t.Errorf("Verify with r=r+n succeeded: %T", curve) } } func TestRMinusNSignature(t *testing.T) { testAllCurves(t, testRMinusNSignature) } func testRMinusNSignature(t *testing.T, curve elliptic.Curve) { zeroHash := make([]byte, 64) privKey, err := GenerateKey(curve, rand.Reader) if err != nil { panic(err) } r, s, err := Sign(rand.Reader, privKey, zeroHash) if err != nil { panic(err) } r = r.Sub(r, curve.Params().N) if Verify(&privKey.PublicKey, zeroHash, r, s) { t.Errorf("Verify with r=r-n succeeded: %T", curve) } } func TestRFC6979(t *testing.T) { t.Run("P-224", func(t *testing.T) { testRFC6979(t, elliptic.P224(), "F220266E1105BFE3083E03EC7A3A654651F45E37167E88600BF257C1", "00CF08DA5AD719E42707FA431292DEA11244D64FC51610D94B130D6C", "EEAB6F3DEBE455E3DBF85416F7030CBD94F34F2D6F232C69F3C1385A", "sample", "61AA3DA010E8E8406C656BC477A7A7189895E7E840CDFE8FF42307BA", "BC814050DAB5D23770879494F9E0A680DC1AF7161991BDE692B10101") testRFC6979(t, elliptic.P224(), "F220266E1105BFE3083E03EC7A3A654651F45E37167E88600BF257C1", "00CF08DA5AD719E42707FA431292DEA11244D64FC51610D94B130D6C", "EEAB6F3DEBE455E3DBF85416F7030CBD94F34F2D6F232C69F3C1385A", "test", "AD04DDE87B84747A243A631EA47A1BA6D1FAA059149AD2440DE6FBA6", "178D49B1AE90E3D8B629BE3DB5683915F4E8C99FDF6E666CF37ADCFD") }) t.Run("P-256", func(t *testing.T) { // This vector was bruteforced to find a message that causes the // generation of k to loop. It was checked against // github.com/codahale/rfc6979 (https://go.dev/play/p/FK5-fmKf7eK), // OpenSSL 3.2.0 (https://github.com/openssl/openssl/pull/23130), // and python-ecdsa: // // ecdsa.keys.SigningKey.from_secret_exponent( // 0xC9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721, // ecdsa.curves.curve_by_name("NIST256p"), hashlib.sha256).sign_deterministic( // b"wv[vnX", hashlib.sha256, lambda r, s, order: print(hex(r), hex(s))) // testRFC6979(t, elliptic.P256(), "C9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721", "60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6", "7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299", "wv[vnX", "EFD9073B652E76DA1B5A019C0E4A2E3FA529B035A6ABB91EF67F0ED7A1F21234", "3DB4706C9D9F4A4FE13BB5E08EF0FAB53A57DBAB2061C83A35FA411C68D2BA33") // The remaining vectors are from RFC 6979. testRFC6979(t, elliptic.P256(), "C9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721", "60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6", "7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299", "sample", "EFD48B2AACB6A8FD1140DD9CD45E81D69D2C877B56AAF991C34D0EA84EAF3716", "F7CB1C942D657C41D436C7A1B6E29F65F3E900DBB9AFF4064DC4AB2F843ACDA8") testRFC6979(t, elliptic.P256(), "C9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721", "60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6", "7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299", "test", "F1ABB023518351CD71D881567B1EA663ED3EFCF6C5132B354F28D3B0B7D38367", "019F4113742A2B14BD25926B49C649155F267E60D3814B4C0CC84250E46F0083") }) t.Run("P-384", func(t *testing.T) { testRFC6979(t, elliptic.P384(), "6B9D3DAD2E1B8C1C05B19875B6659F4DE23C3B667BF297BA9AA47740787137D896D5724E4C70A825F872C9EA60D2EDF5", "EC3A4E415B4E19A4568618029F427FA5DA9A8BC4AE92E02E06AAE5286B300C64DEF8F0EA9055866064A254515480BC13", "8015D9B72D7D57244EA8EF9AC0C621896708A59367F9DFB9F54CA84B3F1C9DB1288B231C3AE0D4FE7344FD2533264720", "sample", "21B13D1E013C7FA1392D03C5F99AF8B30C570C6F98D4EA8E354B63A21D3DAA33BDE1E888E63355D92FA2B3C36D8FB2CD", "F3AA443FB107745BF4BD77CB3891674632068A10CA67E3D45DB2266FA7D1FEEBEFDC63ECCD1AC42EC0CB8668A4FA0AB0") testRFC6979(t, elliptic.P384(), "6B9D3DAD2E1B8C1C05B19875B6659F4DE23C3B667BF297BA9AA47740787137D896D5724E4C70A825F872C9EA60D2EDF5", "EC3A4E415B4E19A4568618029F427FA5DA9A8BC4AE92E02E06AAE5286B300C64DEF8F0EA9055866064A254515480BC13", "8015D9B72D7D57244EA8EF9AC0C621896708A59367F9DFB9F54CA84B3F1C9DB1288B231C3AE0D4FE7344FD2533264720", "test", "6D6DEFAC9AB64DABAFE36C6BF510352A4CC27001263638E5B16D9BB51D451559F918EEDAF2293BE5B475CC8F0188636B", "2D46F3BECBCC523D5F1A1256BF0C9B024D879BA9E838144C8BA6BAEB4B53B47D51AB373F9845C0514EEFB14024787265") }) t.Run("P-521", func(t *testing.T) { testRFC6979(t, elliptic.P521(), "0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", "1894550D0785932E00EAA23B694F213F8C3121F86DC97A04E5A7167DB4E5BCD371123D46E45DB6B5D5370A7F20FB633155D38FFA16D2BD761DCAC474B9A2F5023A4", "0493101C962CD4D2FDDF782285E64584139C2F91B47F87FF82354D6630F746A28A0DB25741B5B34A828008B22ACC23F924FAAFBD4D33F81EA66956DFEAA2BFDFCF5", "sample", "1511BB4D675114FE266FC4372B87682BAECC01D3CC62CF2303C92B3526012659D16876E25C7C1E57648F23B73564D67F61C6F14D527D54972810421E7D87589E1A7", "04A171143A83163D6DF460AAF61522695F207A58B95C0644D87E52AA1A347916E4F7A72930B1BC06DBE22CE3F58264AFD23704CBB63B29B931F7DE6C9D949A7ECFC") testRFC6979(t, elliptic.P521(), "0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", "1894550D0785932E00EAA23B694F213F8C3121F86DC97A04E5A7167DB4E5BCD371123D46E45DB6B5D5370A7F20FB633155D38FFA16D2BD761DCAC474B9A2F5023A4", "0493101C962CD4D2FDDF782285E64584139C2F91B47F87FF82354D6630F746A28A0DB25741B5B34A828008B22ACC23F924FAAFBD4D33F81EA66956DFEAA2BFDFCF5", "test", "00E871C4A14F993C6C7369501900C4BC1E9C7B0B4BA44E04868B30B41D8071042EB28C4C250411D0CE08CD197E4188EA4876F279F90B3D8D74A3C76E6F1E4656AA8", "0CD52DBAA33B063C3A6CD8058A1FB0A46A4754B034FCC644766CA14DA8CA5CA9FDE00E88C1AD60CCBA759025299079D7A427EC3CC5B619BFBC828E7769BCD694E86") }) } func testRFC6979(t *testing.T, curve elliptic.Curve, D, X, Y, msg, r, s string) { priv := &PrivateKey{ D: fromHex(D), PublicKey: PublicKey{ Curve: curve, X: fromHex(X), Y: fromHex(Y), }, } h := sha256.Sum256([]byte(msg)) sig, err := priv.Sign(nil, h[:], crypto.SHA256) if err != nil { t.Fatal(err) } expected, err := encodeSignature(fromHex(r).Bytes(), fromHex(s).Bytes()) if err != nil { t.Fatal(err) } if !bytes.Equal(sig, expected) { t.Errorf("signature mismatch:\n got: %x\nwant: %x", sig, expected) } } func benchmarkAllCurves(b *testing.B, f func(*testing.B, elliptic.Curve)) { tests := []struct { name string curve elliptic.Curve }{ {"P256", elliptic.P256()}, {"P384", elliptic.P384()}, {"P521", elliptic.P521()}, } for _, test := range tests { curve := test.curve b.Run(test.name, func(b *testing.B) { f(b, curve) }) } } func BenchmarkSign(b *testing.B) { benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) { r := bufio.NewReaderSize(rand.Reader, 1<<15) priv, err := GenerateKey(curve, r) if err != nil { b.Fatal(err) } hashed := []byte("testing") b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { sig, err := SignASN1(r, priv, hashed) if err != nil { b.Fatal(err) } // Prevent the compiler from optimizing out the operation. hashed[0] = sig[0] } }) } func BenchmarkVerify(b *testing.B) { benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) { r := bufio.NewReaderSize(rand.Reader, 1<<15) priv, err := GenerateKey(curve, r) if err != nil { b.Fatal(err) } hashed := []byte("testing") sig, err := SignASN1(r, priv, hashed) if err != nil { b.Fatal(err) } b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { if !VerifyASN1(&priv.PublicKey, hashed, sig) { b.Fatal("verify failed") } } }) } func BenchmarkGenerateKey(b *testing.B) { benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) { r := bufio.NewReaderSize(rand.Reader, 1<<15) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { if _, err := GenerateKey(curve, r); err != nil { b.Fatal(err) } } }) }